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ABSTRACT 1 

Periglacial rockwalls are affected by an increase in rockfall activity attributed to permafrost 2 

degradation. While recent laboratory testing has asserted the role of permafrost in bedrock 3 

stability, linking experimental findings to field applications is hindered by the difficulty to assess 4 

bedrock temperature at observed rockfall locations and time. In this study, we simulated bedrock 5 

temperature for 209 rockfalls inventoried in the Mont Blanc massif between 2007 and 2015 and 6 

209 000 random events artificially created at observed rockfall locations. Real and random events 7 

are then compared in a statistical analysis to determine the results significance. Permafrost 8 

conditions (or very close to 0 °C) were consistently found for all events with failure depth > 6 m, 9 

and for some events affecting depths from 3 to 6 m. Shallower events were likely not related to 10 
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permafrost processes. Surface temperatures were significantly high up to at least 2 months prior to 11 

failure with the highest peaks in significance 1.5 to 2 months and 1 to 5 days before rockfalls. 12 

Similarly, temperature significances at scar depths were significantly high, but steadily decreasing, 13 

1 day to 3 weeks before failure. The study confirms that warm permafrost areas (> -2 °C) are 14 

particularly prone to rockfalls, and that failures are a direct response to extraordinary high bedrock 15 

temperature in both frozen and unfrozen conditions. The results are promising for the development 16 

of a rockfall susceptibility index but uncertainty analysis encourages to use a greater rockfall 17 

sample and a different sample of random events. 18 

 19 

1. Introduction 20 

 21 

Rockwalls can be affected by significant gravity-related transfers of material throughout rockfall, 22 

defined here as the detachment of a mass of rock with a volume exceeding 100 m3 from a series 23 

of discontinuities, and its transportation downslope on variable distance1. Rockfall is one of the 24 

most hazardous geomorphological processes in Alpine massifs and can threaten mountain 25 

infrastructure2–5, tourism6,7 and valley floors in case of major events8–12. Periglacial rockwalls have 26 

been increasingly affected by rockfalls13–18, notably during summer heatwaves19,20 and permafrost 27 

degradation is thus thought to be one of the main factors responsible for these increasing bedrock 28 

destabilizations21–25. With the projected degradation of alpine permafrost26, these hazards will 29 

likely become a major threat for mountain communities and a better understanding of the thermal 30 

context leading to periglacial rockwall failure is therefore crucial. 31 

Laboratory experiments conducted over the past two decades have extensively contributed to 32 

understand how thawing bedrock may become unstable. In a first stage, Davies et al.27 have 33 
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demonstrated that besides the normal stress, the strength of an ice filled rock joint is a function of 34 

its temperature. It decreases with warming and reaches a minimal value at -0.5 °C. Then, Mamot 35 

et al.28 have refined this analysis showing a decrease of ice-filled joint resistance by a range of 64 36 

- 78 % when the bedrock warms from -10 to -0.5 °C. Those studies agree with former 37 

investigations combining field observations and heat conduction modeling to explain the link 38 

between the thawing front propagation and boulder fall in periglacial rockwalls29. However, 39 

Krautblatter et al.24 have lately explained that the rupture of ice filled joints may only occur at 40 

depth < 20 m while, deeper, warming provokes slow deformation along rock-rock contact, 41 

meaning that the rupture of ice-filled joints may only explain relatively shallow events. In addition, 42 

laboratory experiments have also pointed out that ice-filled joint alteration may also result of 43 

enhanced erosion provoked by water percolation and related advective heat transfer30. This is 44 

supported by field investigations at rockwall sites showing thawing corridors through geophysical 45 

soundings31 or sudden temperature increase in borehole32. Water infiltration and circulation may 46 

also cause hydrostatic pressure in ice-sealed fractures that could contribute to rockfall 47 

triggering24,25,33,34 as suggested by observations of water together with massive ice in rockfall 48 

scars20–22. However, determining the role of hydraulic processes in alpine rockfall triggering is 49 

challenging because of the lack of fully coupled thermo-hydro-mechanical numerical models and 50 

data for parameterization33.  51 

Despite these limits, the link between rock slope failures and permafrost conditions was confirmed 52 

for various events using transient heat conduction models for specific rockfalls21,22 or through 53 

comparison of permafrost map35 and rockfall inventory26. Statistical analysis of climate variables 54 

or rock surface temperature evolution also showed a strong link between air temperature anomaly 55 

and rockfall occurrence in high mountain36–38, while various studies explain that strong thermal 56 
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oscillations and related cyclic thermal stress or thermal expansion related to heating may cause 57 

rockfall in non-periglacial environments39–41.  58 

Despite these advances, observations are generally too sparse or inhomogeneous to draw robust 59 

statistical analysis of thermal conditions at depth of bedrock failure, which limits the understanding 60 

of the link between rockfall and rockwall thermal dynamics and therefore our capacity to predict 61 

rockfalls.  62 

Our study proposes to investigate bedrock thermal dynamics prior to rockfall occurrence for 209 63 

inventoried events during the period 2007-2015 in the Mont Blanc massif. It uses a 1D transient 64 

thermal model42 simulating temperature-depth profiles at a daily time step. Absolute temperatures 65 

simulated at the rock surface and at the depths of rockfall scars prior to failures are presented but 66 

the main part of the analysis is based on a statistical approach in order to minimize biases in results 67 

interpretation. Our study addresses the following research questions: 68 

- Which bedrock temperature conditions or dynamics are the most prone to rockfall 69 

occurrence? 70 

- Is bedrock temperature experiencing exceptionally high value prior to failure? 71 

- Is there a statistical relationship between bedrock temperature and rock slope 72 

destabilization? 73 

The study aims at verifying the hypotheses that the observed rockfalls are a direct reaction to the 74 

intense and exceptional summer heatwaves that occurred over the past summers43–45, and that 75 

thawing permafrost (close to 0 °C) areas are the most prone to rockfalls. In this way, it intends to 76 

better define the time-lag between the air temperature signal and the bedrock failure and to explore 77 

a possible statistical relationship between air temperature, rock temperature dynamics and failure 78 

occurrences that would help to predict such events with weather forecast.  79 
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2. Study area and rockfall database 80 

The Mont Blanc massif (MBM; Fig. 1), with its highest point at 4809 m a.s.l., is a crystalline 81 

massif that extends over an area of 550 km2 in the Western Alps. It presents two main lithological 82 

units: a Variscan metamorphic series in the W and SW of the massif, and an intrusive late-Variscan 83 

granite in the central and eastern parts, crosscut by three main sets of shear zones and faults47. 84 

27 % of the massif was covered by glaciers in the 2000s48, and 7-12 % of the MBM area are 85 

permafrost-affected rockwalls49. Permafrost is largely present above 2600 and 3200 m a.s.l. on 86 

north- and south-facing slopes, respectively49.  87 

In the MBM, infrastructures (cable cars, mountain huts, rack railways3) and mountaineers7 are 88 

exposed to rockfall. Rockfalls are surveyed since 2007 by a network of observers50 focused on the 89 

central part (57 %) of the MBM. First based on the use of reporting sheets, the transmission of 90 

information is now done more directly (oral communication, telephone, mail) or by using an app. 91 

The network of observers is reactivated annually (through articles, meetings, forums, mailing-lists) 92 

while amateur climbers are also solicited through posters installed in huts or articles in the 93 

specialized press and forums. During each fall, extensive fieldwork is routinely carried out to 94 

verify the observations from the network and/or to complete them with further data. In little-visited 95 

areas of the mountain range, fieldwork is carried out at locations that were not reported by the 96 

network, but identified by correlative deposits. Finally, for each event, the date of occurrence (or 97 

observation of the deposit), the precise location of the scar, topographic parameters of the 98 

destabilized area (altitude, orientation, slope), the fallen volume, and an estimate of the depth of 99 

detachment are documented. 100 

Among all the events inventoried between 2007 and 2015, we selected the 209 rockfalls with all 101 

required input data for modeling: coordinates, scar depth, date of failure and MARST (Mean 102 
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Annual Rock Surface Temperature). The MARST was extracted at rockfall locations from the 4-103 

m-resolution map created by Magnin et al.35. This map is based on a statistical model calibrated 104 

by Boeckli et al.51 using MARST measurements from the European Alps, computed potential 105 

incoming solar radiation and modeled air temperature.  106 

 107 

Figure 1. The Mont Blanc massif, the MARST distribution and the location of rockfalls analyzed in this study. 108 

 109 
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Summary characteristics of this rockfall database are displayed in Table 1 and their distribution 110 

displayed in Figure 1. The detailed characteristics are provided in Table S1. About 5% of the 111 

rockfalls (10 events) have a MARST > 2 °C, meaning that they are likely in non-permafrost 112 

conditions. Indeed, according to Hasler et al.52, permafrost might be found below MARST up to 113 

3 °C due to the cooling effect of shallow snow cover and air ventilation into fractures. But since 114 

the MARST map is built upon mean air temperature for the period 1961-1990 which was about 115 

1 °C cooler than the recent period35, we assume that permafrost may exist below MARST up to 116 

2 °C. In addition, 23 events (11%) have MARST between 0 and 2 °C and are thus likely in 117 

discontinuous and/or warm permafrost conditions.  118 

 119 

3. Methods 120 

The goal of our research was to model a temperature-depth (Tz) profile at rockfall locations in 121 

order to assess the thermal conditions prior to failure. The simulations were conducted in 1D and 122 

intended to represent bedrock temperature perpendicular to the rock surface (Fig. 2). In steep alpine 123 

rockwalls, temperature at depth is partly driven by lateral heat fluxes induced by the topographical 124 

settings which provoke high surface temperature variability53. Thus, we developed an algorithm 125 

which accounts for possible lateral heat fluxes in order to correct the modeled Tz profile. In this 126 

section, we introduce the so-called CryoGRID2 model (sect. 3.1) that we used to simulate heat 127 

transfer, the forcing data and bottom heat flux correction algorithm (sect. 3.2), the model fitting 128 

approach (sect. 3.3), the uncertainty calculations (sect. 3.4), and the model implementation at each 129 

rockfall location (sect. 3.5).  130 
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 131 

Figure 2. Simplified sketch illustrating the modeled Tz profiles. The blue line represents a topographical profile. PA 132 

is the surface point where the rockfall occurred. PB is the bottom point of the profile. The red line is the profile where 133 

the temperature was calculated at chosen spatial and temporal steps. Altitude and distance are in arbitrary units.  134 

 135 

3.1. Heat diffusion modeling with CryoGRID2 136 

We used CryoGRID2 for simulating Tz profiles, a MATLAB diffusive transient thermal 1D model 137 

developed by Westermann et al.42 solving a nonlinear diffusion equation over time. Initially 138 

developed for permafrost issues, it solves the conductive heat transfer by taking into account rock 139 

properties, air content, water/ice content, and related thawing/freezing processes through latent 140 

heat consumption and release. The top of the profile was forced by a surface temperature time 141 

series (Dirichlet condition). At the bottom, the profile was forced by a thermal flux (Neumann 142 

condition). At every time step, the profile at time n-1 was used as an input for calculating spatial 143 

derivatives. At the first time step, we derived an initialization profile by taking the steady state 144 

approximation of the equation with the mean of the surface temperature time series for the 145 

Dirichlet condition and the first thermal flux for the Neumann condition. This first thermal flux is 146 

derived by assuming that the temperature of the profile bottom is equal to the mean of the surface 147 

temperature time series (sect. 3.2). CryoGRID2 can handle snowpack at the rock surface. 148 

However, since it is almost impossible to construct or obtain such data in steep alpine rockwalls 149 
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where snow depth is highly variable, snow was neglected in the present study. A summary of the 150 

CryoGRID2 principal input parameters and outputs are available in Supplements (Table S2).  151 

 152 

3.2. Forcing data and correction heat flux 153 

The top of the Tz profiles was forced with Rock Surface Temperature (RST) time series derived 154 

from the summation of an air temperature anomaly to the MARST extracted at rockfall locations 155 

(sect. 2). The air temperature anomaly was calculated in comparison to the 1961-1990 mean air 156 

temperature used to derive the MARST map (sect. 2) and from the daily air temperature recorded 157 

by Météo France at Chamonix (1042 m a.s.l.) since 1993 (beginning of hourly air temperature 158 

records), similarly to Magnin et al.26.  159 

We created a correction flux applied at the profile bottom (Neumann condition) to account for 160 

possible lateral heat fluxes coming from surrounding rock faces by using the MARST map (Fig. 161 

1), the 4-m-resolution DEM used to map the MARST and the Chamonix air temperature anomaly 162 

time series. We first searched for all surrounding rock faces that may influence the heat fluxes at 163 

PB (see Fig. 2 for PB) as detailed in the Supplement S1 to obtained N points (Pi)i∈[1:N] at similar 164 

altitude than PA and which were assumed to influence the lower part of the modeled Tz profile 165 

(Fig. 3).  166 

 167 
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 168 

Figure 3. Illustration of the searching method. The 4-m-resolution DEM is represented on a 200 × 200 m square that 169 

contains a 200 m radius circle research limit. The white dot in the center is the surface point PA (see Fig. 2 for PA) 170 

which is the top of the Tz profile. The red dots surrounding PA represent all the directions eliminated at the first r-step 171 

(see Supplement S1). The green dots represent the research directions. Finally, the magenta dots are the selected points 172 

for the correction heat flux calculation. Units and the scale are intentionally hidden to lighten the figure. Likewise, 173 

only 20 different directions are plotted (instead of 100 used in this study) to help the readability.  174 

 175 

We then applied thermal fluxes coming from the selected points. For every point Pi, the MARST 176 

at Pi location (MARSTi) is extracted from the map and distance di between Pi and the bottom point 177 

PB of the modeled Tz profile was calculated. For calculating the ith flux, we separated two cases 178 

according to di (> or < to 30 m) as detailed in the Supplement S1. 179 

We thus determined the thermal flux jQ,i(t) of all Pi and calculated the global jQ(t) as follows: 180 

𝑗𝑄(𝑡) = 𝑐𝑒𝑥𝑝  
∑  𝑗𝑄,𝑖(𝑡) 𝑁

𝑖=1

100
 

(1) 
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We divided by 100 because we explored 100 directions, the final flux being an equivalent of a 181 

discrete integral. All the fluxes had different directions and different application surfaces. However, 182 

we applied all of them at PB. For considering that, we corrected the final flux by an experimental 183 

coefficient cexp. This coefficient was fitted at the same time as the other model parameters (sect. 184 

3.3). 185 

 186 

3.3. Model fitting 187 

The simulated transient temperature fields are affected by a set of parameters related to bedrock 188 

properties and model characteristics (Table S2). Principal parameters are listed below and have 189 

been fitted by running a host of test values until a minimal difference between simulated and 190 

measured temperature profiles into boreholes was achieved.  191 

 The rock thermal conductivity (kbedrock), the rock volumetric heat capacity (cbedrock), the 192 

porosity (φ) and the total water content (θw,tot), which can be assimilated to the bedrock 193 

saturation, all change the soil thermal diffusivity, i.e. the time needed for the rock to reach 194 

thermal equilibrium.  195 

 Van Genuchten parameters (S2) θr, α and n change the (θsat,T) curve. The exact influence is 196 

not detailed here but, for example, a higher α will impact the dynamics by requiring a higher 197 

temperature for melting all the ice. 198 

 cexp changes the magnitude of the lateral heat fluxes (sect. 3.2). For example, the higher is cexp, 199 

the stronger is the cooling effect of opposite north faces on south faces and vice versa.  200 

 Spin-up parameters change the accuracy of the results during the first years of simulation. Tests 201 

we performed showed that three years of spin-up are enough for limiting errors under 0.1 °C 202 

the first year of simulation and that this error quickly decreases over time.  203 
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Borehole temperature measurements used for model fitting were collected at the Aiguille du Midi15 204 

(ADM; 3852 m a.s.l.; Fig. 1). Three 10-m-deep boreholes have been drilled in 2009 in SE, NE and 205 

NW-exposed rock faces with varying slope conditions (55 ° to sub-vertical) and snow deposits 206 

(from continuous and rather thick to discontinuous and thin snow cover, or very local snow 207 

deposit). The NE and NW exposed boreholes (respectively BH_E and BH_N) have been equipped 208 

with 15 thermistor-chains spread between 0.3 and 10 m depth, while the SE exposed borehole 209 

(BH_S) has 14 sensors spread between 0.14 nd 9.64 m depth. They have been recording 210 

temperature since December 2009 (except BH_E: April 2010) at a 3-hour time interval. Model 211 

fitting was performed at a daily time step using temperature time series at the shallowest depths as 212 

forcing temperature time series at the top of the model domain. The simulated Tz profiles were 213 

then compared with measured temperatures in the boreholes.  214 

Minimization of the Root Mean Square Error (RMSE) between simulations and boreholes time 215 

series were obtained with parameter values displayed in Table 2. Figure 4a displays a simulated 216 

Tz profile for a 9 years period with the best-fitted bedrock properties while Figure 4b displays the 217 

difference between the measured and the modeled temperature (interpolated between sensors).   218 

Figure 5 presents the error distribution obtained with the parameters displayed in Table 2. All the 219 

normality tests (Anderson Darling, Kolmogorov Smirnov, Lilliefors…) rejected the hypothesis 220 

that this distribution came from a normal distribution at a 5 % significance level. However, the 221 

number of points was abnormally high because all the points at every depth and every time were 222 

considered in the three cases (more than 5 million points in total). But in reality, there were only 223 

three “real” points of comparison (i.e., the three boreholes). The Kolmogorov Smirnov statistic 224 

was 0.039 and the critical value corresponding at three data points at a 5 % significance level was 225 

0.71, while the critical value with all the points was 10-4 order of magnitude. Therefore, in this 226 
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context of three “real” points of comparison, the test could not reject the hypothesis that the data 227 

came from a normal distribution. Thus, for working with Gaussian uncertainties, we assumed this 228 

hypothesis of Gaussian errors and we used the mean error of 0.295°C and the standard deviation 229 

(σ) of 0.515 °C (Fig. 5) for our analysis. Based on these results, we systematically removed 0.3 °C 230 

(upper bound of 0.295 °C) to the final modeled temperatures and a standard deviation value 231 

σCryogrid = 0.55 °C (upper bound of 0.515 °C) was considered for uncertainty (as a reminder, σ 232 

corresponds to a 68 % reliable level and 2σ to a 95 % reliable level for Gaussian data).  233 

 234 

 235 

Figure 4. a. BH_E borehole simulation realized with parameters detailed in Table 2. Input surface temperatures were 236 

extracted from the borehole real values. The 0.3 m spatial shift at the top of the profiles is due to the depth of the first 237 

temperature value recorded in the borehole. b. Comparison between BH_E borehole simulation and real BH_E 238 

borehole values. RMSE can then be displaced from these values (ei)i∈[1:N]  by the following formula: 𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑖

2𝑁
𝑖=1

𝑁
. 239 

 240 
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 241 

Figure 5. Fit of the temperature errors by a normal distribution. Errors are defined as the difference between the 242 

simulated borehole temperatures (BH_S, BH_E or BH_N) and the real borehole temperatures. The fit gave a mean of 243 

0.295 °C and a standard deviation of σ = 0.515 °C.  244 

3.4. Uncertainty analysis  245 

In addition to the uncertainty associated with model parameters, the uncertainty of the forcing RST 246 

time series must be considered. RST time series being created as the summation of a MARST and 247 

anomaly values (see sect. 3.2.), we consider two terms for this uncertainty, one for the MARST 248 

and one for the anomalies. For the MARST, the standard deviation of 1.616 °C is reported in the 249 

study from Boeckli et al.51 that describes the statistical model on which is based the initial MARST 250 

used in our study (displayed in Fig. 1). We thus kept the upper bound of this value to determine 251 

σMARST = 1.7 °C. For the anomalies, the uncertainty results from the only consideration of the air 252 

temperature changes in Chamonix to create RST anomalies while daily RST variations may also 253 

result of the varying lapse rate, which is typical of alpine environments54, as well as the varying 254 

incoming solar radiation and possible snow accumulation49 which are neglected. We calculated 255 

the uncertainty for RST anomalies, referred as σanomaly, by using a set of measured RST time series 256 
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at 5 sensors installed at the top of the ADM in sub-vertical S (2 sensors), N, E, and W exposed 257 

rock faces, at a depth of 0.03 m49. 258 

 One of the two S-exposed sensors is located right above a ledge where snow accumulates during 259 

winter which lowers the MARST by about 1°C compared to snow-free conditions for similar sun-260 

exposure49. RST have been recorded continuously at an hourly time step from 2007 to 2010. The 261 

MARST for the years 2007 to 2010 were then calculated for each sensor and were adjusted to the 262 

1961-1990 period by applying the air temperature anomaly between 1961-1990 and the years of 263 

measurements (2007 to 2010). Then, the adjusted MARST of each sensor was subtracted to the 264 

measured daily RST to obtain daily temperature anomalies at sensor locations.  265 

Comparison between the daily air temperature anomalies measured in Chamonix and the RST 266 

anomalies calculated from the 5 RST sensors resulted in Gaussian errors with a standard deviation 267 

of σanomaly = 4 °C. 268 

To sum up, the uncertainties were as follows:  269 

 σCryogrid = 0.55 °C 270 

 σMARST = 1.7 °C 271 

 σanomaly = 4 °C 272 

Then, for surface temperature series, the total uncertainty was: 273 

𝜎surf =  √σMARST
2 + σanomaly

2   (2) 

Numerically, it gave: σsurf = 4.4 °C. 274 

In the next part of the study, the temperature at the depth of the rockfall scar was analyzed (referred 275 

hereafter as “scar temperature”). With most scar depth > 1 m (Tab. 1), these temperatures were not 276 

significantly affected by daily surface temperature changes. Thus, σanomaly was neglected when 277 

dealing with scar temperatures and total uncertainty for scar temperature was therefore: 278 
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𝜎scar =  √𝜎Cryogrid
2 + 𝜎MARST

2  (3) 

Numerically, it gave: σscar = 1.8 °C.  279 

 To analyze the results, we also used temperature percentiles (sect. 4). A X % temperature 280 

percentile is defined as a value which is warmer than X % and colder than (100-X) % of some 281 

chosen reference temperatures which were defined as explained in section 4. To estimate modeled 282 

temperature percentile uncertainties, simulations were done for the three boreholes, using the 283 

MARST map (Fig. 1) and the air temperature anomaly to generate the forcing surface temperature 284 

time series. Percentiles of the modeled temperature values were then calculated for the full 285 

borehole time series and compared with the real temperature percentile values. Gaussian errors 286 

were obtained, with σsurf prct = 13.8 % and σscar prct = 10.7 %. This approach of considering all the 287 

uncertainty sources at once was less precise but sufficient in that case with long and complex 288 

calculations. 289 

 290 

3.5. Approach for simulating the temperature dynamics at rockfall locations 291 

To analyze bedrock thermal dynamics prior to rockfalls, the following protocol was used 292 

for every event: 293 

 The rock surface temperature time series was created as described in section 3.2. 294 

 The CryoGRID2 simulations were run between 1st January 1993 and 31st December 2015, 295 

with the bedrock parameters determined after fitting (Tab. 2). Given that the fitting step 296 

showed that a spin-up period of 3 years is sufficient, we assumed that the years 1993-1996 297 

were the spin-up years while rockfalls are only documented since 2007. The simulated Tz 298 

profiles were 20.5 m long, which is 5 m deeper than the deepest scar depth (Tab. 1). This 299 
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5 m buffer permitted to lower the errors in the deeper part of the profiles where the 300 

correction thermal flux was applied (see sect 3.3). 301 

This process was entirely automated in Bash language and MATLAB programs on the Univ. 302 

Savoie Mont Blanc - CNRS/IN2P3 MUST computing center. Then, all the simulations could be 303 

started at the same time on different calculation resources.  304 

 305 

4.  Approach for result analysis  306 

4.1. Model output processing and analysis 307 

Four rock temperature variables were analyzed: the (i) scar and (ii) surface temperatures, and the 308 

(iii) scar and (iv) surface temperature percentiles. They were all examined through 11 different 309 

temporalities: 1 day, 3 days, 5 days, 1 week, 10 days, 2 weeks, 17 days, 3 weeks, 1 month, 45 days 310 

and 2 months. The surface temperature was simply extracted at the uppermost depth of the Tz 311 

profile (0.05 m). The scar temperature was extracted at the scar depth specified in the rockfall 312 

database for each event (Tab. 1). For temporality of 1 day, surface temperature percentiles were 313 

calculated by comparing the simulated surface temperature at the day of rockfall occurrence with 314 

all the daily surface temperatures of the simulated time series (1st January 1996 - 31st December 315 

2015). For other temporalities of n days prior to rockfall occurrence, the reference temperatures 316 

were calculated by averaging the temperature between a day d1 which is, by turns, each day in the 317 

temperature time series, and a day d0 which is the first day of the averaging period prior to d1, 318 

defined as d0 = d1 – n + 1. Then, the average temperatures for the various temporalities prior to 319 

failure were compared with the respective reference temperatures. At this step, we had only 320 

absolute values of surface and scar temperatures, and absolute values of surface and scar 321 
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temperature percentiles. We then aimed at answering if this temperature value was abnormally 322 

high for the current period.  323 

To do so, 1000 dates were drawn randomly and the 4 studied variables were extracted for the 11 324 

different temporalities at each rockfall location. The choice of the number of random events was 325 

based on a compromise between the calculation resources and the potential to reduce the 326 

uncertainty. The scar depths of the 1000 random dates of a specific event location were chosen 327 

equal to the scar depth of this event. To remove sources of biases, dates of the random events were 328 

drawn: a) after 2007 and b) with the same monthly distribution as the 209 rockfalls events. Reason 329 

for a) was to remove biases linked to the recent decades of atmospheric warming as the rockfall 330 

database starts in 2007. If artificial rockfall events would have been drawn in the full period 1996-331 

2015, extracted temperatures at the beginning of the time series would have been expected to be 332 

lower and it would have been impossible to determine if a significance of warmer temperatures 333 

for rockfall events was real or just related to the atmospheric warming contribution. Reason for b) 334 

is that rockfalls mostly occurred between June and October (with an attendance peak in August, 335 

Fig. 6a) and these months were, on average, warmer than other months of the year. If random 336 

events would have been drawn in the full year, a significance of warmer temperature for real events 337 

could have been simply interpreted as the reflection of this reason and not as an extraordinary 338 

thermal state of the rock before the failure. Thus, random events were drawn according to the same 339 

monthly distribution as the 209 real events (Fig. 6a). Figure 6b shows that the temporal distribution 340 

of rockfall events is not dependent on the scar depth, that is why the same monthly distribution is 341 

taken for every scar depth and that no scar depth groups were created. Likewise, no relationship 342 

was found with the elevation, the slope angle or the sun-exposure (Fig. S1).  343 

 344 
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 345 

Figure 6. a. Histogram illustrating the distribution of the 209 rockfalls throughout the year that was used as a basis to 346 

draw random events dates. b. Plot illustrating the distribution of the events throughout the year in comparison to the 347 

scar depths. The absence of relationship between scar depth and rockfall timing was considered to not draw the 348 

monthly distribution of random events according to depth. The same is true for elevation, slope angle and sun-exposure 349 

(Fig. S1). Means of 0.8 m, 9 m, 10 m, 11 m, 13 m and 15 m scar depths must be observed carefully because they are 350 

represented by one or two points only. 351 

 352 

4.2. Determining results significance 353 

For searching significant results, real rockfalls temperatures and temperature percentiles were 354 

compared with those of random events. Firstly, a simple comparison of the means for every scar 355 

depth and every temporality was realized. Then, the comparison was done for every temporality 356 

without regarding the scar depth. Uncertainties were derived by dividing the uncertainty of the 357 

variable (σsurf, σscar, σsurf prct or σscar prct) by the square root of the total number of points used for 358 

calculating the mean. Since 209 000 random events were considered, uncertainties of the means 359 

of random events variables were small and almost impossible to see when plotted against the real 360 

events uncertainty.  361 
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A Kolmogorov Smirnov test (KS test) was then performed for assessing if the real rockfalls sample 362 

could have been drawn from the random events distribution. It was calculated by determining the 363 

highest ordinate difference between the Cumulative Distribution Functions (CDFs) of the real 364 

rockfalls and the random events series. This statistic was then compared with tabulated critical 365 

values for obtaining the result of the test. This test was chosen because it is non-parametric, which 366 

is important since the temperature percentiles are clearly not Gaussian (Anderson Darling, 367 

Kolmogorov Smirnov and Lilliefors tests reject this hypothesis with a 5 % significance level), and 368 

because it was possible to consider the uncertainty values while performing the test. This second 369 

point is, astonishingly and unfortunately, uncommon for statistical tests. The only feasible rough 370 

uncertainty incorporation is generally to present upper and lower bounds of the test by realizing it 371 

with the high and low values of the data points. Here, for surface or scar temperature percentiles, 372 

the uncertainties were included as explained in the Supplement S2.  373 

An example of CDF represented with the uncertainties and resulting KS test is displayed in Figure 374 

7 for one specific variable (surface temperature percentile) and one specific temporality (1 day). 375 

The KS statistic must be compared with the critical value (cv). If the statistic is higher, the test 376 

rejects the hypothesis that the experimental data (real events) comes from the model (random 377 

events) with a 5 % significance level. Here, the test rejected the hypothesis that the experimental 378 

data (real events) came from the model (random events) in the normal case with a 5 % significance 379 

level, but could not reject this hypothesis when considering the uncertainties. 380 
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 381 

Figure 7. Illustration of a KS test result. The surface temperature percentiles were here considered at the rockfall 382 

event day (temporality of 1 day). “k” represents the KS statistic between the CDFs without considering the 383 

uncertainties. “k_68” represents the statistic between the 68 % reliable real events CDF and the 99 % reliable random 384 

events CDF. “k_95” represents the statistic between the 95 % reliable real events CDF and the 99 % reliable random 385 

events CDF. The 68 % and 95 % reliable random events CDFs are not presented because they were very close to the 386 

99 % reliable one (the reason for this stability is that random events CDF is made of 209 000 points). “cv” is the 5 % 387 

significance level critical value of the KS test in this context. To know the result of the test, the KS statistic must be 388 

compared with the critical value. If the statistic is higher, the test rejects the hypothesis that the experimental data (real 389 

events) come from the model (random events) with a 5 % significance level. Here, the test rejected the hypothesis in 390 

the normal case but could not reject it when considering the uncertainties. 391 

 392 

To show orders of magnitude of simulated temperatures, scar and surface temperature variables 393 

were used in a first step. However, in a second step, only temperature percentile variables were 394 

kept since they are better for finding statistical significance. 395 

 396 

 397 
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5. Results 398 

When considering the uncertainties, none of the four variables (surface and scar depth 399 

temperatures and temperature percentiles) could be distinguished from the random events values 400 

when reasoning by scar depth. This finding is illustrated in Figure 8 for a temporality of 1 day 401 

while other temporalities, showing similar patterns, are displayed in the Supplements (Fig. S2). 402 

However, whatever the considered variable, the mean distributions were in most cases - except 6 403 

and 7 m depths - higher than the random events. This was particularly pronounced for the 404 

percentile variables. The four variables were strikingly scattered, but some notable patterns could 405 

be distinguished. First, the closer to the surface, the warmer was the scar temperature, for both real 406 

and random events. The average temperature became negative from 3-4 m depth downward (see 407 

Fig. S2 also) but  consistency in negative scar temperature was found for depths > 6 m only, despite 408 

a few events showed positive and close to 0 °C conditions. Only 2 events had scar temperature < 409 

-5 °C. The surface temperatures were mostly positive and no distinct pattern could be found 410 

according to scar depths. Scar temperature percentiles scattering increased with depth and their 411 

mean decreased from 90  to 50 % between 1 and 9 m depth while surface temperature percentiles 412 

showed no obvious link with scar depths. When extending the temporalities (Fig. S2), very similar 413 

patterns were found, with slightly smaller scattering, slightly higher surface percentiles and 414 

slightly lower scar temperature percentiles.  415 

 416 
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 417 

Figure 8. Comparison of the four studied variables between real and random rockfalls on the day of the event 418 

(temporality of 1 day). This comparison was done for every scar depth, all the events with the corresponding value of 419 

scar depth being used for calculating a mean. Ten other groups of figures like this one were done to verify our results 420 

for the 10 other temporalities (3 days, 5 days, 1 week, 10 days, 2 weeks, 17 days, 3 weeks, 1 month, 45 days and 2 421 

months) and four of them (1 week, 2 weeks, 1 month and 2 months) are presented in the Supplements (Figures S2). 422 

Uncertainties of random events variables cannot be seen because they were really low (order of magnitude of some 423 

degree tenths for temperature variables and some percent tenths for temperature percentile variables).  424 

 425 

When looking at the results through the different temporalities, percentiles of scar and surface 426 

temperatures were, distinctively higher than the random events values, whatever the temporality 427 

(Fig. 9). For scar temperature percentiles, this difference was in order of magnitude of 3 % for 428 

mean values and at least 1.5 % for 95 % reliability values. For surface temperature percentiles, 429 

these percentages were nearly equal to 2.5 and 0.5 %. 430 

 431 
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 432 

Figure 9. Comparison of the average temperature percentile variables between real and random rockfalls. Here, all 433 

scar depths were merged which explains a constant and rather low uncertainty (individual uncertainty divided by the 434 

square root of the total number of events, 209 for the real ones and 209 000 for the random ones). Every single point 435 

of this represents a full plot of Figure 8. 436 

 437 

Implementation of the KS test showed that scar temperature percentiles for real events were 438 

significantly different from random events for temporalities between 1 and 21 days (Fig. 10). This 439 

significance decreases almost continuously with increasing temporality. Surface temperature 440 

significances varied with the different temporalities but were always well above the critical 441 

threshold. It reached its minimum value at about 14 days averaging time prior to failure and then 442 

increased continuously until 45 days averaging time prior to failure where it reached its maximum 443 

value. However, when considering the uncertainty, these results were not significant and it was 444 

therefore not possible to state whether the real events sample could have been drawn from the 445 

random events distribution. This points out the interest to work with a greater number of rockfalls. 446 
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 447 

Figure 10. Illustration of the significance of scar and surface temperature percentiles for every temporality. Every 448 

point of this plot corresponds to a KS test. For example, the three values “k”, “k_68” and “k_95” calculated in Figure 449 

7 are here represented by the green triplet of points (plus-sign marker, diamond marker and circular marker) at the 1-450 

day abscissa.  451 

 452 

6. Discussion  453 

6.1.Strengths and limitations of the study 454 

For this study, we have used a homogeneous rockfall inventory which ensures direct comparability 455 

of the results and a coherent statistical analysis. The relatively simple thermal modeling approach 456 

may appear as the main limitation since it lacks of consideration for solar radiation variability 457 

through time, precipitations and wind effects, or snow deposit controls. Energy balance approaches 458 

which have been commonly used in rockwall permafrost modeling19,55–57 would allow overcoming 459 

some of these limitations. However, by introducing a greater number of input parameters, energy 460 

balance models bear numerous sources of uncertainty, challenging its quantification58. In this way, 461 

our simple modeling approach combined with the availability of bedrock temperature data into 462 
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boreholes has the main advantage to permit a detailed uncertainty analysis of our results. In 463 

addition, our approach accounts for most important parameters which are an average value of 464 

incoming short-wave solar radiation and air temperature (for the MARST calculation59) at the 465 

bedrock surface and the heat conduction at depth. Nevertheless, bedrock thermal parameters 466 

(conductivity and heat capacity) have been calibrated with borehole temperature measurements 467 

collected in the granitic part of the MBM while 18 (8.6 %) of the rockfalls occurred in the 468 

metamorphic series. But since these series have in most cases very similar mineral composition as 469 

the granitic unit47, it is assumed that the results are marginally impacted, the variable anisotropy 470 

which is not only related to lithology but also to site-specific fracturing possibly being the most 471 

critical issue. 472 

Another limit lies in snow deposits that may cool the bedrock surface and delay the thawing onset 473 

during warm seasons57,60 when some rockfalls occurred. Thus, the greater statistical significance 474 

of rather long time period of high surface temperature prior to rockfalls may partly depict the time 475 

needed for snow melt for some events. But, in parallel, snow melt or rainfalls could also accelerate 476 

the thawing through water percolation into bedrock fractures30,32. The only possible reflection of 477 

this overlooked effect in the results would be the events with rather low scar temperature 478 

percentiles right before failure (Fig. 8). This means that the bedrock temperature didn’t reach its 479 

highest value when the failure occurred suggesting either that sudden heating is not the main 480 

triggering factor or that other processes such as heat advection may have locally accelerated 481 

bedrock warming. Such accelerated bedrock thawing was already suggested by former studies19,37 482 

to explain permafrost-related rockfalls. Despite these limits, our results allow discussing possible 483 

thermal processes triggering rockfalls according to scar depth and climate signal characteristics. 484 

 485 
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6.2. Results interpretation 486 

The role of thermal processes in rockfall triggering 487 

Variables comparison with scar depths (Fig. 8) has shown that it would have been irrelevant to 488 

analyze the results based on scar depth groups. Such an analysis could have been attractive since 489 

it could have been expected that scar temperature significance would have overweighted the one 490 

of surface temperature. But the constantly low difference between random and real events 491 

variables shows that the observed pattern is not specific to the real events and that the supposedly 492 

link between scar depth and bedrock temperature pattern must be seen as the depiction of general 493 

thermal conditions at rockfall locations. The decreasing average in scar variables (Fig. 8) must be 494 

seen as the expected depth effect involving a delayed response to climate signals.  495 

Temperature values at scar depths discriminate possible rockfall triggering processes with 496 

permafrost degradation or frost-related processes strongly suggested for events > 6 m and for a 497 

significant part of shallower events (3 to 6 m). On average, these events occurred in a range of 498 

temperature between 0 and -2 °C and show noticeable agreement with experimental and theoretical 499 

knowledge about reduced shear strength of ice-filled fractures within this temperature range24,27. 500 

In mountain environments, rockwalls are prone to instability because of extreme conditions with 501 

large and sometimes sudden temperature variation, freeze and thaw cycles, as well as wet and dry 502 

cycles throughout the year29,61–64. Frost weathering processes related to ice segregation and 503 

volumetric expansion, as well as repeated freeze and thaw cycles leading to bedrock fatigue are 504 

well recognized mechanisms preparing to bedrock failures by breaking rock bridges and favoring 505 

fracture propagation61,65–67. Similarly, high thermal stress related to strong thermal oscillations is 506 

also regarded as an essential factor favoring bedrock cracking due to repeated thermal contractions 507 

and expansions that also affect non-periglacial rockwall, the warm days being particularly prone 508 
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to rockfall occurrence39,40,68,69. The fact that many shallow events occurred at positive rock 509 

temperature but also well higher than average rock temperatures as suggested by the temperature 510 

percentiles, corroborates those studies. 511 

In addition to the interpretation of possible processes acting in rockfall, percentiles reveal how air 512 

temperature signals contribute to their triggering. Indeed, temperature values are suited for an 513 

intrinsic comparison of the rockfall sample elements, while temperature percentiles rather inform 514 

about the thermal dynamics specific to each location of the rockfall sample elements. In addition, 515 

percentiles are better suited for determining statistical significance.  516 

 517 

Link between air temperature signals and rockfall triggering 518 

Comparisons of percentile means (Fig. 9) show that the real events have, in average, a warmer 519 

temperature condition prior to failure than random ones, whatever the considered temporality, 520 

from 1 day to 2 months (Fig. 8 and S2). However, the difference between the real rockfall events 521 

and the random rockfall events can also be a statistical “sample effect” and the questions of 522 

whether and to what extent the sample could have been drawn from the model persist. This 523 

question is answered by the KS test and the significance study (Fig. 10). In the following, a high 524 

significance must be interpreted as an approval of the previous results, namely that the real events 525 

show warmer temperature conditions than usual and that this difference is not due to a “sample 526 

effect”. The results show that the surface temperature percentiles between 1 day and 2 months 527 

prior to failure are significantly higher than usual. More specifically, the highest significance for 528 

these exceptionally high surface temperature percentiles is found 1.5 to 2 months prior to failure 529 

and, in to a lesser extent, at an early time prior to the rockfall (1 to 5 days). In between these early 530 

and late time periods, the statistical significance for the surface temperature percentiles decreases 531 
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and reaches a minimum at 2 weeks. This suggests that rockfall occurrences are favored by long-532 

lasting heatwaves (i.e. extended period of unusually high atmospheric heat) overtopped by a hot 533 

spell (one or a few days of intense heat)70. This early compound can thus be interpreted as a 534 

triggering effect which only reinforces a long-term high surface temperature signal. The late 535 

compound becomes more relevant in relation to the statistical significance of the scar temperature 536 

temporalities. Indeed, high significances of scar temperatures for short time period (< 20 days) are 537 

in some ways a corollary of high percentiles of surface temperature for at least a month due to the 538 

delay needed for heat diffusion. But this would mean that bedrock failures are somewhat a direct 539 

response to extraordinary high temperature at depth. Such results are partly in agreement with the 540 

findings from Luethi et al.37. This last study found that mid-sized rockfalls such as those we 541 

investigated are a direct response to short-term periods of high surface temperature. The authors 542 

attribute this fast reaction to accelerated bedrock thawing provoked by advective heat transfer from 543 

water percolation. While this study was not accounting for the thermal dynamics at scar depth, our 544 

study shows that scar depths were also affected by exceptionally high temperatures which are 545 

explained by the only effect of heat conduction. It further demonstrates that this high temperature 546 

at scar depth is likely a response to several weeks or months of high bedrock surface temperature. 547 

It does not exclude effect of advective heat transport but suggests that heat conduction exerts a 548 

predominant control. Such findings somehow remind the findings from Paranunzio et al.36 which 549 

pinpointed warm air temperature anomaly associated with a majority of rockfalls observed in the 550 

Western Italian Alps. Finally, similarly to the study of Luethi et al.37, it confirms that other thermal 551 

processes than permafrost degradation are probably responsible for small size rockfalls, 552 

supposedly high thermal stress due to intense temperature variation favoring bedrock failure 553 

preparation.  554 
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These interpretations must be considered with caution since they are based on findings for which 555 

the significance cannot be confirmed when considering the modeling approach uncertainty. This 556 

limit draws some research outlooks that could lead to the definition of a susceptibility index of a 557 

rockfall to occur according to the weather forecast. 558 

 559 

6.3. Outlooks 560 

Our study has shown that when considering model uncertainty, a part of our interpretation loses 561 

significance as it is not clear whether the same results could have been drawn from a random 562 

sample. For lowering these uncertainties and confirming/improving these results, two solutions are 563 

possible.  564 

The first one, which is the most challenging, is to lower the modeled temperature uncertainties 565 

(σCryogrid, σMARST or σanomaly; see sect. 3.5). σCryogrid could be improved by getting other borehole 566 

data in order that CryoGRID2 parameters better represent the study area (boreholes in rockwalls 567 

with other characteristics or in the metamorphic basement for example). σMARST could be tackled 568 

by modeling the MARST with a RST sample collected in the study area rather than across the 569 

entire European Alps35,51. Finally, σanomaly could be improved by better defining the daily surface 570 

temperature (see sect. 3.2.). RST anomaly time series could be created at the specific rockfall 571 

locations by combining different meteorological parameters in a well-constrained energy balance 572 

model. 573 

The second solution for lowering the uncertainties would be to increase the sample size with a 574 

higher number of rockfalls. This would lower the KS test critical values and the CDF uncertainties. 575 

This second solution would be considered in the near future as the rockfall database will be 576 

enriched with more recent events (2016-2020) which are currently under processing.  577 
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Additionally, with the method described in sect. 4, atmospheric warming and seasonal biases have 578 

been ruled out. However, the bias linked with the rockfall locations persists. Indeed, the studied 579 

locations were possibly particularly prone to instability (fracturing for example) as much as 580 

rockfall dates were favorable for example. For removing this bias, random events should be chosen 581 

in all the MBM, with characteristics (altitude, exposure, slope angle…) in accordance with the 582 

rockfall sample characteristics. Such a study, in the continuation of this work, could result in the 583 

development of a rockfall susceptibility index. This index would be defined with the values of the 584 

four variables presented and, particularly, with their significances. This work of gathering all this 585 

information could be done by machine learning or deep learning. Some of the real events will be 586 

used in the learning process and the others for the testing step. Such a rockfall susceptibility index 587 

could be a preliminary step towards a direct societal contribution of the past decade of permafrost 588 

research, supporting risk mitigation and public awareness in a rapidly evolving environment.  589 

 590 

 591 

7. Conclusions 592 

In this paper, the thermal conditions and dynamics at and prior to rockfalls have been analyzed for 593 

209 events inventoried in the MBM between 2007 and 2015 with 1D temperature modeling. Using 594 

temperature measurements at five locations at the rock surface and into three 10-m-deep boreholes, 595 

model uncertainty was quantified to refine model interpretation. Based on a random events 596 

analysis approach, recent decades of atmospheric warming and seasonal biases have been 597 

removed, and the statistical significance of our results was determined. The results were analyzed 598 

through surface and scar depth temperature values to discriminate possible processes responsible 599 

for rockfall triggering, as well as through temperature percentiles to analyze the statistical 600 
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significance and whether the rockfalls are a direct reaction to extreme air temperature signals. 601 

Percentiles were defined in relation to 11 temporalities ranging from 1 day to 2 months. KS tests 602 

were performed to determine whether our results could have been found from the random sample. 603 

Our study draws the following conclusions:  604 

● Permafrost degradation may be responsible for almost all events which scar depth was > 605 

6 m, and for a significant part of events occurring between 3 and 6 m depth.  606 

● For the 209 real events, the surface and scar temperature percentiles were, on average, 607 

warmer than those of the random events. This difference is present for all the considered 608 

temporalities. It is in order of magnitude of 3 % for scar temperature percentiles (1.5 % at least at 609 

95 % reliability level) and 2.5 % for surface temperature percentiles (0.5 % at least at 95 % 610 

reliability level).  611 

● KS test shows significant relationships between rockfalls and surface temperature 612 

percentiles at least up to 2 months prior to failure, and scar temperature percentiles up to 3 weeks 613 

before the events. At the rock surface, temporalities > 1 month have the greatest significance and 614 

those of 1-5 days are also remarkable. At scar depths, the closer to the event day, the greater the 615 

significance. 616 

● Significance results are interpreted as the effects of 1 to 5 days of extraordinary hot 617 

weather (hot spell) acting as a triggering mechanism after > 1 month of exceptionally high air 618 

temperature (long lasting heatwave), which result in high temperature at depth and sudden bedrock 619 

failure.  620 

● Decrease of the scar temperature percentiles significances suggests that rockfalls are a 621 

direct reaction (lasting less than 3 weeks) to exceptionally high bedrock temperature.  622 
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● When considering 95 % reliability level, uncertainties are too high for concluding 623 

anything about KS test significances (the three last points).  624 

● Our study also points out the interest to apply such an approach with a greater rockfall 625 

sample to better define the significance levels and appears promising to develop rockfall 626 

susceptibility index using weather forecast. 627 

 628 
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Table 1. Summary characteristics of the 209 rockfall events used in this study. MARST refers to the 847 

Mean Annual Rock Surface Temperature such as displayed in Figure 1.  848 

 Altitude (m) MARST (°C) Volume (m3) Scar depth 

(m) 

Slope angle (°) 

Minimum 2175 -8.7 100 0.8 12* 

Mean 3341 -2 1836 3 57 

Median 3355 -2 400 3.8 57 

Maximum 4085 4 60 000 15 82 

 849 

Table 1: Optimum parameters for minimizing the RMSE between simulated and real borehole temperatures. * This 850 

low value is explained by the fact that the rockfall occurred from the top of a crest. 851 

Parameter Value 

Bedrock conductivity (kbedrock) 3.3 W.m-1.K-1 

Bedrock porosity (φ) 1 % 

Total water content (θw,tot)  1 % 

Bedrock volumetric heat capacity 2.106 J.m-3.K-1 

Profile resolution From 1 to 3 m: 0.1 m 

From 3 to 10 m: 0.2 m 

From 10 m to 20.5 m: 0.5 m 

Spin-up duration 3 years 

Cexp 4 

 852 


