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Abstract. For 3D geological modelling of oil and gas reservoirs, well pattern density is directly related to the
number of samples involved in the calculation, which determines the variation function of stochastic modelling
and has great impacts on the results of reservoir modelling. This paper focuses on the relationship between
well pattern density and the variogram of stochastic modelling, selects the large Sulige gas field with many well
pattern types as the research object, and establishes a variogram database of stochastic models for different well
pattern densities. First, the well pattern in the study area is divided into three different types (well patterns A,
B, and C) according to well and row space. Several different small blocks (model samples) are selected from each
type of well pattern to establish the model, and their reasonable variogram values (major range, minor range
and vertical range) are obtained. Then, the variogram values of all model samples with similar well pattern
densities are analysed and counted, and the variogram database corresponding to each type of well pattern
is established. Finally, the statistical results are applied to the modelling process of other blocks with similar
well pattern density to test their accuracy. The results show that the reservoir model established by using
the variation function provided in this paper agrees well with the actual geological conditions and that the ran-
dom model has a high degree of convergence. This database has high adaptability, and the model established is
reliable.

1 Introduction

Stochastic modelling is a commonly used geological
modelling method. Its basic idea is to generate a series of
optional and equal probability geological models based on
the analysis of known points, which can be used to predict
the attribute values of unknown areas between control
points (known points) [1–3]. Stochastic modelling recog-
nizes the uncertainty of the prediction results; that is, every
new model is stochastic [4, 5]. Therefore, a stochastic
geological model should have many sister models (random
realization) that exist at the same time. The random real-
izations of the same model generated under the same condi-
tions may differ greatly from each other due to the variation
function, and these differences merely reflect the geological
uncertainty contained in the random model [6–8]. In addi-
tion, in terms of well pattern productivity prediction, uncer-
tainty model analysis can help engineers choose better
production strategies [9, 10]. Figure 1 shows four different

random implementations of the same model. It can be con-
cluded from this figure that the differences among random
models are relatively large due to the well point value and
variation function, which shows that the reservoir predic-
tion results have multiple solutions [11].

The theoretical basis of geological modelling is geostatis-
tics, which includes three aspects: kriging algorithms, vari-
ograms and stochastic simulations [12, 13]. Geostatistics is
based on the theory of regional variables and the variogram
as the basic tool to study the distribution of sample points
with random characteristics in spatial distribution [14].
Among them, the variogram is an important parameter
that affects stochastic modelling. It is a statistical tool to
quantitatively describe the spatial variability and is used
to characterize the nature of how a variable changes with
different spatial positions [15–17]. The variogram uses three
main parameters, namely, range value, sill value and nugget
value, to represent various spatial variation properties of
regionalized variables [18–21]. In the process of modelling,
the slope at the initial end of the variogram curve represents
the stability of the variable; the larger the slope is, the more* Corresponding author: wangjk@sdust.edu.cn
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unstable the variable, and the smaller the slope is, the
smoother the variable [22]. In addition, some new tech-
niques and methods have been developed gradually in the
process of geological modelling, such as the magnetic
random walk model, which can well predict the distribution
of sand bodies and get accurate results, which is closer to
the understanding of geological researchers [23].

Reservoir modelling is an application of geological
modelling, which represents the distribution and change
characteristics of reservoir structure and reservoir parame-
ters in three-dimensional space, and the coupling relation-
ship of all the model parameters [24]. The core problem of
reservoir modelling is reservoir prediction between wells.
Compared with other geological bodies, oil and gas reser-
voirs are controlled by a variety of parameters, such as
complex rock structures, spatial configurations and spatial
changes in reservoir parameters, which leads to multiple
solutions of stochastic modelling [25–28]. The accuracy of
reservoir stochastic modelling depends on the number of
well points involved in interpolation. The more well points
there are, the more representative the variogram function
is, and the more the established model is in line with the
actual geological situation. In contrast, the fewer well points
there are, the weaker the adaptability of the variogram
value obtained from data analysis, and the less representa-
tive the random model that can be established [29, 30].

For undeveloped oil and gas reservoirs, the well pattern
density is small, the data points involved in interpolation
calculation are few, and the prediction accuracy of the
established model is low. It is necessary to use additional
constraints to constrain the modelling process, such as
interpretation of 3D seismic data, seismic inversion data
volume and logging data, to improve the accuracy of the
model [31–33]. Under the constraints of these additional
conditions, the prediction accuracy of the attributes
between the control points of the stochastic model can be
greatly improved and closer to the actual geological situa-
tion [34, 35]. However, for oil and gas reservoirs in a later
stage of development, the well pattern density is generally
large, and there are many data points involved in the

modelling, which is conducive to obtaining a variation func-
tion with high reliability in the process of data statistics and
to establishing a 3D geological model with high prediction
accuracy [36]. In addition, reservoirs with large well pattern
densities have always been highly researched, and various
reservoir parameters, such as microfacies, lithofacies, and
reservoir types, are well known, which can also be used to
constrain the inter-well interpolation prediction in the
modelling process. At present, the commonly used facies-
controlled modelling is a kind of random modelling method
under the constraint of high-precision reservoir parameters.
Its core is to use the plane distribution law and vertical
evolution trend of sedimentary facies to constrain the
modelling process, and it has become the leading technology
and method of physical random modelling [37]. Some new
methods, such as StoSAG algorithm, can adjust the
optimization variables continuously to obtain the optimal
variable value of the objective function and make the
simulation results more accurate [38].

Comprehensive analysis shows that for sparse or dense
well pattern reservoir modelling, obtaining a 3D geological
model with high accuracy can be realized only by reason-
able data analysis of well point values in the area and
election of a suitable constraint condition. However, if a
reservoir with a large area and an irregular well pattern
(some areas have a large well pattern density, and other
areas have a small well pattern density), it is difficult to
establish a high-precision 3D geological model by using
conventional methods because it is unrealistic to obtain a
reasonable variation function suitable for all well patterns
by data analysis. The Sulige gas field is such an area, which
has a large area (more than 20 000 km2), complex well
pattern and great differences in well pattern density. For
such a reservoir, is there an effective solution to build a
high-precision prediction model? The answer, of course, is
yes. In this paper, a special solution is designed to establish
a high-precision 3D geological model of this kind of reservoir
and to build a variogram database of reservoirs with differ-
ent well patterns, which simplifies this type of reservoir
modelling.

Fig. 1. Differences between the realizations of stochastic modelling.
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2 Material and methods

The research area selected in this paper is the Sulige gas
field. The data used in the research process are all real
natural gas well data collected from Changqing Oilfield
Company, including core data, rock analysis and testing
data and logging data for these wells. These data provide
the research basis for this paper and ensure the smooth
development of various research tasks. After obtaining
these data, we develop a unique research design to solve
the problem of low accuracy of the gas reservoir model with
a large range and great differences in well pattern density.
The research idea is designed for the existing well pattern.
First, cluster analysis is carried out according to the similar-
ities in well pattern density, and the combinations of
variogram parameters of sandstone and mudstone under
different well pattern conditions are counted. Then, the
combinations of well pattern density and variogram param-
eters are analysed by mathematical induction and other
methods. Finally, the modelling variogram database of
Sulige gas reservoir is obtained. The main technical ideas
are as follows (Fig. 2):

1. The large study area is divided into three types
according to well pattern density, and several differ-
ent model samples are then established in each type
to ensure that the well pattern density in each model
sample is approximately the same.

2. Different modelling methods are used to build the
geological model of each model sample. For example,
the facies-controlled method is used in areas with
high well pattern density, and the seismic and logging
data volume constraint method is used in areas with
low well pattern density.

3. The accuracy of each model is tested to ensure that
the model established by the uniform well pattern is
consistent with the actual geological situation.

4. The models of similar well pattern densities are classi-
fied as the same category, and the correlation of the
variogram used in each model is statistically analysed.
The regression formula is established, and the appro-
priate variogram range under the well pattern density
is obtained.

5. The obtained variogram is applied to the new mod-
elling area of similar well pattern density, and the pre-
diction accuracy of these models is used to test the
reliability of the database.

6. According to the verification results for a large
number of test block models, the initial variogram
database is adjusted, the relationship between well
pattern density and variogram is optimized, and the
accuracy of the database is improved.

3 General situation of the study area

The Ordos Basin is located in the central and western
regions of China, with a nearly north-south trend. It can
be divided into six first-order structural units: Yimeng
uplift, Weibei uplift, Jinxi fold belt, Shanbei slope,
Tianhuan depression and western margin thrust belt. The
research area for this modelling is the Sulige gas field, which
is located in the northern Ordos Basin. Its structural form is
a west-dipping monocline, and the overall fluctuation of the
strata is small. It is a super large gas field recently discov-
ered in China. To establish the database of the relationship
between the well pattern and the variogram, two represen-
tative well pattern areas, the XA block and GU block, are
selected from the Sulige gas field. XU and GU are two
blocks with similar development degree and almost equal
total wells. These two blocks have well patterns in different
development stages, which are very representative with well
space ranging from 400 m to 1200 m. These well patterns
are in line with the requirements of this paper, and each
type of well pattern can provide enough modelling samples.
The initial variogram database is established by using the
data from the GU area, then selecting different well pattern
areas from the XA area for verification and adjustment, and
finally establishing the appropriate high-precision vari-
ogram database of different well patterns (Fig. 3).

4 Well pattern partition and sample modelling

4.1 Well pattern partition

The Sulige gas field has the characteristics of a wide
reservoir distribution, simple and gentle structure, and

Fig. 2. Flow chart for the relationship between well pattern density and variogram.
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consistent sedimentary background. Within the framework
of these favourable conditions, the sandstone drilling rate of
gas wells is high. Therefore, it is feasible to quantitatively
characterize the relationship between well pattern densities
and variograms by geostatistics. The well pattern in the
study area is irregular, and the well space is between
500 m and 1500 m, so it seems that there is no condition
for classification. However, from the perspective of the
development stage of these wells, some regular phenomena
will be found, because the density of well pattern is posi-
tively proportional to the development degree, that is, with
the increase of development time, the density of well pattern
is gradually increased. It can be concluded that there are
three types of distances between these wells: 500 m (infill
well pattern), 700 m (conventional well pattern) and
1000 m (initial well pattern). According to the distribution
characteristics of the well pattern in the GU area, three
types of well pattern density areas are identified, namely,
well pattern area A, well pattern area B, and well pattern
area C. Each type of well pattern area is divided into differ-
ent numbers of model sample areas, including 6 in area A,
12 in area B and 15 in area C. See Table 1 for well space
and row space data of well points in each model sample.

The subdivision into blocks reduces the uncertainty of
the stochastic simulation caused by the difference in the
well pattern distribution. The minimum well pattern
density of the GU area is 0.8 well/km2, and the maximum
well pattern density is 3.5 well/km2. Most of the model
samples with large well pattern densities are located in
the middle of the study area, and the peripheral well
pattern density is relatively low. A total of 33 model sam-
ples are established, which are interspersed with each other
and spread throughout the whole block (Fig. 4).

4.2 Partition modelling (taking the sample model
of area A as an example)

A model sample from area A is selected and named A1.
First, the structural model of A1 is established, and then
the random modelling of sandstone-mudstone is carried
out to obtain the range value of the variation function
and establish the database. The plane grid size of the A1
structural model is 20 m � 20 m, the longitudinal modelling
thickness is 1 m, the plane grid size is 350� 219, the vertical
direction has 108 layers, and the number of grids in the
whole geological model is 8278200.

Fig. 3. Location map of the study area.

J. Wang et al.: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 75, 84 (2020)4



4.2.1 Data source

In this paper, the lithofacies modelling data are the
thicknesses of sandstone and mudstone at each well point
in the area, which are represented by two numbers:
0 (sandstone) and 1 (mudstone). In this paper, the lithofacies
modelling data are the thicknesses of sandstone and
mudstone at each well point in the area, which are repre-
sented by two numbers: 0 (sandstone) and 1 (mudstone).
These lithologic data are obtained by logging data interpre-
tation. If multiple logging curves (such as gamma ray;
acoustic; resistivity and so on) show the characteristics of
sandstone, then its lithology code is defined as 0, otherwise
it is mudstone (code 1). In the vertical direction, these data
are continuous and appear at intervals; in the plane, it is

restricted by the well density. Lithology data is the basic
data of lithofacies model. Figure 5 shows the lithofacies data
obtained from two single wells.

There are 45 wells in block A1; that is, there are 45 data
points in the plane that can be included in the numerical
analysis in the modelling process. The thickness of the fine
layer in the longitudinal direction is 1 m, 15–20 layers make
up a zone, and there are 7 zones in the model. The data
points in these layers participate are used for the numerical
analysis in the vertical direction (Fig. 6).

4.2.2 Lithology distribution law

The sandstone in the study area formed by fluvial sedimen-
tation, with obvious positive rhythmic characteristics, and

Table 1. Sample number and characteristics of three well pattern models.

Unit name Unit number Well space (m) Row space (m)

Well pattern area A 6 <600 <700
Well pattern area B 12 600–800 700–900
Well pattern area C 15 >800 >900

Fig. 4. Distribution of different types of model samples in the GU area.
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thick sand bodies all formed by multi-stage superposed
sedimentation (Fig. 7a). Before establishing the model, it
is necessary to discretize the lithological (sandstone and
mudstone) information from the well into the model and

to establish the correlation between the well and the model.
According to the distribution of the sand body after dis-
cretization, it has little difference from that of a single well
and basically maintains the original state of the sand body

Fig. 5. Lithofacies data of single well.

Fig. 6. Original data points of sandstone-mudstone lithofacies modelling.

J. Wang et al.: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 75, 84 (2020)6



(Fig. 7b). This result shows that the actual data are entered
into the model after various processing steps and do not
change significantly until modelling, which is conducive to
improving the accuracy of data analysis and the reliability
of the model.

4.2.3 Variation function setting

The adjustment and setting of the variation function are
done mainly to obtain the appropriate range value to repre-
sent the spatial correlations of regional variables. Beyond
this range, the regionalized variables no longer have spatial
correlation; that is, the observations beyond the range do
not affect the estimation results for the estimated points.
A relatively large range means that the observational data
in this direction are correlated over a large range; otherwise,
the correlation of variables along this direction is low
(Fig. 8). The adjustment mainly follows the following
principles:

1. For the adjustment of step size, the average well
space, as well as its maximum and minimum values,
should be considered.

2. The range of search steps should be limited within
60% of the block boundary and should be coordinated
with the step size to ensure that there are enough data
points in the search range.

3. The vertical search distance should be limited within
the average thickness of a single sand body, and it is
better to be equivalent to the thickness of the vertical
subdivision layer set during modelling.

On the basis of the above principles, the variograms of
sandstone and mudstone in each zone of the model are
fitted, and reasonable variograms are obtained. For a thick
continuous layer of sandstone, the data points are dis-
tributed evenly, the correlation is good, and the fitting effect

of the variogram is good. However, for thin layers with small
sandstone thickness and large mudstone thickness, the
correlation of the control points is poor, and the fitting
degree of the variogram is slightly poor. On the basis of
variogram fitting, a high-precision 3D geological model is
established.

5 Study of the variation function relationship
of different well patterns

5.1 Well pattern area A (600 � 700 m)

After the adjustment principle of the variogram is set, the
same operation process is carried out. The variogram is
adjusted according to the well pattern characteristics of
different blocks, and the lithofacies models of the remaining
five samples are established. The distributions of sandstone
and mudstone in the models are similar to the actual geo-
logical situation, which shows that the obtained variogram
value has high adaptability. Table 2 shows the variogram
values used in the different models.

The data in Table 2 are analysed using statistical
methods and their distribution frequency chart, and the
relationship between the major and minor range are estab-
lished (Fig. 9). It can be seen from the figure that the main
frequency of the distribution of the primary variable is
approximately 750, the main frequency of the secondary
variable is approximately 620, and there is a good linear
relationship between them. These results show that the
sand bodies formed by fluvial facies deposition correspond
well (with a certain proportion) in the flow direction and
the vertical flow direction, and the length/width ratio of
the inner bank and the side bank of the river channel has
a compound normal distribution. In addition, the dominant
frequency of vertical variation is approximately 5.0, which
is basically equivalent to the thickness of a single sand body

Fig. 7. Comparison of sandstone distributions between the vertical profile and the discrete model.
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Fig. 8. Fitting curves for the variograms of sandstone in one zone.

Table 2. Range of values for model samples in area A.

Variogram
range

Well pattern
area A

Layers

H8S1-1 H8S1-2 H8S2-1 H8S2-2 H8X1-1 H8X1-2 H8X1-3 H8X2-1

Major range A1 734.1 932.1 600.1 781.5 767.1 810.1 940.2 837.3
A2 794.2 841 786 833.7 846.1 771.3 865.2 940
A3 524.1 614.3 535.4 620.3 551.7 566 506.5 574.2
A4 756.8 803.4 1010 861 731.4 686 887.6 713
A5 680 706 697 733.6 801.7 780 955 993
A6 1032 1176 1086 1052 917 1014.3 1164.3 1085.4

Minor range A1 580.4 733.5 542.3 491.2 716.1 631.7 603.3 675
A2 551.7 547.6 506.2 624.9 666.4 664.7 696.4 811.3
A3 516.8 587.2 490.5 500 500 536.8 501.2 482.1
A4 746.9 690 736 582 657 511 621 577
A5 544 626 527 557 743.5 623 717 706
A6 691 871 973 627 857 801.4 633 850.7

Vertical range A1 4.66 5.91 4.06 4.50 5.28 5.11 5.45 5.37
A2 4.76 4.91 4.57 5.17 5.37 5.10 5.54 6.22
A3 3.71 4.28 3.65 3.98 3.74 3.93 3.59 3.75
A4 5.36 5.31 6.18 5.10 4.94 4.24 5.34 4.58
A5 4.34 4.74 4.34 4.58 5.50 4.98 5.93 6.02
A6 6.09 7.25 7.32 5.92 6.31 6.44 6.33 6.87
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in most wells; this result shows that the vertical correlation
of sample points is not related to the well pattern but is only
controlled by the thickness of a single sand body and the
composite normal distribution law.

5.2 Well pattern areas B and C (600 � 700 m)

By using the same modelling method, the variogram values
of each model sample in areas B and C are calculated, and
they are statistically analysed. It can be concluded that the
major and minor range values of the model samples in these
two well pattern areas have composite normal distribution
characteristics, and both increase gradually with the
decrease in well pattern density, with an increase of
20–30% each time. The main transformer in area B is
961, and the secondary transformer is 749 (Fig. 10a); the
main transformer in area C is 1180, and the secondary
transformer is 968 (Fig. 10b).

It can also be concluded from the correlation of the
major and minor ranges of areas B and C that the correla-
tion between them is relatively good and shows an obvious
linear relationship. This result also indicates that the scale
of the river channel is relatively large, and even the well
pattern with the largest well space doesn’t exceed the river
channel boundary (Fig. 11).

5.3 Relationship between variograms
and well patterns

By comparing the variogram values of all model samples in
areas A, B and C, it can be found that with increasing well
space, the reasonable variogram range value also increases
(both the major and minor ranges); when the well space
increases from 600 m to 1100 m, the major range increases
by 55%, and the minor range increases by nearly 50%.
These results show that as the distance between two adja-
cent wells increases, the sand body size calculated by the
model also increases, but it still does not exceed the actual
sand body boundary (Fig. 12).

The vertical range value which is mainly affected by the
content of sand and mudstone in the formation controls the
vertical correlation and interpolation result of variables. If
the proportion of sandstone is high, the thickness of sand
body in the vertical direction of the new generation model
will be large with good continuity. However, the vertical
range value seems to have a poor correlation with the well
pattern density on the plane. With the change in well space,
the vertical variation does not change much. Its main
frequency value is maintained between 4.5 and 5.6, and
the variation amplitude is small, which indicates that
the thickness of the sand body in the vertical direction is

Fig. 9. Statistical analysis and correlation of range values in zone A.
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relatively stable and has little correlation with the well
space (Fig. 13).

6 Establishment and test of variogram
database of different well patterns

6.1 Reasonable variation function values
of different well patterns

Through the statistical analysis of the variogram range
values of all model samples, the reasonable variogram range

values of each well pattern density area are determined.
There is a positive correlation between the major and minor
range values and the well pattern density (the variation
range is approximately 20–30%), while the vertical vari-
ogram value has little relationship with the well pattern
density (Tab. 3).

6.2 Variogram database test (taking area A
as an example)

The Sulige gas field covers a large area, and the GU block is
used to build the variogram database. To test the reliability

Fig. 10. Statistical analysis chart of variable range values of areas B and C.

Fig. 11. Correlation between the primary and secondary ranges of areas B and C.
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of the established database, the XA block northeast of the
GU block is selected for verification (Fig. 14). The well
pattern similarity of these two blocks is very high. There
are dense well patterns with small well space and sparse
well patterns with large well space. Thus, the XA block is
suitable for the adaptability verification of the variation
function of different well patterns.

6.2.1 Establishment of lithofacies model

The reasonable variation function values in Table 3 are
directly applied to the lithofacies model establishment
process using test samples with corresponding well patterns,
and the random modelling method is used for interpolation
calculation. Finally, lithofacies models of all test areas are
established. Figure 15 is a representative block lithofacies
model of area A.

6.2.2 Model test

To ensure the reliability of the established variogram
database, it is necessary to perform a lithofacies model pre-
cision validation of each test sample. The test methods used
are the well thinning method and the random model con-
vergence method [39]. There are two kinds of well thinning
methods: one is single well thinning, and the other is multi-
well thinning. Figure 15 shows the test results for single-well
thinning. In the modelling process, well XA30-M20 is

Fig. 12. Variation law of the major and minor ranges with the well pattern density.

Fig. 13. Variation law of vertical range value with well pattern density.

Table 3. Reasonable range value of the variogram under
different well pattern densities in the Sulige gas field.

Unit name Major
range

Minor
range

Vertical
range

Well pattern area A 756 639 5.2
Well pattern area B 961 749 4.9
Well pattern area C 1180 968 5.1

J. Wang et al.: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 75, 84 (2020) 11



Fig. 14. Different validation model samples of the XA block.

Fig. 15. Lithofacies model of validation area A.
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Fig. 16. Test results of single well thinning.

Fig. 17. Test results of multiple well thinning.
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removed from the model so that it is not included in the
interpolation calculation. Then, the lithofacies model
generated by the model is compared with the actual well
data to verify its compliance. Through comparison and
analysis, it can be concluded that the actual single well
facies profile (Fig. 16a) is highly consistent with the simu-
lated lithofacies model profile (Fig. 16b), which shows that
under the reasonable variation function constraint, the
small fluctuations in well space have little influence on
the modelling results, and the variation function used and
the model established are highly reliable. The vertical size
of the lithofacies model grid is 0.5 m, which ignores some
fine vertical variation rhythm. The vertical resolution of
lithofacies profile is consistent with that of logging curve,
which is 0.125 m. So the vertical continuity of lithofacies
profile is better than that of lithofacies model.

Figure 16 shows the test results for the multi-well thin-
ning method. In the process of modelling, wells XA30-M7,
XA30-M20 and XA30-M5 are removed at the same time,
and the remaining well point data are used to build the

lithofacies model. Then, we compare the actual lithologic
inversion cross-section (Fig. 17a) with the established litho-
facies model (Fig. 17b). The comparison results show that
they have a high degree of coincidence, which also shows
that the model has a certain degree of reliability.

Because the results of stochastic modelling yield a multi-
solution, there are multiple model realizations available at
the same time [40, 41]. The degree of convergence of these
realizations determines the reliability of the model and
reflects the adaptability of the variation function used.
If the convergence degree of the random model is high, it
means that the differences among numerous random real-
izations are small and that the stability of the model is high;
otherwise, it means that the stability of the model is low
and that the prediction result is not accurate [42–44]. In this
paper, a new method is used to test the convergence degree
of the stochastic model; that is, some wells are removed
during the modelling process, and certain numbers of
stochastic models are obtained by setting different random
seeds. Then, the degrees of coincidence between the random

Fig. 18. Results of random seed test.

Fig. 19. Test results for the variogram range value of the variogram function of different well patterns.
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models and the actual data are compared to determine the
goal realization. Finally, multiple groups of random realiza-
tions are selected for comparison with the target realization,
and their similarity is analysed to evaluate the convergence
degree of the whole model. Figure 18 shows the comparison
results for several random realizations and target realiza-
tions. It can be concluded from the analysis that the
probability distribution of the model presents a normal
distribution as a whole, and the peak value appears in the
range of 60–70%. That is, the random realizations have
high similarity, and the accuracy of the model is very high.

7 Discussion

Using the same method, the variogram databases of areas B
and C are tested, and the results of these methods are
shown in Figure 19. It can be concluded from the compar-
isons of the test results that all of the models established
by the variogram database of the three well patterns have
good correspondence with the actual geological parameters.
The precision of single well and even multi-well thinning is
70%, the realization of random simulation has good conver-
gence, and the coincidence rate with the goal is more than
60%. This comparison shows that the established database
has wide applicability and still makes good predictions for
irregular well patterns.

However, we also note that there are still some defects in
the test results we have obtained; the highest agreement is
only 70%, and there is still much room for improvement.
Due to the lack of available sample data at present, the
quantitative relationship is only analysed tentatively at this
stage, and the reliability of the analytical results needs to be
improved by subsequent research.

8 Conclusion

1. In this paper, a method of partition modelling is pro-
posed and used to build a large-scale reservoir model
with multiple well pattern types. This method has high
adaptability for geological bodies with large area, great
difference of well pattern density and diversity of well
pattern types. The model established by this method
has a good correspondence with the actual data.

2. The Sulige gas field is divided into three types of areas
according to its well pattern. Several model samples
are selected from these three areas to make up their
respective model sample databases. Their lithofacies
models are established, and the variogram range
values of each model are obtained. According to the
statistical analysis of these variable range values, a
database of major and minor range values correspond-
ing to different well patterns is established.

3. In other areas of the Sulige gas field, samples with sim-
ilar well patterns are selected to test the accuracy of
the variable range database. The test results show
that the model established by the variogram database
for each well pattern is in good accordance with the
actual geological conditions, and their random models
also have high convergence. These results indicate

that the established database has high adaptability
and that the prediction model established with this
database is reliable.
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