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ABSTRACT

This paper studies the performance of the generalized likelihood ra-

tio test (GLRT) for the conditional signal model. By conditional sig-

nal model, we mean that under both hypotheses, the observations are

a linear superposition of unknown deterministic signals corrupted by

additive noise, with a mixing matrix depending on an unknown de-

terministic parameter vector. The contribution of this work is the

derivation of closed form expressions for the probabilities of false

alarm and of detection of the GLRT at high signal-to-noise ratio, al-

lowing the receiver operating characteristic of the GLRT to be com-

puted analytically. The most general case is tackled, i.e., when the

number of unknown signals and the number of unknown determinis-

tic parameters of the mixing matrix are allowed to be different under

the two hypotheses.

Index Terms— Generalized likelihood ratio test, receiver op-

erating characteristic, maximum likelihood estimation, conditional

signal model.

1. INTRODUCTION

In a two hypothesis testing problem, if no a priori information about

the probability of each hypothesis is available, the likelihood ratio

test (LRT) in the Neyman-Pearson sense maximizes the probability

of detection for a given probability of false alarm [1]. Unfortunately,

optimal statistical tests such as the LRT cannot always be imple-

mented since there are often some unknown parameters in the obser-

vation model, leading to the so-called composite hypothesis testing

problem (CHTP) [1] (also referred to as joint detection estimation

problem [2]). A very common approach in this situation is to replace

the unknown parameters in the LRT by their maximum likelihood

estimators (MLEs), following the ideas of the generalized likelihood

ratio test (GLRT) [1]. It is known that the GLRT does not generally

preserve the optimal properties of the LRT [1]. However, the GLRT

approach has several advantages. Firstly, the test is often easy to

derive and sometimes its expression and distribution can be deter-

mined analytically [3][4][5][6]. Secondly, the GLRT is known to be

the uniformly most powerful (UMP) test for some restricted classes

of problems [9][10]. Last but not least, in the limit of large sample

support1, the distribution of the GLRT statistics can be determined

analytically for a class of linear observation models with a known

mixing matrix and it is known to perform as well as the LRT in this

particular case [3][4][5][6]. In this paper we are interested in the per-

formance of GLRT for linear observation models where the mixing

1When the distribution of the MLE can be approximated by its asymptotic
probability density function [3][4][5][6][7]

matrix is no longer known, but has a known parametric form. More

specifically, the observations y are formed from a linear superposi-

tion of M unknown deterministic signals β corrupted by an additive

noise w [4][7][8][11], i.e., y = H (α)β + w, where the mixing

matrix depends on an unknown deterministic parameter vector α.

Regarding the estimation of unknown quantities β and α,

this problem has received considerable attention during the last

fifty years, both for time series analysis [4] and array process-

ing [7][8][11]. These two problems have been merged into the

framework of modern array processing [8] where mostly two differ-

ent Gaussian signal models are considered: the conditional signal

model (CSM) which considers the M individual signals β as un-

known deterministic variables, and the unconditional signal model

(USM) [12][13] which assumes these M individual signals to be

jointly Gaussian random variables. Therefore the two different sig-

nal models have led to two kinds of maximum likelihood estimators

(MLEs), namely the conditional MLE (CMLE) and the uncondi-

tional MLE (UMLE). In both cases, numerous works [8][14][15][16]

have shown that in non-linear estimation problems three distinct re-

gions of operation of the MLE can be observed. In the asymptotic

region, the MSE of the MLE is small and, in many cases, close to

the Cramér-Rao bound (CRB). In the a priori performance region

where the number of independent samples and/or the signal-to-noise

ratio (SNR) are very low, the observations provide little information

and the MSE of the MLE is close to the one obtained from the prior

knowledge about the problem. Between these two extremes, there is

the transition region where the MSE of the MLE usually deteriorates

rapidly with respect to the CRB, and exhibits a threshold behaviour

corresponding to a ”performance breakdown”.

In this paper, we consider the less constrained CSM framework.

Note that assuming that the M individual signals are Gaussian is a

strong hypothesis that could fail in many real-life applications. Re-

garding the detection theory, it appears that the most studied CHTP

related to CSM is the detection of signals with unknown parameters

in additive Gaussian noise [8][5, §9.5][6, §28] (the restricted case

where one hypothesis consists of Gaussian noise only), or the detec-

tion of two different communication signals [5, §9.3][6, §26]. As a

consequence, the study of the general CHTP where under both hy-

potheses the observations are signals with unknown parameters in

additive Gaussian noise has been somewhat overlooked. Therefore,

to the best of our knowledge, the derivation of the receiver operat-

ing characteristic (ROC) of the associated GLRT, where under both

hypotheses the CMLEs operate in the asymptotic region in terms of

SNR, is new. It is the main contribution of this paper. We tackle the

most general case where the number of signal sources and the num-

ber of unknown deterministic parameters are allowed to be different



under the two hypotheses.

2. GENERALIZED LIKELIHOOD RATIO TEST

A wide class of detection problems can be addressed using the fol-

lowing two hypothesis test based on the CSM

{
H0 : y = H0(α0)β0 +w

H1 : y = H1(α1)β1 +w
(1)

where y ∈ R
N is the vector of observations, w ∈ R

N ∼
N (0, σ2IN ) is a Gaussian noise vector with known variance σ2,

and H0(α0) ∈ R
N×M0 , H1(α1) ∈ R

N×M1 are two different

observation matrices that depend on the unknown parameter vectors

α0 ∈ R
P0 , α1 ∈ R

P1 . By definition of the CSM [13], all the

unknown parameter vectors β0 ∈ R
M0 , α0 ∈ R

P0 , β1 ∈ R
M1

and α1 ∈ R
P1 are deterministic. Note that the detection problem

under consideration in (1) is more general than the classical linear

model studied in [3], where the same known observation matrix is

considered for the two hypotheses and the unknown vector reduces

to β1
2, leading to a different detector.

Let us recall that the GLRT requires to estimate the unknown pa-

rameter vectors αi and βi under both hypotheses (i.e., for i = 0, 1)

using the ML principle. Considering the hypothesis of additive

white Gaussian noise of known variance σ2 (w(n) ∼ N (0, σ2)),
we have

p(y;α,β) =
1

(2πσ2)
N
2

exp

(
−

1

2σ2
‖y −H(α)β‖2

)
.

As a consequence, the GLRT for the detection problem (1) can be

written

p(y; α̂1, β̂1|H1)

p(y; α̂0, β̂0|H0)
=

exp

(
− 1

2σ2

∥∥∥y −H1(α̂1)β̂1

∥∥∥
2
)

exp

(
− 1

2σ2

∥∥∥y −H0(α̂0)β̂0

∥∥∥
2
)

H0

≶
H1

γ′.

The estimation problem, considering a general notation that is true

for both the hypotheses H0,H1, reduces to the minimization of the

following least squares (LS) criterion [7]

J(α,β) = ‖y −H(α)β‖2 = (y−H(α)β)T (y−H(α)β). (2)

Introducing the orthogonal projection matrix ΠH = H(HTH)−1HT ,

that projects a vector onto the columns of H, and Π⊥
H = I−ΠH,

that projects a vector onto the space orthogonal to the columns of

H, the LS criterion can be rewritten as

J(α,β) = ‖y −H(α)β‖2

=
∥∥ΠH(α)(y −H(α)β)

∥∥2 +
∥∥∥Π⊥

H(α)(y −H(α)β)
∥∥∥
2

,

leading to

J(α,β) =

∥∥∥∥H(α)

((
H

T (α)H(α)
)−1

H
T (α)y − β

)∥∥∥∥
2

+
∥∥∥Π⊥

H(α)y

∥∥∥
2

. (3)

2In the classical linear model, there is a known relationship between β0
and β1.

Thus, the value of β that minimizes J(α,β) for a given value of α

is classically obtained as

β = (HT (α)H(α))−1
H

T (α)y

which corresponds to the classical unconstrained LS estimator of β

for a known vector α. The MLE of α is then obtained as the solution

of the following optimization problem

α̂ = argmin
α

∥∥∥Π⊥
H(α)y

∥∥∥
2

= argmax
α

∥∥ΠH(α)y
∥∥2

= argmax
α

(yT
H(α)(HT (α)H(α))−1

H
T (α)y) (4)

where we have used the properties of projection matrices3. Of

course, there is no analytical solution for the MLE of α in the gen-

eral case. However, this MLE can be obtained numerically using

for example a grid search approach (in general via a multivariate

optimization problem). Once the MLE of α has been determined, β

is estimated as follows

β̂ = (HT (α̂)H(α̂))−1
H

T (α̂)y.

Therefore, the GLRT associated with the CHTP (1) is

T =

∥∥∥y −H0(α̂0)β̂0

∥∥∥
2

−
∥∥∥y −H1(α̂1)β̂1

∥∥∥
2

σ2

H0

≶
H1

λ (5a)

=

∥∥Π⊥
H0(α̂0)

y
∥∥2 −

∥∥Π⊥
H1(α̂1)

y
∥∥2

σ2

H0

≶
H1

λ (5b)

It is unlikely to obtain an analytical tractable expression of the ROC

of the GLRT (5a-5b) in all regions of operation of the MLE. How-

ever, in the asymptotic region, the ROC can be derived by invoking

the high SNR consistency and efficiency of the CMLE [17]. It is the

objective of the next section.

3. HIGH SNR CMLE APPROXIMATION

Using a general notation for the two hypotheses, one can use a first

order Taylor series expansion of Π⊥
H(α) where αT = (α1, . . . , αP )

and ep denotes the pth vector of the natural basis of RP

Π
⊥
H(α+dαpep) ≈ Π

⊥
H(α) + dαp

∂Π⊥
H(α)

∂αp
,

leading to

∥∥∥Π⊥
H(α+dαpep)y

∥∥∥
2

≈

∥∥∥∥∥

(
Π

⊥
H(α) + dαp

∂Π⊥
H(α)

∂αp

)
y

∥∥∥∥∥

2

≈

∥∥∥∥∥Π
⊥
H(α)y + dαp

∂Π⊥
H(α)

∂αp
H(α)β + dαp

∂Π⊥
H(α)

∂αp
w

∥∥∥∥∥

2

. (6)

However, since Π⊥
H(α)H (α) = 0, we obtain

∂Π⊥
H(α)

∂αp
H (α)β = −Π

⊥
H(α)

∂H(α)

∂αp
β = −Π

⊥
H(α)

∂H(α)β

∂αp

3
Π is symmetric (ΠT = Π) and idempotent (Π2 = Π)



which yields the following equivalent form of (6)

∥∥∥Π⊥
H(α+dαpep)y

∥∥∥
2

≈

∥∥∥∥∥∥

Π⊥
H(α)y − dαpΠ

⊥
H(α)

∂H(α)β
∂αp

+dαp
∂Π⊥

H(α)

∂αp
w

∥∥∥∥∥∥

2

.

(7)

Moreover, since Π⊥
H(α+dαpep)

w → Π⊥
H(α)w when dαp → 0, it is

sensible to assume that dαp∂Π
⊥
H(α)/∂αpw is asymptotically neg-

ligible in (7), leading to

∥∥∥Π⊥
H(α+dαpep)y

∥∥∥
2

→
dαp→0

∥∥∥∥Π
⊥
H(α)y − dαpΠ

⊥
H(α)

∂H(α)β

∂αp

∥∥∥∥
2

i.e., in a more compact form

∥∥∥Π⊥
H(α+dα)y

∥∥∥
2

→
‖dα‖→0

∥∥∥Π⊥
H(α)y −D (α,β) dα

∥∥∥
2

,

D (α,β) = Π
⊥
H(α)

∂H(α)β

∂αT
(8a)

or equivalently

∥∥∥Π⊥
H(α+dα)y

∥∥∥
2

→
‖dα‖→0

∥∥∥Π⊥
D(α,β)Π

⊥
H(α)y

∥∥∥
2

+
∥∥∥ΠD(α,β)Π

⊥
H(α)y −D (α,β) dα

∥∥∥
2

. (8b)

Due to the high SNR consistency of the CMLE of α (denoted as α̂),

in the asymptotic region, α̂ ≃ α+ dα̂, where ‖dα̂‖ ≪ 1 [17], and

(8a-8b) holds, leading to the LS minimization

d̂α = argmin
dα

{∥∥∥ΠD(α,β)Π
⊥
H(α)y −D (α,β) dα

∥∥∥
2
}

(9a)

which solution is:

d̂α = (D (α,β)T D (α,β))−1
D (α,β)T Π

⊥
H(α)y. (9b)

Moreover, it can be easily shown that E
[
d̂α
]
= 0 and that

E
[
d̂αd̂α

T
]
= Γ (α,β)−1 ,

(Γ (α,β))p,p′ =
1

σ2
β

T ∂H (α)

∂αp

T

Π
⊥
H(α)

∂H (α)

∂αp′
β (10)

where Γ (α,β)−1
is actually the CRB associated with the unknown

parameter vector α [7], which proves that (8a-8b) provides a relevant

high SNR approximation of
∥∥Π⊥

H(α̂)y
∥∥2. Therefore, the following

high SNR approximation

∥∥∥Π⊥
H(α̂)y

∥∥∥
2

=
∥∥∥Π⊥

H(α+dα̂)y

∥∥∥
2

≈
∥∥∥Π⊥

D(α,β)Π
⊥
H(α)y

∥∥∥
2

, (11)

is relevant as well. Last but not least, it is worth noting that

∥∥∥Π⊥
D(α,β)Π

⊥
H(α)y

∥∥∥
2

= y
T
L

⊥
y, L⊥ = Π

⊥
H(α)Π

⊥
D(α,β)Π

⊥
H(α),

where L⊥ is an orthogonal projection matrix since L⊥ is sym-

metric and idempotent (one can easily verify this statement by

observing that Π⊥
H(α)Π

⊥
D(α,β)Π

⊥
H(α) = Π⊥

H(α) − ΠD(α,β) and

Π⊥
H(α)ΠD(α,β) = ΠD(α,β)). Surprisingly, to the best of our

knowledge, high SNR approximation of the CMLE α̂ (9a) and of∥∥Π⊥
H(α̂)y

∥∥2 (11) are new, which may explain why the ROC of the

GLRT (5a) in the high SNR region of CSMs are not available in the

open literature [3][4][5][6][7][8][11].

4. HIGH SNR ROC OF THE GLRT

From (11), the statistic T (5a-5b) can be reformulated at high SNR

as

T =
yT

σ

(
L

⊥
0 − L

⊥
1

)
y

σ
(12)

where L⊥
0 and L⊥

1 are orthogonal projection matrices with L⊥
i =

Π⊥
Hı̂(αi)

Π⊥
Di(αi,βi)

Π⊥
Hı̂(αi)

, for i = 0, 1. Let S = span {A}
denotes the linear span of the set of the column vectors of A, ΠS

denotes the orthogonal projection matrix onto S, and S⊥ denotes the

orthogonal complement of the subspace S for the canonical inner

product. Let S0 = span{L⊥
0 } and S1 = span{L⊥

1 }, then the

following results can be obtained

∀y ∈ (S0 ∩ S1) :
(
L⊥

0 − L⊥
1

)
y = 0

∀y ∈ (S⊥
0 ∩ S1) :

(
L⊥

0 − L⊥
1

)
y = −y

∀y ∈ (S0 ∩ S⊥
1 ) :

(
L⊥

0 − L⊥
1

)
y = y

∀y ∈ (S⊥
0 ∩ S⊥

1 ) :
(
L⊥

0 − L⊥
1

)
y = 0

where

(S0 ∩ S1) ∪ (S⊥
0 ∩ S1) ∪ (S0 ∩ S

⊥
1 ) ∪ (S⊥

0 ∩ S
⊥
1 ) = R

N .

Moreover L⊥
0 −L⊥

1 is symmetric. Thus L⊥
0 −L⊥

1 is diagonalizable

and admits three potential eigenvalues {−1, 0, 1} with multiplicities

denoted as

m{−1} = dim{S⊥
0 ∩ S1} = ν (13a)

m{1} = dim{S0 ∩ S⊥
1 } = r (13b)

m{0} = N −m{−1} −m{1} = N − ν − r

leading to

T =
yT

σ

(
L

⊥
0 − L

⊥
1

)
y

σ
=
∥∥∥UT

1 y/σ
∥∥∥
2

−
∥∥∥UT

−1y/σ
∥∥∥
2

where U1 is a matrix whose r column vectors form an orthonormal

basis of S0 ∩ S⊥
1 , and U−1 is a matrix whose ν column vectors

form an orthonormal basis of S⊥
0 ∩ S1. Therefore, at high SNR,

the probability of false alarm (PFA) and the probability of detection

(PD) of the GLRT (5a-5b) can be expressed as:

PFA = P
(∥∥UT

1 y/σ
∥∥2 −

∥∥UT
−1y/σ

∥∥2 > λ|H0

)

PD = P
(∥∥UT

1 y/σ
∥∥2 −

∥∥UT
−1y/σ

∥∥2 > λ|H1

)
.

(14a)

It is then worth noticing that: a) S0 ∩ S⊥
1 ⊂ span {H0 (α)}⊥, and

b) S1 ∩ S⊥
0 ⊂ span {H1 (α1)}

⊥
. As a consequence: a) under H0,

UT
1 y = UT

1 w, and b) under H1 : UT
−1y = UT

−1w. Finally, (14a)

can be computed as

PFA = P
(
χ2
r (0)− χ2

ν

(∥∥UT
−1H0 (α0)β0/σ

∥∥2
)
> λ

)

PD = P
(
χ2
r

(∥∥UT
1 H1 (α1)β1/σ

∥∥2
)
− χ2

ν (0) > λ
)

(14b)

where χ2
l (ζ) denotes a chi-square random variable with l degrees of

freedom and non-centrality parameter ζ, whose probability density

function (p.d.f.) is given by [3]

p (x; l, ζ) =
1

2
e−(x+ζ)/2

(
x

ζ

)l/4−1/2

Il/2−1

(√
ζx
)

(14c)

where Iυ (z) is the modified Bessel function of the first kind. Thus,

the ROC of the GLRT at high SNR depends simply on the distribu-

tion of the difference between two independent chi-square random



variables whose p.d.f.s are known (14c). As a result, the computa-

tion of (PFA, PD) (14b) can be obtained easily as follows. Firstly,

one computes numerically the eigenvalues and the eigenvectors of

L⊥
0 − L⊥

1 which yields r, ν (13a-13b) and U1, U−1. Secondly,

since the two chi-square random variables are independent, the p.d.f.

of their difference is the correlation between the individual p.d.f.s,

which can be computed numerically as well.

Let us notice that above we have implicitly considered the most gen-

eral case where ν ≥ 1 and r ≥ 1. However if S1 ⊂ S0, then

S⊥
0 ⊂ S⊥

1 and S⊥
0 ∩ S1 = ∅. In that particular case ν = 0, leading

to a simplified form of (PFA, PD)

PFA = P
(
χ2
r (0) > λ

)

PD = P
(
χ2
r

(∥∥UT
1 H1 (α1)β1/σ

∥∥2
)
> λ

)
.

(15)

Likewise, if S0 ⊂ S1 then r = 0, which leads to another simplified

form of (PFA, PD).

5. SIMULATION RESULTS
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Fig. 1. Empirical and theoretical PFA versus threshold γ.

Consider the problem of detecting a spurious sinusoidal signal

at the output of a linear process4:

{
H0 : y(n) = λx(n− p) + w(n)

H1 : y(n) = λx(n− p) + l1 cos(2πfn) + l2 sin(2πfn) + w(n)

where n = 0, . . . , N − 1. This problem is a particular case of (1)

with the following unknown parameter vectors α0 = p, β0 = λ,

αT
1 = (p, f), βT

1 = (λ, l1, l2) and mixing matrices H0(α0) , xp,

H1(α1) = [xp cf sf ] where xT
p = (· · · , x(n− p), · · · ), cTf =

(· · · , cos (2πfn) , · · · ) and sTf = (· · · , sin (2πfn) , · · · ). The

4The process is approximated by a delay p and an attenua-
tion/amplification effect λ on a known signal x.
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Fig. 2. Empirical and theoretical ROC curves.

CMLEs and the test statistic T for this particular case are straight-

forward to derive

p̂0 = argmax
p

{
(xT

p y)
2/ ‖xp‖

2
}

(
p̂1
f̂

)
= argmax

p,f






(xT
p y)

2 − 4xT
p yRe {Ixy(f)}

+2 ‖xp‖
2 Iy(f)− 4 Im {Ixy(f)}

2

‖xp‖
2 − 2Ix(f)






T =

(xT
p̂1
y)2 − 4xT

p̂1
yRe

{
Ixy(f̂)

}

+2 ‖xp̂1‖
2 Iy(f̂)− 4 Im

{
Ixy(f̂)

}2

σ2(‖xp̂1‖
2 − 2Ix(f̂))

−
(xT

p̂0
y)2

σ2 ‖xp̂0‖
2 (16)

where the term Iz(f) =
(
(cTf z)

2 + (sTf z)
2
)
/N is the peri-

odogram of z, zT = (z (0) , · · · , z (N − 1)), and Ixy(f) =(
(cTf x− isTf x)(c

T
f y + isTf y)

)
/N is the cross-periodogram of

x and y. Note also that a large sample approximation (N → ∞)

has been considered for the derivation of α̂T
1 =

(
p̂1, f̂

)
. Last but

not least, since span {H0(α0)} ⊂ span {H1(α1)}, then S1 ⊂ S0

and we can resort to (15) to compute (PFA, PD). We consider the

case where x(n) ∼ N (0, λ2/σ2) is a Gaussian process, N = 200,

f = 4/100, p = 6, leading to r = 3. Figures 1 and 2 compare

the theoretical and empirical PFA and ROC curves of the GLRT

defined as T ≶ λ, where the estimation of α0 and α1 is carried

out considering a grid search optimization where ∆p = 1e−5s
and ∆f = 1e−4Hz. The number of Monte-Carlo trials used for

this experiment was 104. The SNRs under both hypotheses, i.e.,

Nλ2/σ2 = l21N/σ2 = l22N/σ2 = 13dB, are high enough to as-

sume that all CMLEs operate in their asymptotic region, which has

been checked by comparing their MSEs with the associated CRBs.

The almost perfect match between the empirical and theoretical

results confirms the accuracy of analytical expression (14b) of the

ROC of the High-SNR GLRT (12) derived in this paper.
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