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Abstract. Deep reinforcement learning (DRL) techniques give robotics research an AI boost in 

many applications.  In order to simultaneously accommodate the complex robotic behaviour 

simulation and DRL algorithm verification, a new simulation platform, namely the RobotDrlSim, 

is proposed. 

First, we design a standardized API interfacing mechanism for coordinating diverse 

environments on RobotDrlSim platform, where PyBullet simulator is equipped with an API to 

form a physical engine for robotics simulation. Second, benchmark DRL models are included in 

the baseline library for evaluation. Third, real-time human-robot interactions can be captured 

and imported to drive the RobotDrlSim tasks, which provide big data-stream for reinforcement 

learning. Experimentations show that cutting-edge DRL algorithms developed in python can be 

seamlessly deployed to the robots, and human interactions can be availed in training the robots. 

RobotDrlSim is valid for efficiently developing DRL algorithms for artificial intelligence models 

of robots, and it is especially suitable for the robot educational purposes. 

Keywords: Simulation platform, robot control, deep reinforcement learning, human interactive 

demonstration learning. 

1.  Introduction 

With rapid progress, the intelligent robot draws increasing attention from both academic and industrial 

fields. Advanced learning models boost robot to achieve complex problems like [1]. Generally, these 

kinds of self-taught intelligent architecture implement deep learning models for environment perception 

and knowledge accumulation. Deep reinforcement learning that combines convolutional neural network 

and bellman dynamic planning not only outperforms human experts in many domains [2][3][4] but also 

enables robot to be trained in an end-to-end style. However, applying the direct reinforcement learning 

algorithms to solve complex task would be inefficient, especially within robotic configuration where 

interactions are lengthy and costly. A typical solution is to use a simulated virtual environment to 

reconstruct the robot’s dynamics and external changes, which substitutes assiduous experiments in real 

life. 

Simulated environments provide models with fast, repeatable and flexible interaction experiences. 

Growing computation capacity equips simulation with multi-threading, parallel computation and GPU 

acceleration. Those novel technologies improve the performance of both dynamics simulation and 

reinforcement learning. On the one hand, high-quality dynamics simulation is used to rapidly prototype 

robots design and simulate virtual sensors, providing a virtual robotics testing platform. On the other 

hand, reinforcement learning models will have a more stable and robust manner with large and reliable 

training data source. 



 

 

 

 

 

 

The narrowing gap between simulation and the real-life allows to train a simulated robot and then to 

deploy the trained reinforcement learning model in real robotic control platform. Yet, the lack of a 

standardized and plug-and-play robotic simulation solution requires researchers to redesign the platform 

to fit the current reinforcement learning algorithm interface.  

Within the scope of our work, we extend Bullet physic engine [5][6] to build our standardized robotic 

simulation environment platform, which integrates APIs for reinforcement learning algorithms, remote 

control and expert demonstration. We proposed two specially designed robotic environments: 

InMooV[7] and Jaka. Both have their counterpart robots in real-life.  

2.  Background 

Simulation is essential these days for robotic research. The simulated engine provides fast verification 

for robot design. Meanwhile, it bridges the gap between the reinforcement learning algorithms and the 

real-world robotic problems. In the work of Plasencia et al[8], they proposed two teaching platforms for 

robotics simulation. The first of which combines OpenAI Gym with V-REP physical engine, providing 

a large choice for reinforcement learning-ready API. The second tool they propose uses Deeplearning4J, 

an open-source deep learning toolbox implemented with JAVA, which offers RL-Glue plug-in. Stephen 

James[9] uses a 3D simulated robot simulation with V-REP built-in to train a v-rep robot arm to grasp 

a cubic. To resolve the interface with python, they implement an internet communication protocol to 

assemble simulated robot and DRL algorithms package. But the time lagging involved with server-client 

communication prevents online training.  Moreover, the survey conducted by Diego Ferigo et al[10] 

shows that socket-based protocols are discouraged since the existence of multi-components in the 

simulation makes firstly random initialization partially uncontrollable. Secondly, it may obstruct 

reproductivity especially when the algorithms are very sensitive to numerical variation. Therefore, 

client-server solution is not suitable for resolving simulated robots with reinforcement learning.  

M. Kirtas et al[11] redesign Webots to fit Gym interface, enlarging the compatibility for both robotic 

and gaming problems. This open-source toolbox equipped with possibility for more feature extensions 

offers DRL verification platform for both researchers and students. Yet, the main experiments within 

their work do not have counterparts in the real-life. And the framework does not contain DRL algorithm 

customized setups, which leaves some tedious works to track the training and replay the trained model. 

Meanwhile, many researchers have completed various tasks in the simulation system by applying the 

method of reinforcement learning to the simulation. In the work of Jan Matas et al[12], they have used 

a combination of several deep RL algorithms to solve the problem of manipulating deformable cloth 

and completed three tasks in the Bullet simulation environment, including folding a towel up to a mark, 

folding a piece of cloth diagonally and draping a face towel over a hanger. They also transferred the 

learned policy to the real robot without any real-world data. Chelsea Finn et al[13]. develops a new 

reinforcement learning algorithm ‘guided cost learning’ based on inverse optimal control. They used the 

MuJoCo physics simulator to test their algorithm by running experiments on three tasks of varying 

difficulty, like 2D navigation around obstacles, a 3-link arm reaching towards a goal location in 2D in 

the presence of physical obstacles. And then they take this result to compare the ‘guided cost learning’ 

with the prior sample-based algorithm to determine which one is better. Finally, in the research 

conducted by Deirdre Quillen et al.[14], they build a robotic arm with 7 degrees of freedom in the Bullet 

simulator with the task of grasping objects from a bin. Then different RL algorithms are applied to the 

simulation environment. After evaluation, every algorithm will be given with a benchmark to decide 

which one is the most suitable for grasping situation. However, even with numerous works to apply 

DRL algorithm in simulated framework, short of readily employed simulation platform poses difficulty 

for massive benchmarking upcoming state-of-the-art algorithms. 

Our RobotDrlSim platform that supports pure Python API abstraction allows direct interaction between 

the robotic kinematic simulation and the DRL model without socket-based data transmission. The robots 

in real life also provide possibility to test the simulation accuracy. The stacked 10 DRL algorithms will 

also facilitate the researcher and students for further development. 

3.  Methodology 



 

 

 

 

 

 

Our platform mainly consists of several task-oriented simulated environments. We have standardized 

its interfaces to associate with the supported DRL algorithms and the operators themselves. To cooperate 

PyBullet simulator with DRL algorithms implementation, we migrate Gym API as the wrapper to skip 

some tedious environment configuration at the very start.  

Among the provided environments, our platform contains 2 robotic environments: InMoov and Jaka. 

Therefore 2 interfaces are built to fit Gym and RL states information with ground truth and raw pixels. 

3.1.  Build Up the Environment 

The simulated environments adopt gym module to interfere with RL algorithm. Within the framework 

of simulation platform, we integrate several featured functions, some of those are highlighted along with 

built-in parameters in the Table 1. 

Table 1. Parameters and member functions of basis environments wrapper class. 

Parameters Effect 

urdf_root Path to pyBullet urdf files 

Renders Whether to display the GUI or not 

is_discrete Whether to use discrete or continuous actions 

multi_view Whether to return images from multiple camera 

max_distance Max distance between the effector and the button 

Functions Effect 

getState Get the state with a given observation 

Reset Reset simulation in PyBullet and initial positions 

get_observation Get observation according to the state format 

Render Set the cameras and obtain the images 

As for the on-the-shelf SDK configuration of our RobotDrlSim platform, we have already imported the 

urdf files which describe the InMoov robot with more than 50 controllable joints, and the Jaka robot 

which has 6.  Both of these two robots are representative for their humanoid and cooperative features. 

For instance, we utilize the loadURDF() function compiled in PyBullet toolkit to load InMoov model, 

materializing the simulated subject as well as some other auxiliary objects or scenes such as plane.urdf 

and table.urdf etc.To instantiate our environments as Gym objects, the final step is to register the 

environment in a registry lists by grouping concerned modules in the script registry.py. 

On the other side, we constructed reinforcement learning algorithms interface with similar idea. We 

generate algorithms interface from stable-baselines[15] and include several customized adaptations. 

Since then, the RobotDrlSim platform can conveniently combine DRL algorithms with registered 

environments, which render a quick verification on the subjects. Take "ppo2" and Jaka for instance: 
Algorithm 1 JakaButtonGymEnv(GymEnv) 

import PPO2 from stable_baselines 

import StableBaselinesRLObject from rl_baselines.base_classes 

initializing algorithm PPO2 in the class StableBaselinesRLObject 

adding arguments: --num-cpu 

Algorithm 1: environment-algorithm interaction process for Jaka environment 

Finally, the interfaces of client-environments and algorithms in our platform are built. With this platform, 

robotic simulation with standardized RL algorithms can be easily deployed. 

3.2.  Training the Model 

Everything being prepared, we can train the model whose entrance locates in rl_baselines.train.py. 

Similarly, we need to input some configurational parameters for ArgumentParser to parse. The table 

below demonstrates some significant inputs. Please refer to train.py for the complete list. 

Table 2. Key parameters for RL training setup. 

Parameters Effect 

algo RL algorithm to be trained 

env environment registered to interact with 

log_dir Directory to save agent logs and RL model 

srl_model SRL model to use to reduce the dimensions 



 

 

 

 

 

 

During the training process, the corresponding logs will be saved to the directory input as log_dir refers 

to. Later we can observe the results or retrain the model directly via the logs. Naturally, we can utilize 

the visdom toolkit to supervise the training process in real time. 

 

Figure 1. The interaction process of simulator platform and RL algorithm. 

3.3.  Remote Control 

In order to integrate our platform with demonstration learning and take full advantage use of 

computation resource, we extend the environments to support remote control. Within remote control 

setup, we separate control and simulation into 2 computers. Through TCP protocol, connection 

exchanges simulated data and robotic control command. We re-encapsulate the data along with a tokento 

assure the integrity and reliability of remote data transmission. 

        

Figure 2. First-perspective camera perspective and joint control from local PC. 

Take example for a single time interaction between the local and the server. We firstly initiate socket 

protocol on both ends: server and client. After establishing connection, GUI will be activated on the 

local side and corresponding environments will be created on the server side. At one step interaction, 

local platform broadcasts control command, which will be received by activated RobotDrlSim simulator. 

The first advantage of this implementation aims to maximize the computational power from server side 

and to free local computer from complex python configuration. Secondly, most popular real robot 

control systems like ROS, are designed with C++. The data encapsulation and Internet-styled data 

transfer protocol offer flexibility of programming languages, which paves the path for direct migration 

of trained DRL model to real-life configuration. Finally, the implementation allows expert 

demonstration to support data collection and Learn from Demonstration (LfD) algorithm development.  

4.  Experimental Demonstration 

Our simulation platform contains a collection of ready-to-use environments, including Jaka and InMoov 

robot. In this part, we investigate the performance of our platform and its compatibility with state-of-

the-art DRL algorithms. 

4.1.  Jaka Robot’s Point to Point Control 

Jaka robot’s point to point task tries to guide the end of Jaka robot to reach the position pre-set by us. 

We set a button at a fixed position. The goal for the robot is to reach the button. The action space of 

robot is discretized, containing six possible movements for each time step: moving forward, backward, 

up, down, left and right. We use pybullet’s inverse kinematics algorithms to compute the needed joints-

level control movements for robot at each step. In ground_truth model, the observation contains the 

relative position between the end of robot and the button. In raw_pixels model, the observation is a 

photo taken by a global camera we set in the simulation environment. We define d(robot, button) as the 



 

 

 

 

 

 

distance between robot and button, and for every step taken, the agent is rewarded with -d(robot,button). 

The learning curves using different algorithms are depicted in Figure 3. 

      

Figure 3. Robot in simulation (left) and learning curves (right) for point-to-point task for Jaka robot 

4.2.  Jaka robot contacts with the button and avoids obstacles 

On the basis of point-to-point training above, an obstacle (a column) is added between the robot and the 

target button. In this scope, the robot should learn to touch the button while avoiding the obstacle. 

     

Figure 4. The environment set(left) and the learning curve(right) of obstacles avoiding and reaching  

The action space is the same as last mission. The observation contains the relative position between the 

end of robot and the button and the relative position between the end of robot and the obstacle. For every 

step taken, the agent is rewarded with -d(robot,button). If the robot gets bumped by the obstacle during 

training, the agent would get a reward -200. The robot succeeds in making a circular move to approach 

the button and staying away from the obstacle. The learning curves using different algorithms are 

depicted in Figure 4. 

4.3.  InMoov robot’s point to point control 

     

Figure 5. Simulated tomato tree and robot(left); Learning curves of object grasping task for 

InMoov(right).  

InMoov robot’s point to point control is meant to let the right hand of InMoov robot reach the position 

of one tomato on a tomato tree we ‘plant’ in the simulation environment. 

The action space is discrete, containing six possible actions for each time step, the same as that in Jaka 

point-to-point training. The observation contains the relative position between the right hand of the robot 

and the tomato. For every step taken, the agent is rewarded with -d(right hand,tomato). The learning 

curves using different algorithms are depicted in Figure 5. 

4.4.  Simulation Platform fps Verification 
State_model Jaka InMoov 

Ground_truth 506 76 

Raw_pixels 22 8 

Table 3. The simulation fps for Jaka and InMoov environment. 

Experiments on fps defines the number of frames per second the simulator can interact with the 

environment. The fps of our simulation with different robots and input is shown in the Table 3. 



 

 

 

 

 

 

5.  Conclusion 

RobotDrlSim plays an important role in training robot with deep reinforcement learning methods. 

The RobotDrlSim platform breaks the barriers of multiple simulation environment coordination and 

supports visualization of robot training, which accelerates the deployment of robot control algorithms 

with complex tasks. Human-robot interactions could also be utilized to guide the robot training, which 

paves an efficient way for improving the performance of DRL algorithms.  

In the next step, we will concentrate on GPU acceleration to achieve real-time simulation with higher 

image resolution. The future work could also be focused on the deployment of DRL model down to real 

robot to solve tasks. Moreover, task-specified algorithm and demonstration algorithm could be 

developed in the future to accelerate the training process. 
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