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Abstract—Reconfigurable intelligent surfaces have emerged as
a promising technology for future wireless networks. Given that a
large number of reflecting elements is typically used and that the
surface has no signal processing capabilities, a major challenge is
to cope with the overhead that is required to estimate the channel
state information and to report the optimized phase shifts to the
surface. This issue has not been addressed by previous works,
which do not explicitly consider the overhead during the resource
allocation phase. This work aims at filling this gap, by developing
an overhead-aware resource allocation framework for wireless
networks where reconfigurable intelligent surfaces are used to
improve the communication performance. An overhead model

is proposed and incorporated in the expressions of the system
rate and energy efficiency, which are then optimized with respect
to the phase shifts of the reconfigurable intelligent surface, the
transmit and receive filters, the power and bandwidth used
for the communication and feedback phases. The bi-objective
maximization of the rate and energy efficiency is investigated,
too. The proposed framework characterizes the trade-off between
optimized radio resource allocation policies and the related
overhead in networks with reconfigurable intelligent surfaces.

I. INTRODUCTION

Future wireless networks will be a pervasive platform,

which will not only connect us but will embrace us through

a plethora of services. The ubiquity, speed, and low latency

of such networks will allow currently disparate devices and

systems to become a distributed intelligent communications,

sensing, and computing platform [1]. Small-cell networks

[2], massive multiple-input-multiple-output systems [3], and

millimeter-wave communications [4] are three fundamental

technologies that will spearhead the emergence of future

wireless networks [5]. The question is, however, whether these

technologies will be sufficient to meet the requirements of

future networks that integrate communications, sensing, and

computing in a single platform. Wireless networks, in addition,

are evolving towards a software-defined paradigm, where

every part of the network can be configured and controlled

via software [6], [7]. However, the wireless environment,

i.e., the channel, is generally uncontrollable, and often an

impediment to be reckoned with, e.g. signal attenuation limits

network connectivity, multi-path propagation results in fading,

reflections from objects produce uncontrollable interference.
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Motivated by these considerations, the concept of “smart

radio environment” has recently emerged [8], [9], [10], [11],

wherein the environmental objects are envisioned to be coated

with man-made intelligent surfaces of configurable electro-

magnetic materials that are referred to as reconfigurable

intelligent surfaces (RISs) [12], [13]. These materials are

expected to contain integrated electronic circuits and software

that will enable them to control the wireless medium [10],

[14]. Conceptually, an RIS can be viewed as a reconfigurable

mirror or lens, depending on its configuration [15], that is

made of a number of elementary elements, often referred

to as meta-atoms or passive scatterers, that are configurable

and programmable in software. The input-output response of

each passive scatterer can be appropriately customized, so that

the signals impinging upon the RIS can be predominantly

reflected or transmitted in specified directions or focused

towards specified locations [16], [17]. RISs have the potential

to enable the control of the propagation environment, thus

potentially changing the design of wireless networks.

Due to the potential opportunities offered by RIS-

empowered wireless networks, a large body of research contri-

butions have recently appeared in the literature. The interested

readers are referred to the survey papers in [10], [18], [19],

[20], [21], where a comprehensive description of the state-

of-the-art, the scientific challenges, the distinctive differences

with other technologies, and the open research issues are

comprehensively discussed. In [22], systems made of large

active surfaces are put forth as the natural evolution of massive

MIMO systems. A similar idea is embraced in [23], where it

is elaborated on how RISs can be used to implement massive

MIMO systems, replacing each conventional antenna with an

active reconfigurable surface. The fundamental performance

of the system is analyzed, showing that it grants satisfactory

performance, while at the same time reducing costs, power

consumption, and physical size. In [24] it is shown how RISs

can yield better performance compared to the use of relays.

Moreover, in [25] it is shown that RISs can improve the

secrecy of communication by focusing the transmit signal

only towards the direction of the intended receivers. Recently,

in addition, a few experimental testbeds have been built to

substantiate the feasibility of RISs, e.g., [26], [27], [28],

[29], [30]. In the following two sub-sections, we describe the

contributions that are most related to the present paper, and

outline novelty and contributions of our work.

A. Related Works

We focus our attention on the issue of resource allocation

in RIS-empowered wireless networks. In this context, several

http://arxiv.org/abs/2003.02538v3
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research papers have appeared recently, mostly considering

application scenarios where the line-of-sight link is either too

weak or is not available, and, therefore, an RIS is employed

to enable the communication through the optimization of

the phase shifts of its individual passive elements and of

the precoding and decoding vectors of the transmitter and

receiver, respectively. In [31], the rate and energy efficiency are

optimized in RIS-based multiple input single output (MISO)

downlink systems. Alternating optimization of the base station

beamformer and of the RIS phase shifts is performed by means

of fractional programming methods for power optimization,

and sequential optimization methods for phase optimization.

A similar setup is considered in [32], with the difference

that the problem of power minimization subject to mini-

mum rate constraints is considered. A suboptimal numerical

method is proposed based on alternating optimization. In

[33], a MISO downlink system is analyzed, with the addition

that the orthogonal frequency division multiplexing (OFDM)

transmission scheme is considered, and the problem of sum-

rate maximization is addressed. Sum-rate maximization is

also investigated in [34], where computationally-efficient, but

sub-optimal, algorithms are devised for an RIS-based MISO

system, to optimize the transmit beamformer and the RIS

phase shifts, still based on the use of alternating optimization.

Similarly, alternating optimization methods are used in [35]

to tackle the problem of sum-rate maximization in a MISO

downlink system. The base station beamformer and the RIS

phase shifts are optimized, with the additional difficulty that

discrete phase-shifts at the RIS are assumed. In [36], an RIS

is used to boost the performance of over-the-air computations

in a multi-user MISO channel. A method based on alternating

optimization and difference convex programming is developed,

which outperforms semi-definite relaxation alternatives. In

[37], an RIS is used to enhance the secrecy rate of a MISO

downlink channel with multiple eavesdroppers. Alternating

maximization is used to devise a practical, yet suboptimal,

method to optimize the transmit beamformer and the RIS

phase shifts. In [38], the use of RISs for physical layer security

is envisioned, thanks to the possibility of RISs to reflect in-

coming signals towards specified directions. In [39], the maxi-

mization of the secrecy rate in an RIS-based multiple-antenna

system is investigated, and alternating optimization is used to

optimize the transmit beamformer and the RIS phase shifts. In

[40], a massive MIMO system is considered, in which multiple

RISs equipped with a large number of reflecting elements

are deployed and the problem of maximizing the minimum

signal-to-interference-plus-noise-ratio at the users is tackled by

jointly optimizing the transmit precoding vector and the RISs

phase shifts. In [41], it is shown that the use of RISs enhances

the performance of systems based on unmanned aerial vehicles

(UAVs) upon optimizing the UAV height and various RIS

parameters such as the size, altitude, and distance from the

base station. In [42], the problem of precoding design in

an RIS-based multi-user MISO wireless system is addressed,

assuming that only discrete phase shifts at the RIS are possible.

The maximization of the rate in an RIS-assisted MIMO link

is tackled in [43], by considering that the RIS is deployed

to assist the communication between the transmitter and the

receiver. In [44], the problem of power control for physical-

layer broadcasting under quality of service constraints for

the mobile users is addressed in RIS-empowered networks.

The downlink of a MIMO multi-cell system is considered

in [45], where an RIS is deployed at the boundary between

multiple cells. Therein, the problem of weighted sum-rate

maximization is tackled by alternating optimization of the base

station beamformer and of the RIS phase shifts. RIS-based

millimiter wave systems are considered in [46], with reference

to a single-user MISO channel. The transmit beamforming and

the RIS phase shifts are optimized considering both the single-

RIS and multi-RIS cases. In [47], joint channel estimation and

sum-rate maximization is tackled in the uplink of a single-

user RIS-based system, where the phase shifts of the RIS

have a discrete resolution. In [48], the sum-rate of a MIMO

RIS-based system is optimized with respect to the transmitter

beamforming and the RIS phase shifts, in the case in which

simultaneous information and power transfer is employed.

B. Novelty and Contribution

The common denominator of all the above works dealing

with radio resource allocation is that the optimization is

focused only on the data communication phase, whereas the

overhead required to estimate the channel state information

and to report the optimized phase shifts configuration to the

RIS is not taken into account. As recently highlighted in

[10], the overhead for resource allocation in RIS-empowered

wireless networks may be more critical than in conventional

wireless networks. This is due to the possibly large number of

passive elements in each RIS that may be spatially distributed

throughout the network. Moreover, the above mentioned works

optimize the phase shifts of the RISs based on numerical meth-

ods, which makes it difficult to assess the ultimate performance

of RIS-empowered wireless networks.

In contrast, this work develops a resource allocation frame-

work that explicitly accounts for the overhead associated with

channel estimation and with the configuration of the optimal

RIS phase shifts. A point-to-point RIS-based system with

multiple antennas at the transmitter and receiver is considered.

More precisely, the following specific contributions are made:

‚ We propose a model to account for channel estimation

and the overhead required for the configuration of the RIS

phase shifts. Based on the overhead-aware expressions of

the system rate and energy efficiency, we develop efficient

radio resource allocation algorithms. This is a different

approach compared to robust resource allocation methods

which assume imperfect channel state information [49],

[50], [51]. Indeed, we propose a framework that accounts

for the feedback that is necessary for realiable channel

estimation and RIS phase shifts deployment, and optimize

the system resources based on this new model.

‚ We derive two methods for the joint optimization of the

RIS phase shifts, and of the precoding and decoding

filters. Both methods are expressed in closed-form, thus

requiring a negligible computational complexity com-

pared to state-of-the-art methods based on alternating

optimization, as well as enabling analytical performance
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evaluation of RIS-empowered wireless networks. Both

approaches are provably optimal in the case of rank-

one channels, which includes the notable special case of

single-antenna transmitters and receivers.

‚ We introduce globally optimal algorithms for comput-

ing the power and bandwidth that maximize the rate,

the energy efficiency, and their trade-off, based on

convex/pseudo-convex problems with limited complexity.

‚ Finally, we provide extensive numerical results to show

the performance of the proposed approaches. We find

that our proposed closed-form phase optimization solu-

tion perform similar to more complex, state-of-the-art

numerical methods, e.g. alternating optimization.

The rest of the paper is organized as follows. Section II intro-

duces the system model and the problem statement. Section

III develops the optimization methods for the allocation of

the RIS phase shifts, the beamforming vector, and the receive

filter. Section IV optimizes the powers and bandwidths for

the maximization of the system rate, energy efficiency, and

the derivation of the optimal rate-energy trade-off. Section

VI numerically analyzes the proposed optimization methods.

Finally, concluding remarks are given in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The considered system model is depicted in Fig. 1. A trans-

Tx Rx

RIS

p , p f , B , BF

q

GH

w

Φ

Fig. 1: System model

mitter equipped with NT antennas and a receiver equipped

with NR antennas communicate through an RIS. A single-

stream transmission is adopted, in order to exploit the diversity

gain ensured by the presence of the RIS and of the multiple

transmit and receive antennas1. The case under analysis mod-

els point-to-point links, but also downlink or uplink commu-

nications in cellular networks where multi-user interference is

suppressed (for example by means of any orthogonal signaling

protocols such as frequency or time division multiple access,

or by orthogonal frequency division multiple access).

We assume that no direct link between the transmitter and

receiver exists, and we denote by H and G the channels from

the transmitter to the RIS and from the RIS to the receiver,

respectively, by q the unit-norm transmit beamformer, and

by w the unit-norm receive combiner. Among the different

implementations of RISs [11], [52], we consider surfaces that

are made of large arrays of inexpensive antennas that are

1A more general scenario is represented by a multi-stream transmission,
which trades-off reliability with throughput. However, this scenario would lead
to more cumbersome expressions of the rate and energy efficiency functions
and is left as future work.

spaced half of the wavelength apart and that are individually

controlled and tuned. More specifically, we assume that the

RIS is made of N elementary individually and locally opti-

mized passive scatterers, which are capable of independently

reflecting the radio wave impinging upon them, by applying

a phase shift denoted by φn, with n “ 1, . . . , N , which

we collect in the diagonal matrix Φ “ diagpejφ1 , . . . , ejφN q.

Thus, in this paper the RIS is employed for channel-aware

beamforming through the environment.

Before the data transmission phase starts, it is necessary

to estimate the channels H and G, and to configure the

optimized phase shifts at the RIS. More details on channel

estimation and RIS phase shifts configuration are provided in

Section III-D. Nevertheless, at this stage it is important to

stress that both channel estimation and resource optimization

can be performed either at the transmitter or at the receiver, but

not at the RIS. On the other hand, the RIS is interfaced with the

transmitter through a controller with minimal signal process-

ing, transmission/reception, and power storage capabilities.

The transmission/reception capabilities are needed in order

to receive the configuration signals from the transmitter. The

signal processing capabilities are needed in order to decode

the configuration signals and configure the phase shifts of the

RIS. The power storage capabilities are needed in order to

operate the electronic circuits (switches or varactors) that make

the surface reconfigurable. The controller is a key element to

ensure the dynamic reconfigurability of the RIS, as a function

of the propagation channel [11, Figure 4]. However, feeding

back the optimized phase matrix Φ to the RIS before the data

transmission phase, may introduce a non-negligible overhead

to the communication phase, especially for large N . Let us

denote by TF the duration of the feedback phase, which

depends on the power pF used during the feedback phase

and on the bandwidth BF of the feedback channel. Moreover,

let us denote by TE the duration of the channel estimation

phase prior to feedback and communication. Mathematical

expressions of TF and TE are provided in Section III-D. Then,

denoting by T the total duration of the time slot comprising

channel estimation, feedback, and data communication, the

system achievable rate and energy efficiency are expressed as

Rpp,B,pF ,BF ,Φ,q,wq “
ˆ
1 ´

TE ` TF

T

˙
B log

ˆ
1 `

p|wHGΦHq|2

BN0

˙
(1)

EEpp,B,pF ,BF ,Φ,q,wq “
Rpp,B, pF , BF ,Φ, q,wq

Ptotpp,B, pF , BF q
, (2)

wherein Ptot denotes the total power consumption in the whole

timeframe T , which is equal to

Ptotpp,B,pF ,BF q“PE`
pT ´TE´TF q

T
µp`

µF pFTF

T
`Pc ,

(3)

since a power p is used for T ´ TE ´ TF seconds, with

transmit amplifier efficiency 1{µ, a power pF is used for

TF seconds, with transmit amplifier efficiency 1{µF , while a

hardware static power Pc is consumed for the whole interval

T , and PE accounts for the energy consumption for channel
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estimation, which is further detailed in Section III-D. This

work optimizes the transmit and feedback powers and band-

widths p, pF , B,BF , the RIS matrix Φ, and the precoding and

decoding vectors q,w, in order to maximize the rate (1), the

energy efficiency (2), and derive the rate-energy Pareto-region.

III. OPTIMIZATION OF Φ, q, w

As a first step, let us fix p, pF , B,BF , and focus on opti-

mizing the RIS phase matrix Φ, the unit-norm beamforming

vector q, and the unit-norm decoding vector w. Since Φ, q,w

do not appear in the denominator of the energy efficiency, but

only in the numerator, which coincides with the system rate,

both rate and energy efficiency maximization are cast as

max
pΦ,q,wq:}q}“}w}“1, φnPr0,2πs, @n

|wHGΦHq|2 (4)

Denoting by λA,max the largest singular value of A, it holds

max
pw,qq : }w}“}q}“1

|wHAq|2 ď max
pw,qq : }w}“}q}“1

}w}2}Aq}2

ď max
q : }q}“1

}Aq}2 “ λ2
A,max, (5)

where we have used Cauchy-Schwarz inequality, the constraint

that }w} “ 1, and the fact that the maximum of }Aq} with

respect to the set of unit-norm vectors q is the spectral norm

of A, i.e. the largest singular value of A, [53, pag. 148]. Then,

for any A, the optimal q and w are the dominant right and left

eigenvector of A, since this achieves the upper-bound in (5).

However, optimally maximizing the largest singular value of

A “ GΦH with respect to Φ appears prohibitive. Moreover,

this would not yield any closed-form expression for Φ, q,

w, which hinders the analytical evaluation of the ultimate

performance of RIS-based networks. Thus, we propose two

closed-form approaches for optimizing an upper-bound or a

lower-bound of the objective of (4).

A. Optimizing an upper-bound of the objective of (4)

Let H “
řrH

j“1 µj,Huj,HvH
j,H , G “

řrG
i“1 µi,Gui,Gv

H
i,G be

the singular values decompositions (SVDs) of H and G, with

rH “ rankpHq, rG “ rankpGq. Then, it holds that

|wHGΦHq|2 “

ˇ̌
ˇ̌
ˇ
rGÿ

i“1

rHÿ

j“1

µi,Gµj,HwHui,Gv
H
i,GΦuj,HvH

j,Hq

ˇ̌
ˇ̌
ˇ

2

paq
ď

˜
rGÿ

i“1

rHÿ

j“1

µi,Gµj,H

ˇ̌
wHui,G

ˇ̌ˇ̌
vH
i,GΦuj,H

ˇ̌ˇ̌
vH
j,Hq

ˇ̌
¸2

pbq
ďrGrH

rGÿ

i“1

rHÿ

j“1

µ2
i,Gµ

2
j,H

ˇ̌
wHui,G

ˇ̌2 ˇ̌
vH
i,GΦuj,H

ˇ̌2 ˇ̌
vH
j,Hq

ˇ̌2
(6)

wherein Inequality paq is due to the triangle inequality, while

Inequality pbq is a special case of Cauchy-Schwarz inequality.2

In the following, we derive a closed-form solution for the

maximization of the bound in (6) with respect to Φ, w, q.

We start with the following lemma.

2Cauchy-Schwarz inequality states that p
řM

m“1 ambmq2 ď

p
řM

m“1 a
2
mqp

řM
m“1 b

2
mq, for any non-negative numbers tam, bmuMm“1.

Then, by taking bm “ 1 for all m, we obtain p
řM

m“1 amq2 ď M
řM

m“1 a
2
m

Lemma 1: Consider cj ě 0 and xj ě 0 for all j “ 1, . . . , J ,

with
řJ

j“1 xj ď 1. Then it holds that max
řJ

j“1 cjxj ď cj̄ ,

with j̄ such that cj̄ ě cj for all j “ 1, . . . , J .

Proof: Since cj̄ ě cj for all j “ 1, . . . , J , there exist non-

negative ǫ1, . . . ǫJ such that cj “ cj̄ ´ ǫj , for all j “ 1, . . . , J .

Then, the result is shown as follows

Jÿ

j“1

cjxj “cj̄xj̄ `
Jÿ

j‰j̄

pcj̄ ´ ǫjqxj “cj̄

Jÿ

j“1

xj ´
Jÿ

j“2

ǫjxj ď cj̄ .

The optimal Φ, q, w for the upper-bound in (6) are as follows.

Proposition 1: For any p,B, pF , BF , defining

j̄piq “ argmaxjµ
2
j,H

˜
Nÿ

n“1

ˇ̌
ˇvpnq

i,G

ˇ̌
ˇ
ˇ̌
ˇupnq

j,H

ˇ̌
ˇ
¸2

,@i“1, . . . , rG (7)

ī “ argmaxi µ
2
i,Gµ

2
j̄piq,H

˜
Nÿ

n“1

ˇ̌
ˇvpnq

i,G

ˇ̌
ˇ
ˇ̌
ˇupnq

j̄piq,H

ˇ̌
ˇ
¸2

(8)

the global maximizer of the upper-bound in (6) is obtained by

setting q “ vj̄p̄iq,H , w “ uī,G, and φn “ ´=

!
v

˚pnq

ī,G
u

pnq

j̄p̄iq,H

)
,

with p˚q denoting complex conjugate.

Proof: Neglecting the inessential factors rGrH , we ob-

serve that
rGÿ

i“1

rHÿ

j“1

µ2
i,Gµ

2
j,H

ˇ̌
wHui,G

ˇ̌2 ˇ̌
vH
i,GΦuj,H

ˇ̌2 ˇ̌
vH
j,Hq

ˇ̌2
(9)

ď
rGÿ

i“1

µ2
i,G|wHui,G|2

rHÿ

j“1

µ2
j,Hmax

Φ

 
|vH

i,GΦuj,H |2
(

|vH
j,Hq|2

loooooooooooooooooooooomoooooooooooooooooooooon
yi

wherein the inequality follows upon taking the maximum over

Φ. Next, for any i “ 1, . . . , rG, the term yi defined in the last

line of (9) can be upper-bounded as

yi “
rHÿ

j“1

µ2
j,H max

Φ

 
|vH

i,GΦuj,H |2
(

|vH
j,Hq|2

paq
ď µ2

j̄piq,H max
Φ

 
|vH

i,GΦuj̄piq,H |2
(

pbq
“ µ2

j̄piq,H

˜
Nÿ

n“1

ˇ̌
ˇvpnq

i,G

ˇ̌
ˇ
ˇ̌
ˇupnq

j̄piq,H

ˇ̌
ˇ
¸2

, (10)

wherein (b) follows because, for any i “ 1, . . . , rG, the

optimal Φ is the one that compensates the phase shifts between

the components of vH
i,G and of uj̄piq, while (a) follows from

Lemma 1 because
řrH

j“1 |vH
j,Hq|2 ď }q}2 “ 1, since, for all

j “ 1, . . . , rH , vH
j,Hq is the projection of the unit-norm vector

q onto the unit-norm vector vj,H . Plugging (10) into (9), yields

|wHGΦHq|2 ď
rGÿ

i“1

µ2
i,Gµ

2
j̄piq,H

˜
Nÿ

n“1

ˇ̌
ˇvpnq

i,G

ˇ̌
ˇ
ˇ̌
ˇupnq

j̄piq,H

ˇ̌
ˇ
¸2

|wHui,G|2

ď µ2
ī,Gµ

2
j̄p̄iq,H

˜
Nÿ

n“1

ˇ̌
ˇvpnq

ī,G

ˇ̌
ˇ
ˇ̌
ˇupnq

j̄p̄iq,H

ˇ̌
ˇ
¸2

(11)

wherein the last inequality holds by Lemma 1. Finally, the

result follows since all inequalities hold with equality upon
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choosing Φ, q,w as in the thesis of the proposition.

B. Optimizing a lower-bound of the objective of (4)

Define gw “ GHw, hq “ Hq, and observe that, for any

fixed q and w, the optimal Φ for Problem (4) is such that

φn “ ´=tg˚
wpnqhqpnqu, for all n “ 1, . . . , N . Next, denoting

by hT
n P R1ˆN and gn P RNˆ1 the n-th row of H and the

n-th column of G, respectively, with n “ 1, . . . , N , it holds

that gwpnq “ wHgn and hqpnq “ hT
nq. Then, we obtain

max
q,w,Φ

|wHGΦHq|2 “max
q,w

ˆ
max
Φ

|gH
wΦhq|2

˙
paq
“ (12)

max
q,w

˜
Nÿ

n“1

|wHgnh
T
nq|

2̧
pbq
ě max

q,w

ˇ̌
ˇ̌
ˇw

H

˜
Nÿ

n“1

gnh
T
n

¸
q

ˇ̌
ˇ̌
ˇ

2

where paq follows by using the maximizer with respect to Φ,

i.e. φn “ ´=tg˚
wpnqhqpnqu, and pbq is due to the triangle

inequality. Then, by similar steps as those that led to (5), the

final maximization is obtained when q,w are the dominant

right and left eigenvector of
řN

n“1 gnh
T
n .

C. Tackling (4) by alternating maximization

As a benchmark solution, let us maximize |wHGΦHq|2

by alternatively optimizing Φ, for fixed w, q, and then w, q,

for fixed Φ. For fixed Φ, the optimal w and q are derived

as the dominant left and right eigenvectors of the matrix

A “ GΦH , as shown in (5). Instead, for fixed w and q,

the problem amounts to maximizing gH
wΦhq , which yields

φn “ ´=tg˚
wpnqhqpnqu, for all n, as shown in Section III-B.

Thus, alternating maximization leads to Algorithm 1.

Algorithm 1 Alternating optimization of Φ, q,w

Initialize w and q to feasible values.

repeat
gw “ GHw and hq “ Hq; set φn “ ´=tg˚

wpnqhqpnqu
for all n “ 1, . . . , N ; A “ GΦH;
Set w and q as the left and right dominant

eigenvectors of A;
until Convergence

D. Overhead modeling

This section derives a mathematical expression for TF , TE ,

PE . Without loss of generality, we assume that channel estima-

tion and resource optimization takes place at the transmitter.3

As for TF , after resource optimization, the transmitter sends

a control signal to the RIS to configure the phase shifts.4

Denoting by hF the scalar feedback channel from the RIS to

the transmitter, it holds that TF “ NbF

BF log

´
1`

pF |hF |2

N0BF

¯ , with bF

the number of feedback bits for each reflecting element of the

RIS and N0 the noise power spectral density. As anticipated,

3A similar argument would hold in the case in which channel estimation
and resource optimization took place at the receiver.

4Here we neglect the feedback of the receive filter w to the receiver,
because, first it is negligible with respect to the feedback of the RIS phase
shifts, since typically N ąą NR, and, second, because the focus of this
work is on the RIS and on evaluating the feedback required to operate it.

TF depends on pF , BF , which complicates the mathematical

structure of the rate in (1) and the energy efficiency in (2),

complicating the optimization of these two metrics, and of

their trade-off, with respect to p, pF , B,BF . The optimization

of p, pF , B,BF for the maximization of the rate, the energy

efficiency, and their trade-off is addressed in Section IV.

As for TE , it is affected by the specific channel estimation

protocol in use. As an example, we consider that the pilot

tones are sent by the receiver to the transmitter, but a similar

analysis applies to the case in wich the transmitter send pilot

tones to the receiver. Moreover, we consider that, during the

estimation phase, the RIS does not apply any phase shift, i.e.

φn “ 0 for all n “ 1, . . . , N , [54]. In the following, two

different channel estimation protocols are considered:

(a) Let us consider the simple case in which the receiver

sends pilot tones sequentially, one after the other, to the

transmitter, through the RIS. Thus, the NNTNR product

channels hnt,ngn,nr are estimated sequentially, with hnt,n

denoting the channel from the nt-th transmit antenna to

the n-th RIS elements, and gn,nr denoting the channel

from the n-th RIS element to the nr-th receive antenna.

Moreover, one additional pilot tone is required for the

transmitter to estimate the feedback channel. Therefore,

denoting by T0 the duration of each pilot tone, it holds

TE “ pNTNNR ` 1qT0. It should be remarked that the

knowledge of the product channels hnt,ngn,nr is enough

to reconstruct the matrix A in (5) and, therefore, to

optimally solve (4) with respect to the phase shifts of

the RIS, the beamforming vector, and the receive filter.

Finally, the energy consumption for channel estimation

can be modeled as PE “ P0p1`NNTNRqT0{T , with P0

the power of each pilot tone. In particular, the overhead

needed for channel estimation is estimated based on

the channel state information needed to optimally solve

(4). However, our algorithms work also with recently

proposed channel estimation algorithms, e.g., [54].

(b) The case in which the receiver transmits NR orthogonal

pilots in parallel, which are jointly processed at the

transmitter. Then, for all nr “ 1, . . . , NR, the pilot

from the nr-th antenna of the receiver allows estimating

the product channels gn,nrhnt,n, for all n “ 1, . . . , N

and nt “ 1, . . . , NT . Thus, in this case it holds TE “
pN ` 1qT0, since all pilots are transmitted at the same

time. On the other hand, PE “ pNNR ` 1qP0T0{T ,

because the NR pilots are transmitted at the same time,

each with power NP0.

Thus, based on the expressions of TF and TE , the power

consumption in (3) becomes

Ptot “ PE `
bFNpµF pF ´ µpq

TBF log

´
1 ` pF |hF |2

BFN0

¯ `µp

ˆ
1 ´

TE

T

˙
`Pc .

IV. OPTIMIZATION OF p, pF , B,BF .

After optimizing Φ, q,w by any of the methods developed

in Section III, we are left with the problem of optimizing the

transmit powers p, pF , and the bandwidths B,BF . It should be

stressed that, as already mentioned, the optimized Φ, q,w that
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are obtained from any of the algorithms developed in Section

III, do not depend on any of the variables p, pF , B,BF ,

but only on the channels H and G. Moreover, as already

mentioned, the optimized Φ, q,w are the same for both the

rate and the energy efficiency. Thus, it is possible to simply

plug in the optimized Φ, q,w into the objective to maximize,

thus effectively decoupling the optimization of p, pF , B,BF

from the optimization of Φ, q,w. On the other hand, unlike

Φ, q,w, the optimization of p, pF , B,BF depends on whether

the goal is optimizing the rate, the energy efficiency, or their

trade-off. Therefore, these problems are treated separately.

A. Rate maximization

The rate maximization problem is stated as the following

optimization program

max
p,B,pF ,BF

Rpp,B, pF , BF ,Φopt, qopt,woptq (13a)

s.t. p ` pF ď Pmax , B ` BF ď Bmax (13b)

p ě 0 , pF ě 0 , B ě 0 , BF ě 0 (13c)

bFN

TBF log

´
1 ` pF |hF |2

BFN0

¯ ď 1 ´
TE

T
, (13d)

Expressing (13a) as a function of the optimization variables

p, pF , B,BF yields

Rpp,B, pF , BF q “

¨
˝β ´

d

BF log

´
1 ` pF |hF |2

N0BF

¯

˛
‚ˆ

B log

˜
1 `

p|wH
optGΦoptHqopt|

2

BN0

¸
, (14)

wherein β “ 1 ´ TE{T and d “ bFN{T . Thus, being the

product of two functions, the objective of (13) is not jointly

concave in all optimization variables, which makes Problem

(13) challenging to solve with affordable complexity. Indeed,

the product of functions is in general not concave even in

the simple case in which the individual factors are concave.

Moreover, in the case at hand, the concavity of the two

factors defining (14) is not clear, either. Thus, in order to

solve (13), it is not possible to directly use standard convex

optimization algorithms. In the rest of this section we show

that it is possible to reformulate Problem (13) into a convex

optimization problem without any loss of optimality. To this

end, some preliminary lemmas are needed.

Lemma 2: The function Rpp,B, pF , BF q is jointly increas-

ing and jointly concave in pp,Bq.

Proof: Neglecting inessential constant terms (with respect

to p and B), and defining

c “
|wH

optGΦoptHqopt|
2

N0

, (15)

Eq. (13a) is equivalent to the function g1pp,Bq “
B log

`
1 ` pc

B

˘
, which is the perspective of the concave func-

tion log p1 ` pcq [55]. Thus, since the perspective operator

preserves concavity, g1 is jointly concave in pp,Bq. Moreover,

g1 is clearly increasing in p, while inspecting the derivative of

g1 with respect to B, and exploiting that p1`yq logp1`yq ě y

for any y ě 0, shows that g1 is increasing in B.

Lemma 3: The function Rpp,B, pF , BF q is jointly increas-

ing and jointly concave in ppF , BF q.

Proof: Neglecting inessential constant terms (with re-

spect to pF and BF ), it can be seen that, upon defining

a “ |hF |2{N0, the function in (13a) is equivalent to

β ´
d

BF log

´
1 ` a pF

BF

¯ . (16)

Showing the joint concavity of (16) with respect to ppF , BF q
is equivalent to showing that the function g2ppF , BF q “

1

BF log

´
1`a

pF
BF

¯ “ 1
zppF ,BF q , is jointly convex in ppF , BF q.

After some elaborations, the Hessian matrix of g2 is written

as given in (17), shown at the top of the next page, wherein

z
1

BF
ppF , BF q “ log

´
1 ` a pF

BF

¯
´ apF

BF `apF
is the first-order

derivative of z with respect to BF . Clearly, the entry p1, 1q
of H is non-negative. Thus, H is positive semi-definite if its

determinant is non-negative. Then, since the second derivative

of z with respect to BF can be written as

z
2

BF
ppF , BF q “ ´

ap2F
BF pBF ` apF q2

, (18)

after some elaborations, enforcing that the Hessian

of H is non-negative leads to the condition

pBF ` apF q2pz
1

ppF , BF qq2 ` 2a2p2F ` 2apF z
1

ppF , BF q ě 0.

This holds if z
1

ppF , BF q ě 0, which is true by virtue of the

inequality p1 ` yq logp1 ` yq ě y. Moreover, z
1

ppF , BF q ě 0

implies that zppF , BF q is increasing in BF , while it is clearly

increasing in pF .

Leveraging Lemmas 2 and 3, it is possible to equivalently

reformulate Problem (13) into a convex problem, which can

then be efficiently solved by means of any convex optimization

method. To this end, the first step is to observe that taking

the logarithm of the objective in (13a) does not change the

optimal solutions of (13a), since the logarithm is an increasing

function. Then, an equivalent reformulation of (13a) is the

following problem

max
p,B,pF ,BF

logpβ ´ dg2ppF , BF qq ` logpg1pp,Bqq (19a)

s.t. p ` pF ď Pmax;B ` BF ď Bmax (19b)

p ě 0 , pF ě 0;B ě 0 , BF ě 0 (19c)

d

BF log

´
1 ` pF |hF |2

BFN0

¯ ď β , (19d)

which is a convex optimization problem by virtue of Lemmas

2 and 3. Indeed, (19a) is a concave function since Lemmas

2 and 3 ensure that both summands are concave. Also, all

the constraints in (19b)-(19c) are linear, while (19d) is convex

thanks to Lemma 3. Thus, Problem (19) is a convex problem

with the same set of solutions as Problem (13), but the

advantage that it can be solved by convex optimization theory.

Finally, in order to further simplify the solution of (19), we

observe that the optimal solution of (19) is such that (19b)

and (19c) must be fulfilled with equality, since the objective

function is increasing in all arguments and (19d) is decreasing

in both BF and pF . Thus, Problem (19) can be reformulated,
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H “
1

pBF ` apF q2z3ppF , BF q
ˆ (17)

«
a2BF zppF , BF q ` 2a2B2

F ´a2pF zppF , BF q ` 2aBF pBF ` apF qz
1

BF
ppF , BF q

´a2pF zppF , BF q ` 2aBF pBF ` apF qz
1

BF
ppF , BF q

a2p2F
BF

zppF , BF q ` 2pBF ` apF q2
´
z

1

BF
ppF , BF q

¯2

ff

da

pBF `apPmax´pqq
´
βBF log

´
1`a

pPmax́ pq
BF

¯
´d

¯´
logp1`pPmax´pq a

BF
q
¯ “

c

pB`pcq log
`
1` pc

B

˘ . (22)

without loss of optimality, as

max
p,B

logpβ ´ dg2pPmax ´ p,Bmax ´ Bqq ` logpg1pp,Bqq

(20a)

s.t. 0 ď p ď Pmax , 0 ď B ď Bmax (20b)

d

pBmax ´ Bq log
´
1 ` pPmax´pq|hF |2

pBmax´BqN0

¯ ď β , (20c)

which has only two optimization variables. Upon solving (20),

the optimal feedback power and bandwidth are retrieved as

pF “ Pmax ´ p and BF “ Bmax ´ B. Problem (20)

is clearly still a convex problem, since it is obtained from

the convex Problem (19) upon applying the linear variable

transformations pF “ Pmax ´ p and BF “ Bmax ´ B, and

linear transformations are well-known to preserve convexity.

Finally, after developing a method for solving (20) with

affordable complexity, in the last part of this section we focus

on obtaining closed-form solutions for the special cases of

Problem (20) obtained by considering the optimization of the

transmit powers for fixed bandwidths and vice-versa. Closed-

form solutions can be obtained as follows.

1) Optimization for fixed B and BF : Fixing B and BF ,

Problem (20) reduces to

max
p

logpβ ´ dg2pPmax ´ p,BF qq ` logpg1pp,Bqq (21a)

s.t. 0 ď p ď Pmax ´
BFN0

|hF |2

´
e

d
BF β ´ 1

¯
. (21b)

Proposition 2: Let p̄ be the unique stationary point of

(21a). Then, Problem (21) has a unique solution given by

p˚ “ minpp̄, Pmax ´ pminq, with p̄ the unique solution of

Eq. (22), shown at the top of this page.

Proof: Equating the first-order derivative of (21a) to zero

yields (22), which has always a solution, since the left-hand-

side is decreasing in p and tending to 8 for p Ñ 0`, while

the right-hand-side is increasing in p, being finite at p “ 0 and

tending to 8 for p Ñ Pmax. Then, (21a) has a unique solution

p̄, since (21a) is a strictly concave function in p, as it is the sum

of concave functions and logpg1pp,Bqq is strictly concave in

p. Finally, (22) shows that (21a) is strictly increasing for p ă p̄

and strictly decreasing for p ą p̄. Thus, we can conclude that

the unique solution of Problem (21) is either p̄, if p̄ ď Pmax,

or it is Pmax itself.

Finally, it holds p˚
F “ Pmax ´ p˚.

2) Optimization for fixed p and pF : Fixing p and pF ,

Problem (20) reduces to

max
B,BF

logpβ ´ dg2pBmax ´ B, pF qq ` logpg1pp,Bqq (23a)

s.t. 0 ď B ď Bmax ´ pB , (23b)

with pB the unique5 value of B that fulfills the following

inequality with equality

pBmax ´ Bq log

ˆ
1 `

pF |hF |2

N0pBmax ´ Bq

˙
ě

d

β
. (24)

Proposition 3: Problem (23) has a unique solution given by

B˚ “ minpB̄, Bmax ´ pBq, with B̄ the unique stationary point

of (23a).

Proof: The proof is similar to Proposition 2. The objective

(23a) is strictly concave, has a unique stationary point B̄ given

by the solution of the stationarity condition in Eq. (25), shown

at the top of next page, and is strictly increasing for B ă B̄

and strictly decreasing for B̄ ą B̄.

Finally, it holds B˚
F “ Bmax ´ B˚.

B. Energy efficiency optimization

Plugging again any of the allocations of Φ, q,w developed

in Section III into the energy efficiency function, leads us to

the following problem to solve

max
p,B,pF ,BF

Rpp,B,pF ,BF ,Φ
opt,qopt,woptq

Ptotpp,pF ,BF q
(26a)

s.t. p ` pF ď Pmax , B ` BF ď Bmax (26b)

p ě 0 , pF ě 0 , B ě 0 , BF ě 0 (26c)

d

BF log

´
1 ` pF |hF |2

BFN0

¯ ď β . (26d)

It should be stressed that, in order to solve (26), it is not possi-

ble to employ the same approach used for rate maximization,

because the presence of the denominator makes the logarithm

of (26a) not jointly concave in all optimization variables.

Moreover, standard fractional programming algorithms are not

directly applicable since they have limited complexity only

when the numerator and the denominator of the objective

to maximize are concave and convex functions, respectively.

Unfortunately, in (26), neither the concavity of the numerator,

5The uniqueness holds because the function at the left-hand-side is strictly
decreasing, as it immediately follows from previous results.
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log
`
1 ` cp

B

˘
´ cp

B`cp

B log
`
1 ` cp

B

˘ “

´
log

´
1 ` apF

Bmax´B

¯
´ apF

Bmax´B`apF

¯
d

´
β pBmax ´ Bq log

´
1 ` apF

Bmax´B

¯
´ d

¯
pBmax ´ Bq log

´
1 ` apF

Bmax´B

¯ , (25)

nor the convexity of the denominator hold. Finally, a third

issue that makes (26) more challenging than the rate opti-

mization problem is that, unlike the rate function, (26a) is not

monotonically increasing in either p or pF , and so it can not

be guaranteed that, at the optimum, it holds p ` pF “ Pmax.

On the other hand, (26a) is increasing in B and BF , since, as

shown in Section IV, the numerator is increasing in B and BF ,

while the denominator depends only on BF and decreases with

BF . Thus, at the optimum B`BF “ Bmax holds. Exploiting

this and defining

y “ pBmax ´ Bq log

ˆ
1 `

pF |hF |2

pBmax ´ BqN0

˙
, (27)

(26) can be cast as

max
p,B,pF ,y

pβ ´ d
y

qB log
`
1 ` pc

B

˘

βµp ` Pc ` d
y

pµF pF ´ µpq
(28a)

s.t. p ` pF ď Pmax (28b)

0 ď B ď Bmax , p ě 0 , pF ě 0 (28c)

y “ pBmax ´ Bq log

ˆ
1 `

pF |hF |2

pBmax ´ BqN0

˙
, y ě

d

β
(28d)

wherein Pc “ NPc,n`Pc,0`PE , and c is given in (15). Next,

we also consider a relaxed version of (28) in which (28d) is

reformulated into an inequality constraint, namely

max
p,B,pF ,y

pβ ´ d
y

qB log
`
1 ` pc

B

˘

βµp ` Pc ` d
y

pµF pF ´ µpq
(29a)

s.t. p ` pF ď Pmax (29b)

0 ď B ď Bmax , p ě 0 , pF ě 0 (29c)

y ď pBmax ´ Bq log

ˆ
1 `

pF |hF |2

pBmax ´ BqN0

˙
, y ě

d

β
(29d)

which, unlike (28), has a convex feasibility set, thanks to the

fact that the first constraint in (28d) is an inequality constraint

wherein the right-hand-side is a concave function. An impor-

tant result is that, as shown in the coming proposition, (28)

and (29) are equivalent problems.

Proposition 4: Problem (28) and (29) have the same set of

optimal solutions.

Proof: The result follows by showing that any op-

timal solution of (29) is such that y “ pBmax ´

Bq log
´
1 ` pF |hF |2

pBmax´BqN0

¯
. To this end, let us observe that

(29a) is monotonically increasing in y. Indeed, by divid-

ing numerator and denominator by pβ ´ d
y

q, (29a) can be

equivalently expressed as
B logp1` pc

B q
µp` Pcy

βy´d
`

dµF pF
βy´d

, which is strictly

increasing in y. Based on this, the result follows proceeding

by contradiction. Specifically, if ȳ were a solution of (29), but

y ă pBmax ´ Bq log
´
1 ` pF |hF |2

pBmax´BqN0

¯
, then it would be

possible to find a feasible y˚ ą ȳ. Since (29a) is increasing

in y, y˚ would yield a larger objective value than ȳ, thus

contradicting the fact ȳ is a solution of (29).

Despite having a convex feasibility set, Problem (29) is still

challenging to solve, since the numerator and denominator

of (29a) are not concave and convex functions, respectively,

which prevents one from using fractional programming tech-

niques. However, recalling Lemma 2, fractional programming

can be used if y is fixed. More precisely, for any fixed y,

Problem (29) is an instance of a so-called pseudo-concave

maximization problem, in which the fraction to maximize has

a concave numerator and an affine denominator, and thus can

be solved with limited complexity by any fractional program-

ming method, such as the popular Dinkelbach’s method [56].

Moreover, from (29d), it must hold that

y P

„
d

β
,Bmax log

ˆ
1 `

Pmax|hF |2

BmaxN0

˙
. (30)

Based on these considerations, Problem (29d) can be solved by

performing a line search over y in the interval given by (30),

and solving, for each considered value ỹ, the corresponding

pseudo-concave maximization problem as follows

max
p,B,pF

pβ ´ d
ỹ

qB log
`
1 ` pc

B

˘

βµp ` Pc ` d
ỹ

pµF pF ´ µpq
(31a)

s.t. p ` pF ď Pmax , 0 ď B ď Bmax (31b)

p ě 0 , pF ě 0 (31c)

pBmax ´ Bq log

ˆ
1 `

pF |hF |2

pBmax ´ BqN0

˙
ě ỹ (31d)

Thus we have Algorithm 2, wherein EEm denotes the value

of (31a) obtained at the m-th iteration.

Algorithm 2 EE Maximization

Set M ą 0 and compute

∆ “
Bmax log

´
1 ` Pmax|hF |2

BmaxN0

¯
´ d

β

M
(32)

for m “ 1, . . . ,M do
ỹm “ d

β
` pm ´ 1q∆;

Solve (31) and compute EEmpp˚
m, p˚

m,F , B
˚
m, ỹmq

end for
Compute m˚ “ argmax EEm;
Output p˚

m˚ , p
˚
m˚,F

, B˚
m˚ , B

˚
m˚,F

“ Bmax ´ B˚
m˚ ;

C. Rate-EE optimization

This section focuses on characterizing the rate-energy

Pareto-optimal frontier of the bi-objective problem that has

as objectives the system rate and the energy efficiency.
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To begin with, since Φ, q,w affect only the numerator of

the energy efficiency, which coincides with the rate, we can

plug any of the allocations of Φ, q,w developed in Section III

into the rate and the energy efficiency functions, which yields

max
p,pF ,B

 
Rpp, pF , B,Φopt, qopt,woptq, (33a)

EEpp, pF , B,Φopt, qopt,woptq
(

s.t. p ` pF ďPmax , 0ďBďBmax, p ě 0 , pF ě 0 (33b)

d

pBmax ´ Bq log
´
1 ` pF |hF |2

pBmax´BqN0

¯ ď β , (33c)

where we have already exploited the fact that at the optimum

it must hold B ` BF “ Bmax. With respect to the other

variables, on the other hand, the rate and energy efficiency

are in general maximized by different resource allocations.

Clearly, this is the scenario in which Problem (33) is of

interest, because otherwise no trade-off would exist between

the two functions, and the solution of Problem (33) would be

trivially equal to the common maximizer of the rate and of

the energy efficiency.

The most widely-used solution concept for bi-objective

problems like (33) is that of Pareto-optimality. A Pareto-

optimal solution of (33a) is a point lying on the so-called

Pareto-frontier of the problem, defined as the set of resource

allocations for which it is not possible to further increase

either one of the two objectives, without decreasing the other

objective. To elaborate further, let us denote by Ropt and EEopt

the maximum rate and energy efficiency that can be computed

as shown in Sections IV-A and IV-B, respectively. Then, we

also denote by REEopt
the rate obtained with the resource

allocation that maximizes the energy efficiency, and by EERopt

the energy efficiency obtained with the resource allocation that

maximizes the rate. Then, it follows that the extreme points

of the Pareto-frontier in the R ´ EE plane are pRopt,EERopt
q

and pREEopt
,EEoptq. As expected, this also shows that the

Pareto-frontier degenerates into a single point when the rate

and the energy efficiency admit the same maximizer. Instead,

in general a non-trivial Pareto-frontier exists for (33), which

provides all optimal trade-off points between the rate and the

energy efficiency. Focusing on this scenario, multi-objective

optimization theory provides several approaches to compute

all Pareto-optimal points of a multi-objective problem. One

of the most widely-used methods is the maximization of the

minimum between a weighted combination of the objectives.

As for Problem (33), introducing the auxiliary variable y

defined in (27), the max-min approach leads to the problem:

max
p,pF ,B,y

min

#
α
`
Rpp, y, B,Φopt,qopt,woptq´Ropt

˘
, (34a)

p1´αq

˜
Rpp, y, B,Φopt,qopt,woptq

βµp ` Pc ` d
y

pµF pF ´ µpq
´EEopt

¸+

s.t. p ` pF ďPmax , 0ďBďBmax , pě 0 , pF ě 0 (34b)

d

β
ďyďpBmax ´ Bq log

ˆ
1`

pF |hF |2

pBmax´BqN0

˙
(34c)

wherein we have plugged in the expression of the en-

ergy efficiency, with Rpp, y, B,Φopt, qopt,woptq “ pβ ´
d
y

qB log
`
1 ` pc

B

˘
, α is a non-negative parameters that weighs

the relative importance between the rate and the energy effi-

ciency, while Ropt and EEopt are the maximum of the rate and

of the energy efficiency, respectively. For any α P p0, 1q, (34)

has at least one solution that is Pareto-optimal for (34) [57,

Theorem 3.4.3], and solving (34) for all α P p0, 1q yields all

the points on the Pareto-frontier of (33) [57, Theorem 3.4.5].

Also, the two extreme points α “ 1 and α “ 0 correspond to

the single-objective maximization of the rate and of the energy

efficiency. In order to solve (34), we consider its equivalent

reformulation in epigraph form, namely

max
p,pF ,B,y,t

t (35a)

s.t. p ` pF ď Pmax (35b)

0 ď B ď Bmax , p ě 0 , pF ě 0 (35c)

d

β
ďyďpBmax ´ Bq log

ˆ
1 `

pF |hF |2

pBmax ´ BqN0

˙
(35d)

ˆ
β ´

d

y

˙
B log

´
1 `

pc

B

¯
ě

t

α
` Ropt (35e)

ˆ
β ´

d

y

˙
B log

´
1 `

pc

B

¯
ě

ˆ
t

1´α
`EEopt

˙
ˆ

ˆ
βµp ` Pc`

d

y
pµF pF ´µpq

˙
(35f)

Solving (34) is challenging due to the presence of the variable

y. However, for any fixed y, (34) can be conveniently solved by

employing the bisection algorithm over t, since all constraint

functions are convex in all other variables. Specifically, observ-

ing that y must lie in the interval defined by (30), Problem

(35) can be solved by performing a line search over y, solving

in each iteration the following problem with y “ ỹ lying in in

the interval defined by (30):

max
p,pF ,B,t

t (36a)

s.t. p ` pF ď Pmax (36b)

0 ď B ď Bmax , p ě 0 , pF ě 0 (36c)

pBmax ´ Bq log

ˆ
1 `

pF |hF |2

pBmax ´ BqN0

˙
ě ỹ (36d)

ˆ
β ´

d

ỹ

˙
B log

´
1 `

pc

B

¯
ě

t

α
` Ropt (36e)

ˆ
β ´

d

ỹ

˙
B log

´
1 `

pc

B

¯
ě

ˆ
t

1´α
`EEopt

˙
ˆ

ˆ
βµp ` Pc`

d

ỹ
pµF pF ´µpq

˙
(36f)

Problem (34) can be solved similarly as in Algorithm 2.

Formally, this yields Algorithm 3.

V. OPTIMALITY PROPERTIES AND COMPUTATIONAL

COMPLEXITY

This section analyzes the properties and complexity of the

proposed optimization algorithms. The algorithms developed

in Sections III-A and III-B are discussed in Section V-A, while

those developed in Section IV are discussed in Section V-B.
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Algorithm 3 Rate-EE Maximization

Set M ą 0 and compute ∆ “
Bmax log

ˆ
1`

Pmax |hF |2

BmaxN0

˙
´ d

β

M

for m “ 1, . . . ,M do
ỹm “ d

β
` pm ´ 1q∆;

Solve (36) by bisection over t and compute

Fm “min

#
α
`
Rpp˚

, p
˚
F, B

˚
,Φ

opt
,q

opt
,w

opt
, q´Ropt

˘
, (37)

p1´αq
`
EEpp˚

, p
˚
F, B

˚
,Φ

opt
,q

opt
,w

optq´EEopt

˘
+

end for
Compute m˚ “ argmax Fm;
Output p˚

m˚ , p
˚
m˚,F

, B˚
m˚ , B˚

m˚,F
“ Bmax ´ B˚

m˚ ;

A. Algorithms for the optimization of Φ, q, w

The algorithms for the optimization of the RIS phase shifts,

the transmit beamforming, and the receive vector introduced

in Sections III-A and III-B are based on the use of upper

and lower bounds of the receive signal-to-interference-plus-

noise ratio (SINR). As a result, in general they are not

globally optimal. Nevertheless, they achieve global optimality

whenever the rank of H and G are equal to one. Indeed, in

this case both the upper-bound in Section III-A and the lower-

bound in Section III-B are tight, because when rG “ rH “ 1,

the vectors q and w reduce to scalars. The case of rank-one

channles includes two notable special cases:

‚ The case in which a single-antenna is used at the transmit

and receive side.

‚ The use of mmWave communications, which, in many

cases, leads to rank-one channels as all energy is focused

in a pencil-beam transmission.

In general, as we have explained at the beginning of Section

III, jointly optimizing Φ, q, and w in a globally optimal way is

computationally prohibitive due to the lack of a tractable and

closed-form expression for the dominant singular value of the

matrix A “ GΦH . As a result, the global joint optimization

of Φ, q, and w would require an exhaustive search in an

NNTNR-dimensional space. This justifies the use of possibly

sub-optimal optimization methods, among which the state-

of-the-art approach is the alternating optimization algorithm

reviewed in Section III-C. Here, we show that the two novel

approaches developed in Sections III-A and III-B require a

lower computational complexity than alternating optimization.

To elaborate, alternating optimization is an iterative ap-

proach, which requires to compute, in each iteration of the

algorithm, the SVD of the matrix GΦH , as well as the vectors

gw “ GHw and hq “ Hq to set the RIS phase shifts to

φn “ ´=tg˚
wpnqhqpnqu, for all n “ 1, . . . , N . Thus, if Nit

is the number of iterations until the alternating optimizations

converges, the above operations are to be executed Nit times.

Instead, the advantage of our proposed methods is that they are

not iterative, but are based on closed-form optimization results.

Specifically, both methods from Sections III-A and III-B re-

quire the computation of a single SVD and a single RIS phase

adjustment of the form φn “ ´=tg˚
wpnqhqpnqu. In addition,

Pmax{Pc,0{Pc,n Bmax N0 µ{µF bF
45 / 45 / 10 dBm 100 MHz -174 dBm/Hz 1 / 1 16 bit

TABLE I: Network parameters

the method developed in Section III-A requires two argmaxp¨q
searches over finite sets of size rG and rH , respectively, while

the method developed in Section III-B requires computing the

matrix
řN

n“1 gnh
T
n . Again, all of these additional operations

are to be executed only once, and their complexity is negligible

compared to that of performing an SVD. In summary, since

the proposed algorithms are not iterative, but are based on

closed-form optimization expressions, they reduce the com-

plexity compared to alternating optimization by a factor Nit.

Moreover, Section VI will numerically show that the proposed

methods perform very close to alternating optimization.

B. Algorithms for the optimization of p, pF , B, BF

All algorithms developed for the optimization of the trans-

mit and feedback power and bandwidths are globally optimal

and require a limited computational complexity. Specifically:

‚ Rate optimization has been recast as a concave maxi-

mization, which is optimally solvable with polynomial

complexity in the number of optimization variables [55].

‚ The energy efficiency maximization problem has been

reformulated as a pseudo-concave maximization problem

upon fixing the value of the auxiliary variable y. Thus, en-

ergy efficiency maximization can be optimally performed

by a scalar line search over y and by solving a pseudo-

concave maximization problem for each considered value

of y. Recalling that polynomial complexity algorithms

exist to solve pseudo-concave maximizations [58], the

complexity of energy efficiency maximization is polyno-

mial in the number of optimization variables, and linear

in the number of points M used for the line search.

‚ The bi-objective problem of rate and energy efficiency

maximization has been reformulated as the feasibility test

in (35), that can be optimally solved by a sequence of fea-

sibility tests of the form of Problem (36), which become

convex when fixing the variable y. Thus, the complexity

of rate and energy efficiency bi-objective maximization is

polynomial in the number of optimization variables, and

linear in the number of points M used for the line search.

Moreover, the optimal parameter t is determined by a

bisection search, which requires solving (36) log2
P
U´L

ǫ

T

times, with U and L the initialization of the bisection

method, and ǫ the accuracy of the bisection search [55].

VI. NUMERICAL RESULTS

Consider the system model described in Section II, with

system parameters set as in Table I. For all nt “ 1, . . . , NT ,

nr “ 1, . . . , NR, n “ 1, . . . , N , each product channel is

generated as hnt,ngn,nr “
αhαg?

β
, wherein αh and αg are

realizations of two independent complex circularly symmetric

standard Gaussian variable, while β accounts for the overall

path-loss and shadowing effects from the transmitter to the
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RIS and from the RIS to the receiver6. In our simulations, we

set β “ 100.1˚βdB , with βdB “ 110. A similar model is used

for the feedback channel hF .

Figs. 2-9 assume that the overhead model from Section

III-D, Case (a), is employed. Figure 2 plots the maximum rate

in (1) (normalized by Bmax) versus N , with NT “ NR “ 1,

T0 “ 0.8µs (Fig. 2-a), and T0 “ 0.15µs (Fig. 2-b), for:

(a) p, pF , B,BF obtained from the optimal method from

Section IV, with Φ “ IN , and q, w chosen as the

dominant right and left eigenvectors of A “ HΦG.

Thus, the RIS simply reflects the signal without any

phase manipulation. It is worth noting that in this case

there is no need to configure the phase shifts of the RIS,

and, therefore, the total overhead is much reduced. In

particular, the numerical results that correspond to this

case are obtained by setting TF “ 0 and TE “ NTNRT0.

(b) p, pF , B,BF obtained from the optimal method from

Section IV and Φup, qup,wup obtained from the max-

imization of the upper-bound derived in Section III-A.

(c) p, pF , B,BF obtained from the optimal method from

Section IV and Φlow, qlow,wlow obtained from the max-

imization of the lower-bound derived in Section III-B.

(d) p, pF , B,BF obtained from the optimal method from

Section IV, and Φalt, qalt,walt obtained from the alter-

nating maximization Algorithm 1 in Section III-C.

The results in Figure 2 indicate that the proposed schemes are

able to outperform the case in which no RIS optimization is

performed, which shows that the use of RISs can significantly

improve the system performance, even if the overhead for

channel estimation and system configuration is taken into ac-

count. Moreover, it is observed that the proposed closed-form

Schemes (b) and (c) offer similar performance as alternating

optimization, which instead requires the implementation of

an iterative numerical algorithm. Indeed, we recall that when

NT “ NR “ 1, Schemes (b) and (c) are provably optimal.

In order to show the impact of the overhead that is necessary

to operate RIS-empowered wireless networks, Figure 3 consid-

ers a similar scenario as in Figure 2, with the only difference

that the number of receive antennas is set to NR “ 8, which

significantly increases the amount of feedback data. As a

result, it is observed that the gap between Schemes (b), (c), (d),

which optimize the phase shifts of the RIS, and Scheme (a)

without RIS optimization, gets smaller, since not optimizing

the phases allows one to dispense with the overhead to obtain

the channels H and G for each individual phase shift. Also,

the gap is smaller when a larger T0 is considered, since a

longer time is needed for channel estimation and feedback.

Moreover, it is interesting to observe that Scheme (b) performs

similar to alternating optimization, despite requiring a much

lower computational complexity thanks to the fact that it

provides a closed-form allocation. On the other hand, Scheme

(d) shows a slight gap compared to Schemes (b) and (d).

6Rayleigh fading is a suitable case study in scenarios in which the location
of the RIS can not be optimized and the existence of a strong line-of-sight
component can not be guaranteed. This is the case when the RISs are randomly
deployed, e.g., on spatial blockages whose locations are not under the control
of the system designer.
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Fig. 2: Spectral efficiency as a function of N for NT “ NR “ 1.

The trend displayed in Figure 3 becomes even more sig-

nificant in Figure 4, where the number of antennas is further

increased by considering NT “ NR “ 8. In this case, Scheme

(a) which does not require any overhead for the optimization

of the RIS phase shifts, outperforms the system setup in the

presence of an RIS, when T0 “ 0.8µs, i.e., when a longer time

is used for channel estimation. Instead, when a shorter channel

estimation time is used, i.e., when T0 “ 0.15µs, performing

radio resource allocation is still beneficial up to N “ 130,

whereas not using an RIS becomes better for higher values of

N . Moreover, also in this case Schemes (b) and (d) perform

very similarly, while Scheme (c) exhibits a slight gap.

The obtained results motivate the use of RISs in scenarios

with a low number of transmit and receive antennas, especially

for large N . Indeed, for any additional antenna that is de-

ployed, N new channels must be estimated and the optimized

phases need to be communicated to the RIS. Comparing the

performance of the optimized schemes in Figures 2 and 3

reveals that deploying a moderate number of antennas does

not lead to improved performance. Indeed, the presence of an

RIS may make transmit beaforming and receive combining not

necessary. This finding agrees with recent results from [59].

Similar considerations hold for the case in which the energy

efficiency is optimized, as it emerges from Figures 5, 6, 7,

which consider the same four schemes considered in Figures 2,

3, 4, respectively, with the only differences that p, pF , B,BF

have been allocated for energy efficiency maximization, ac-

cording to the optimal method from Section IV-B. Also,

two values of P0 are considered, namely P0 “ 0.5mW
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Fig. 3: Spectral efficiency as a function of N for NT “ 1, NR “ 8.

and P0 “ 2.5mW. In this case, Scheme (a) without any

RIS feedback transmission starts performing better than the

optimized schemes that rely on feedback transmissions when

NR “ 8, NT “ 1, T0 “ 0.8µs, and N ą 150, i.e., for a lower

overhead than for rate optimization. This can be explained

since in the case of energy efficiency optimization, feedback

overheads do not affect only the rate function, but also the

power consumption at the denominator of the energy efficiency

in (26a). Finally, Figures 8 and 9 consider again Schemes (a)-

(d), with p, pF , B,BF allocated for rate-energy bi-objective

maximization according to the optimal method from Section

IV-C. The system rate-energy Pareto boundary is shown for

the two cases: (1) NT “ NR “ 1; (2) NT “ NR “ 8, with

T0 “ 0.8µs. Similar remarks as for previous scenarios hold.

Next, Figures 10, 11, 12 consider the overhead model in

which the receiver transmit NR orthogonal pilots at the same

time, as described in Section III-D, and show the achieved

spectral efficiency, energy efficiency, and their optimal trade-

off, for the case without RIS (Scheme (a)) and the use of

Scheme (b) (similar results are obtained for Schemes (c)

and (d), but results are omitted for brevity). Only the case

T0 “ 0.8µs and P0 “ 2.5mW is considered, as this is the

most difficult scenario for the proposed method since a longer

time and more power are spent for each pilot tone. Despite

the challenging scenario, Figure 10 shows that the slightly

more sophisticated feedback scheme ensures that the use of

an optimized RIS provides higher spectral efficiency in both

cases NR “ 8 , NT “ 1 and NT “ NR “ 8. Similar results

are shown in Figure 11 for the energy efficiency, with the
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Fig. 4: Spectral efficiency as a function of N for NT “ 8, NR “ 8.

difference that RIS optimization becomes not convenient when

NT “ NR “ 8 and N ě 150, since transmitting the pilots

simultaneously does not remove the factor NR in the term PE .

Finally, Figure 12 shows that RIS optimization improves the

spectral energy trade-off when NT “ NR “ 8 (and thus also

when NT “ 1 , NR “ 8), for N “ 20 and N “ 100.

VII. CONCLUSIONS

A framework for overhead-aware radio resource allocation

in RIS-aided systems has been developed for spectral and

energy efficiency optimization. Two new closed-form methods

for the optimization of the RIS phase shifts, as well as

of the transmit and receive vectors, have been developed.

Moreover, the transmit powers and bandwidths for the com-

munication and feedback phases have been globally optimized

through concave/pseudo-concave maximizations. The derived

results indicate that RIS constitutes a suitable technology

when suitable feedback mechanisms are used or when few

transmit and receive antennas are deployed, since a trade-off

exists between optimizing the network radio resources and the

overhead due to the deployment of the optimized solution. In

particular, there exists a limit to the number of antennas and

RIS reflectors, before feedback overhead makes radio resource

optimization not convenient compared to the setup where RISs

are not deployed. An important future line of investigation

is the analysis of the impact of multi-user interference on

overhead-aware resource allocation in RIS-based networks.

Multi-user interference complicates the resource allocation
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problems, possibly requiring the use of numerical optimization

techniques.
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