Electron dynamics following photoionization: Decoherence due to the nuclear-wave-packet width - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review A Année : 2015

Electron dynamics following photoionization: Decoherence due to the nuclear-wave-packet width

Morgane Vacher
Lee Steinberg
  • Fonction : Auteur
Andrew J. Jenkins
  • Fonction : Auteur
Michael J. Bearpark
  • Fonction : Auteur
Michael A. Robb
  • Fonction : Auteur

Résumé

The advent of attosecond techniques opens up the possibility to observe experimentally electron dynamics following ionization of molecules. Theoretical studies of pure electron dynamics at single fixed nuclear geometries in molecules have demonstrated oscillatory charge migration at a well-defined frequency but often neglecting the natural width of the nuclear wave packet. The effect on electron dynamics of the spatial delocalization of the nuclei is an outstanding question. Here, we show how the inherent distribution of nuclear geometries leads to dephasing. Using a simple analytical model, we demonstrate that the conditions for a long-lived electronic coherence are a narrow nuclear wave packet and almost parallel potential-energy surfaces of the states involved. We demonstrate with numerical simulations the decoherence of electron dynamics for two real molecular systems (paraxylene and polycyclic norbornadiene), which exhibit different decoherence time scales. To represent the quantum distribution of geometries of the nuclear wave packet, the Wigner distribution function is used. The electron dynamics decoherence result has significant implications for the interpretation of attosecond spectroscopy experiments since one no longer expects long-lived oscillations.

Dates et versions

hal-03019013 , version 1 (23-11-2020)

Identifiants

Citer

Morgane Vacher, Lee Steinberg, Andrew J. Jenkins, Michael J. Bearpark, Michael A. Robb. Electron dynamics following photoionization: Decoherence due to the nuclear-wave-packet width. Physical Review A, 2015, ⟨10.1103/PhysRevA.92.040502⟩. ⟨hal-03019013⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More