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Abstract: A new reduction method for mixture phase
stability testing is proposed, consisting in Newton
iterations with a particular set of independent variables
and residual functions. The dimension of the problem
does not depend on the number of components but on
the number of components with nonzero binary inter-
action parameters in the equation of state. Numerical
experiments show an improved convergence behavior,
mainly for the domain located outside the stability test
limit locus in the pressure–temperature plane, recom-
mending the proposed method for any applications in
which the problematic domain is crossed a very large
number of times during simulations.
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1 Introduction

Phase stability analysis is very important in process
systems engineering and petroleum and gas reservoir,
production and transport engineering. Phase stability
testing assesses the state of a mixture at given
specifications and is essential in the initialization of
flash calculations, in checking the results of phase
split calculations and in phase diagram construction. It
consists in an unconstrained minimization of the tangent
plane distance (TPD) function [1]. The stability test is

performed in most cases at a given pressure and
temperature, but many implementations using various
other specifications were proposed [2,3].

The stability test limit locus (STLL) [4–7] is an
important underlying property of multicomponent
system phase diagrams, because in its vicinity, the
number of iterations for phase stability testing dramati-
cally increases and divergence may occur. The Hessian
matrix is singular at the STLL for a nontrivial trial phase
composition. The cause of convergence problems in
phase stability calculations in the single-phase state is
the topology of the TPD surface, as explained in refs. [6,7].
At the STLL, the TPD surface exhibits a saddle point, and
for conditions outside the STLL in the pressure–
temperature plane at a given composition, the iterates
have to cross a domain of indefiniteness of the Hessian
matrix, starting from one of the two-sided initial guesses
[7]. This makes stability testing in the vicinity of the STLL
really challenging, and any gradient-based algorithmwill
experience difficulties in this region [5–8].

The reduction methods [9,10], in which the solution
is sought in the hyperspace defined by the reduction
parameters, rather than in the compositional hyper-
space, are very attractive alternatives to the conventional
methods, especially for mixtures with many compo-
nents, which can often be encountered in refining and
chemical process simulators (mixtures may have hun-
dreds of components, resulting from mixing several
feeds) or in petroleum engineering applications. In the
reduction methods, the number of independent variables
does not depend on the number of components in the
mixture but only on the number of components having
nonzero binary interaction parameters (BIPs) in the
equation of state (EoS) with the remaining ones.
Reduced stability testing routines were included in
several commercial and academic compositional reser-
voir simulators, in which thermodynamic equilibrium
equations are coupled with equations of fluids flow
through porous media and need to be solved a huge
number of times for full-field simulations.

In this work, a new reduction method (which is an
improved version of our previous formulation) for the
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phase stability problem is presented, consisting in
Newton iterations (with a switch-back to successive
substitution iterations [SSI], as a safety feature) with a
new set of independent variables and residual functions.
The paper is structured as follows: first, a previous
reduction method for stability testing is recalled, and
then, the proposed method is introduced and tested for
several examples before concluding.

2 Phase stability testing using a
reduction method

In conventional (in the compositional space) phase
stability testing of an nc-component mixture of composi-
tion zi, Michelsen’s modified TPD function [1]
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is minimized with respect to formal mole numbers of the
trial phase (Yi), where φi is the fugacity coefficient.

A mixture is thermodynamically stable if D* is
nonnegative for all feasible Y. The common procedure
is to check the sign of D* at all calculated stationary
points. In reduction methods, the nonideal part of the
TPD function is expressed in terms of reduction
parameters.

The M reduction parameters are defined as [10]
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where q are the elements of the reduction matrix [10].
There are several procedures to achieve the reduc-

tion (to express the energy parameter A in the cubic EoS
in terms of the reduction parameters of the form given by
equation (2)) [9–12]. Here, the spectral decomposition of
the matrix K with elements ( − ) =k i j1 ; , 1, ncij [11] is
used (where kij is the BIP between components i and j)
and A is reduced from a quadratic to a linear form:
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where m is the rank of K (which is rank-deficient and
usually m ≪ nc), =λ α m; 1,α are the eigenvalues of the

matrix K and = =q α m i; 1, ; 1, ncαi are the corresponding
eigenvectors. It is worth noting that the eigenvalue-
eigenvector problem has many applications in theore-
tical physics, engineering and chemistry (for instance,
such eigenproblem has been translated for the alignment
of molecules).

The last reduction parameter is the co-volume in the
EoS (with M = m + 1 and = =q B i; 1, ncMi i ).
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Since the EoS parameters, A and B, as well as ∂ /∂A xi are
functions of reduction parameters, the fugacity coeffi-
cient is also a function of reduction parameters at P and
T specifications, that is, = ( )φ φ P T Q, ,i i , unlike in
conventional methods where it is a function of phase
composition, = ( )φ φ P T n, ,i i .

The reduction parameters were first used as inde-
pendent variables in phase stability testing by Nichita
et al. (2006) [13] (this method is denoted here by NBH).
The M error equations are
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in M unknowns, = ( )Q Q QQ , , ... , M
T

1 2 , and the trial
phase mole numbers, Yi, are calculated from

( ) = + ( ) − ( ) =Y z ϕ ϕ iQ Q Qln ln ln ln ; 1, nci i i F i (7)

where the index F stands for feed.
The Newton iteration equation is

= −( )J Q FΔR (8)

where ( )J R is the Jacobian matrix and F is the error vector
given by equation (6),
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From equation (7)
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The solution of the linear system of equation (8)
corresponds to a stationary point of D* [9]. The variables
Q are bounded by ≤ ≤

= =
q Q qmin min ;

i
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Calculations start directly with Newton iterations; if a
variable hits its bounds or if the TPD function increases
between two subsequent Newton iterations, either a line
search is preformed [13] or iterations are reverted to SSI [5].
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SSI iterations are based on updating Y from equation (7)
and Q from equations (2) and (5) using the normalised
mole fractions.

Extensive testing showed [5,13] that the NBL reduc-
tion method is very fast in the two-phase region
(convergence starting directly with Newton iterations is
unproblematic even very close to critical points, where
10 iterations are rarely exceeded). In the single-phase
region, the number of iterations exhibits a peak strictly
near the singularity and an erratic behavior in a domain
(that becomes wider with the distance to the critical
point) outside the STLL, where convergence may be slow
and even problematic.

3 Proposed method

Let us define the vector = ( … )Q Q SQ , , ,M1
T of M + 1

modified reduction parameters, with elements
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with = =+q i1; 1, ncM i1, .
It was shown that a solution of equation (11) corre-

sponds to a stationary point of the modified TPD
function D* and honors the constraints in its minimiza-
tion with respect to a specific set of variables, i.e., Y and

= ( … )Q Q Q S, , ,M1
T [8].

The error equations are
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The linear system of M + 1 equations is

= −J Q eΔ (13)

The elements of the Jacobian matrix are
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The partial derivatives of the fugacity coefficients with
respect to the reduction parameters can be found in ref.
[8] for a general form of two-parameter cubic EoS,
containing Peng-Robinson [14] EoS and the Soave [15]
EoS; these derivatives have simpler forms than those
required in conventional methods.

The block structure of the Jacobian matrix (the prime
on the symbol of an array means here that the array
contains only its first M elements) is
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Using simple linear algebra operations, it can be shown
that an equivalent problem consists in first solving the
linear system of M equations

= −′J′ Q e′Δ (18)
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and then updating +QM 1 (S) from

∑≡ = − −+ +
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The Jacobian matrix J′ differs from its block counterpart
in J by a rank one matrix (thus no additional summa-
tions are required), that is, the Schur complement of

+ +JM M1, 1 is J; moreover, the condition number of J′ is not
affected by the bordering vectors in equation (17).
By this way, the dimensionality of the linear system
resolution is not increased by adding an additional
independent variable.
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The algorithm for the proposed reduction method is
as follows:

(i) Provide initial estimates of the equilibrium constants
(Wilson’s relation for ideal K-values is used [1])

(ii) Calculate initial estimates of formal mole numbers
(Yi)

(iii) Calculate initial values of the iteration variables
from equations (11a) and (11b);

(iv) Calculate the fugacity coefficients as functions of
the reduced variables

(v) Update Yi from equation (7)
(vi) Evaluate the error function (the Euclidean norm of

the error vector in equations (12a) and (12b)
(vii) Convergence test; if the error function is less than

the required tolerance, the iterative process is
stopped.

(viii) Calculate the TPD function; if the TPD function is
increasing between two subsequent iterations, an
SSI iteration is performed (go to step iii)

(ix) Calculate the required partial derivatives and
assemble the Jacobian matrix

(x) Solve the linear system of equations (the Newton
method)

(xi) Update the iteration variables and go to step iv

The iterative sequence above is performed twice, for
vapor-like and liquid-like initialisations [1], as described
in the next section.

The proposed method was coded in FORTRAN,
according to the algorithm presented above, by modifi-
cations of the original code for the NBL reduction
method for stability testing. The latter was previously
implemented and thoroughly tested in several academic
and industry research compositional simulators.

Ethical approval: The conducted research is not related
to either human or animal use.

4 Results and discussion

Phase stability testing calculations are performed for two
hydrocarbon mixtures. The PR EoS is used in all
calculations. Calculations start directly with Newton
iterations, with a possible switch-back to SSI when
reduction parameters are going out of their bounds. The
iterative process is stopped if the Euclidean norm
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with = −ε 10 10 in all calculations.

Michelsen’s two-sided initialization is used, in which
ideal equilibrium constants calculated with Wilson’s
relation [1] are used to generate the initial guess. If the
stability of a vapor-like mixture is investigated (the trial
phase is liquid), initialization is denoted as type V and

= /( ) ( )Y z KiV i i
0 0 ; for a liquid-like mixture (the trial phase is

vapor), the initialization is denoted as type L and

=( ) ( )Y z KiL i i
0 0 .
The first mixture is a six-component synthetic

gas-condensate (Yarborough [16]), containing normal
alkanes ranging from C1 to nC10, denoted as Y8.
Composition is given in ref. [16], component properties
are taken from Reid et al. [17], and all BIPs are set to
zero. This test problem is a benchmark problem for
phase equilibrium calculation, used in many studies
[5–8,12,13,18], and covers the important particular case
when there are only two iteration variables (the
parameters of the EoS) for phase stability testing. There
is only one nonzero eigenvalue of the matrix K,

= =λ nc 61 . The critical point calculated with the PR
EoS using a reduction method [18] is Tc = 293.78 K and
Pc = 210.67 bar. The second mixture (Metcalfe and
Yarborough [19]), denoted as MY10, is a ten-component
synthetic oil containing normal alkanes ranging from
C1 to nC14; feed composition, component properties and
nonzero BIPs are taken from ref. [5]. The matrix K is of
rank 3; the three nonzero eigenvalues are =λ 9.9573531 ,

=λ 0.0706502 and = −λ 0.0280033 . The calculated
critical point using the PR EoS [18] is Tc = 572.23 K and
Pc = 79.94 bar.

A large number of phase stability testing calcula-
tions are carried out with the proposed and NBH
methods, by spanning the pressure–temperature plane
using refined grids, with increments of ΔP = 1 bar
and ΔT = 1 K. The temperature and pressure windows
in the P−T plane are defined by [250 K, 600 K] and
[1 bar, 300 bar], respectively, for the Y8 mixture (giving
105,350 test points) and by [250 K, 700 K] and [1 bar,
250 bar], respectively, for the MY10 mixture (giving
1,12,750 test points). The number of iterations for the
NBH and proposed methods within the selected P−T
windows are plotted in Figures 1 and 2 for the Y8 mix-
ture with a type V initialization, Figures 3 and 4 for the
MY10 mixture with a type L initialization and in Figures
5 and 6 for the MY10 mixture with a type V initialization.
An increase in iteration numbers can be clearly
identified in the vicinity of the STLL and in a certain
domain in the single-phase region (in Figures 1–4) and
in the vicinity of the spinodal curve in Figures 5 and 6.
The explanation of this typical convergence behavior is
given in ref. [6,7].

An improved reduction method for phase stability testing in the single-phase region  1319



It appears from Figures 1–6 that the proposed method
leads to a systematic decrease in the number of itera-
tions in the single-phase region, mainly in the highly
difficult P−T domains. In the two-phase region, the
proposed method is slightly slower than NBH. Taking
into account the above considerations, the recom-
mended procedure is to start iterations with the
proposed method and switch to NBH when the TPD
function D* < 0 becomes negative (both the proposed
and NBH [6,10,11,16] methods are highly robust in the
two-phase region). We aimed in this paper to highlight

the improvement of the original NBL method by using
the proposed reduction method.

Finally, it is important to note that the results of
the reduction method are identical to those obtained
by any conventional methods. Differences with ex-
perimental values are those specific of the thermody-
namic model (EoS) used. If the spectral expansion in
equation (3) is truncated (by neglecting some small
eigenvalues, as for instance in refs. [5,11]), noticeable
differences may appear (see a detailed discussion in
Michelsen et al. [20]).

As the proposed algorithm using the modified re-
duction parameters (Q) performs better than the original

Figure 1: Number of iterations for the Y8 mixture, NBH method with
type V initialization.

Figure 2: Number of iterations for the Y8 mixture, proposed method
with type V initialization.

Figure 3: Number of iterations for the MY10 mixture, NBH method
with type L initialization.

Figure 4: Number of iterations for the MY10 mixture, proposed
method with type L initialization.
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one using the reduction parameters (Q), the immediate
practical consequence of this work is to extend the use of
the new set of variables to more complex algorithms in a
TPD function minimization framework.

5 Conclusions

A reduction method for mixture phase stability testing is
proposed, using a new set of error functions and inde-
pendent variables (the modified reduction parameters,
including the sum of formal mole number) for Newton
iterations. Numerical experiments carried out by

spanning the pressure–temperature plane show the
robustness of the proposed method, with no failure
and a significantly improved convergence behavior,
mainly in the single-phase region for pressures outside
the STLL (where it is faster than the previous formula-
tion), recommending the proposed method for composi-
tional simulators, in which the problematic domain is
crossed a very large number of times during simulations.
A general form of the two-parameter cubic EoS is used,
but the reduction method is applicable to any EoS in
which all mixing rules are decomposable to linear forms.

Conflict of interest: The authors declare no conflict of
interest.
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