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TURNPIKE IN LIPSCHITZ–NONLINEAR OPTIMAL CONTROL

CARLOS ESTEVE-YAGÜE, BORJAN GESHKOVSKI, DARIO PIGHIN,
AND ENRIQUE ZUAZUA

Abstract. We present a new proof of the turnpike property for nonlinear optimal
control problems, when the running target is a steady control-state pair of the un-
derlying system. Our strategy combines the construction of quasi-turnpike controls
via controllability, and a bootstrap argument, and does not rely on analyzing the op-
timality system or linearization techniques. This in turn allows us to address several
optimal control problems for finite-dimensional, control-affine systems with globally
Lipschitz (possibly nonsmooth) nonlinearities, without any smallness conditions on
the initial data or the running target. These results are motivated by applications
in machine learning through deep residual neural networks, which may be fit within
our setting. We show that our methodology is applicable to controlled PDEs as well,
such as the semilinear wave and heat equation with a globally Lipschitz nonlinearity,
once again without any smallness assumptions.
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1. Introduction

1.1. Motivation. The turnpike property reflects the fact that, for suitable optimal
control problems set in a sufficiently large time horizon, any optimal solution thereof
remains, during most of the time, close to the optimal solution of a corresponding “static”
optimal control problem. This optimal static solution is referred to as the turnpike –
the name stems from the idea that a turnpike is the fastest route between two points
which are far apart, even if it is not the most direct route. In many cases, the turnpike
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property is described by an exponential estimate – for instance, the optimal trajectory
yT (t) is O

(
e−µt + e−µ(T−t))–close to the optimal static solution y, for t ∈ [0, T ] and for

some µ > 0.

1.1.1. Background. The prevalent (but not exclusive) argument for proving exponen-
tial turnpike results relies on a thorough analysis of the optimality system provided by
the Pontryagin Maximum Principle. In the context of linear quadratic optimal control
problems, under appropriate controllability or stabilizability conditions, turnpike is es-
tablished via properties of the optimality system characterizing the optimal controls and
states through the coupling with the adjoint system ([39, 20]). In the case of nonlinear
dynamics, this argument thus requires nonlinearities which are continuously differen-
tiable. A linearization argument is used – the linear study and a fixed point argument
provide nonlinear results under smallness assumptions on the initial data and the target
([40, 46]). The smallness conditions on the initial data can be removed in some specific
cases ([36]), but to the best of our knowledge, the assumptions on the running target
have not been as of yet (albeit, they may be removed under restrictive assumptions,
such as strict dissipativity, uniqueness of minimizers and C2–regular nonlinearities –
see [44]). This is due to the lack of tools for showing that the linearized optimality sys-
tem corresponds to a linear-quadratic control problem satisfying the turnpike property,
when the running target of the original nonlinear control problem is large.

1.1.2. A question raised by machine learning. There has been an ever-increasing need,
brought by applications in machine learning via residual neural networks (ResNets,
[11, 12, 24]), of turnpike results for nonlinear optimal control problems without smallness
conditions on the initial data or the running target, and for systems with globally
Lipschitz-continuous but possibly nonsmooth nonlinearities.

In (supervised) machine learning, one looks for a map which interpolates a dataset
{
x(i), y(i)

}
i∈{1,...,n}

⊂ Rdx × Rdy ,

and which gives accurate predictions on unknown points x ∈ Rdx ([29]). Such a task
may (in many cases) be accomplished by solving

inf
u=(w,b)∈L2(0,T ;Rdu )

xi solves (1.2)

n∑

i=1

∫ T

0

∥∥∥Pxi(t)− y(i)
∥∥∥

2
dt+

∫ T

0
‖u(t)‖2 dt, (1.1)

where P : Rdx → Rdy is a given surjective map (possibly nonlinear, see Section 8), and
the constraint is given by the continuous-time residual neural network1

{
ẋi(t) = σ(w(t)xi(t) + b(t)) in (0, T )

xi(0) = x(i),
(1.2)

with w(t) ∈ Rdx×dx and b(t) ∈ Rdx designate the controls (thus du = d2
x + dx), whereas

σ ∈ Lip(R) with σ(0) = 0 is a scalar nonlinear function, defined componentwise in (1.2).
The most frequently used nonlinearities in practice are rectifiers: σ(x) = max{αx, x}

1Also referred to as a neural ODE [7].
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for α ∈ [0, 1), and sigmoids: σ(x) = tanh(x). The order of the nonlinearity σ and the
affine map within may be permuted to obtain a driftless control-affine system

{
ẋi(t) = w(t)σ(xi(t)) + b(t) in (0, T )

xi(0) = x(i).
(1.3)
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Figure 1. Binary classification task. One aims to separate the data{
x(i)
}
i∈{1,...,n} ⊂ R3 (top left) with respect to their color (y(i) = ±1 for

red, blue) by using the flow of (1.3), found by minimizing (1.1). We plot
the trajectories x(t) := {xi(t)}i∈{1,...,n} of (1.3) for t 6 2 (top right),
t 6 5 (mid left), and in time T = 5 (mid right). We see stabilization for
the projections, for the controls to 0, and hence also for the trajectories
to some points xi ∈ P−1({y(i)}), which are steady states (bottom).
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Combinations and variants of (1.2) and (1.3) may also be used ([30]). Optimizing u
over n � 1 different initial data establishes robustness, so that the neural networks
(1.2) and (1.3) may correctly perform future predictions on unknown points (Figure 5).

One notes a feature specific to the dynamics f(xi, u) in (1.2) and (1.3) for fixed i:
any constant vector in Rdx is a steady state with control u = (w, b) ≡ 0. Whence, the
solutions to the optimal steady problem

inf
(u,xi)∈Rdu×Rdx

f(xi,u)=0

n∑

i=1

∥∥∥Pxi − y(i)
∥∥∥

2
+ ‖u‖2

with f(xi, u) as in (1.2) or (1.3), are precisely given by (0,xi), where xi ∈ P−1
({
y(i)
})

for i ∈ {1, . . . , n} (the preimage of P might not be a singleton if dx 6= dy). In Figure 1, we
see that not only the projections Pxi(t), but also the optimal trajectories xi(t) stabilize
to such points: xi ∈ P−1

({
y(i)
})

, for i ∈ {1, . . . , n}, which are, as said above, steady
states of the underlying system without control (i.e. with 0 control). Existing turnpike
results do not immediately apply to explain this artifact, as discussed in Section 1.1.1,
due to the use of nonsmooth nonlinearities and the lack of smallness assumptions on
the targets, which would be unrealistic. This motivates the setting of our study (even
for more general dynamics), namely, the consideration running targets which are steady
states of the underlying dynamics without control (see (1.4) below).

1.1.3. Interpretation. The practical interest of this stabilization property is regarding
the approximation capacity of ResNets, which are the forward Euler discretization of
(1.2) and (1.3) with fixed time-step4t = T/nt. Here nt is the number of layers, and when
nt � 1, one is said to be doing deep learning. As 4t is fixed, exponential decay would
provide a quantitative estimate of the number of layers needed to fit the data, whilst
keeping the controls small (thus possibly ensuring generalization). Such an estimate
would actually indicate that the time horizon (or number of layers) ought not be big
at all so that the approximation error (the first term in (1.1)) reaches 0 with controls
of small amplitude. In other words, any layers beyond a certain stopping time T ∗ can
be dropped2 from the optimization scheme. In our numerical experiment (see Section 8
for detail and further illustrations), we use T = 5 and 4t = 1/2, and stability occurs
beyond T ∗ ∼ 2.

1.2. Our contributions. To answer this need, and motivated by problems as those
above, in this work we provide a different perspective on the turnpike property in the
context of nonlinear dynamics, and we bring forth the following contributions.

• In Section 2, we consider optimal control problems consisting of minimizing3

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u(t)− u‖2 dt (1.4)

2It should to be said that a sharp and applicable conclusion would depend on the "complexity" of
the dataset, as well as the number n of datapoints, which we do not specifically take into account.
But an exponential decay estimate would give a rough idea on how to design methods for numerically
estimating the stopping time T ∗. We refer the reader to [12, 13, 16, 18, 19] for further detail. Similar
conclusions have been drawn in the context of L1(0, T ;Rdu) control penalties in [48].

3While not precisely the same as considering (1.1) for dx 6= dy and a non-invertible map P , we
believe that this setting is a first step towards a complete understanding of (1.1). See Section 9 for a
discussion.
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subject to ẏ = f(y, u), where f is of control-affine form. Under the assumption
that the running target (u, y) is a steady control-state pair, namely f(y, u) = 0,
and that the system is controllable with an estimate on the cost (see Assump-
tion 1), in Theorem 2.1 we prove the exponential turnpike property described
above. The main novelty lies in the fact that the nonlinearity f is only assumed
to be globally Lipschitz continuous, and the result comes without any small-
ness conditions on the initial data or the specific running target. In this case,
existing results such as those presented in [46] do not apply, as they require
smallness assumptions and C2–nonlinearities.

Moreover, whenever the functional to be minimized does not contain a final-
time cost (such as φ(y(T )) in JT above), we can prove (see Corollary 2.1 below)
that the exponential arc near the final time t = T disappears, thus entailing an
exponential stabilization property for the optimal state to the running target.

• In Section 3, the finite-dimensional results are extended to analogue optimal
control problems for underlying PDE dynamics. This is illustrated in Theo-
rem 3.1, Corollary 3.1 and Theorem 3.2 in the context of the semilinear wave
and heat equation with globally Lipschitz–only nonlinearity, once again under
the assumption that the running target is a steady control-state pair. We make
no smallness assumptions neither on it, nor on the initial data, thus covering
some cases where results from [21, 36, 40, 54] are not applicable.

1.3. Outline. The paper is organized as follows. Section 2 contains statements of
our main results in the setting of finite-dimensional, control-affine systems (namely
Theorem 2.1, and Corollary 2.1, Corollary 2.2). We also provide a sketch of our new,
purely nonlinear strategy in Section 2.2.1. Section 3 states the extensions of the finite-
dimensional results to the setting of the semilinear wave and heat equation (Theorem 3.1
and Theorem 3.2 respectively). Section 4 provides some preliminary, but key lemmas,
mainly to ensure appropriate L∞t bounds for the discrepancy between a trajectory y(t)
and the target steady state y. Section 5 provides our proofs of the main results in
the finite-dimensional case, namely Theorem 2.1 and Corollary 2.2. Section 6 provides
our proof of Theorem 3.1, namely the main result for the semilinear wave equation,
which is a straightforward adaptation of the arguments in the finite-dimensional case.
Section 7 presents our proof of Theorem 3.2, namely the main result for the semilinear
heat equation. The same proof applies to Corollary 2.1. Section 9 concludes the
paper with a selection of open problems.

1.4. Notation. We denote by ‖ · ‖ the standard euclidean norm, and N := {1, 2, . . .}.
We denote by Lip(R) the set of functions f : R → R which are globally Lipschitz
continuous.

2. Finite-dimensional systems

2.1. Setup. Let d > 1 and m > 1. We will consider differential control systems where
the state y(t) lives in Rd and the control input u(t) in Rm. Given T > 0, we focus on
control-affine systems, namely canonical nonlinear systems

ẏ = f(y, u) in (0, T ) (2.1)
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with a nonlinearity f of the form

f(y, u) = f0(y) +

m∑

j=1

ujfj(y) for (y, u) ∈ Rd × Rm, (2.2)

where the vector fields f0, . . . , fm ∈ Lip(Rd;Rd) are only assumed to be globally Lips-
chitz continuous. This formulation includes (1.3) – see Remark 6 for possible extensions
to (1.2). For any given initial datum y0 ∈ Rd and control input u ∈ L1(0, T ;Rm), system
(2.1), with f as in (2.2), admits a unique solution y ∈ C0([0, T ];Rd) with y(0) = y0.
This can be shown by means of a fixed point theorem and the Grönwall inequality
applied to the integral formulation

y(t) = y0 +

∫ t

0
f(y(s), u(s)) ds.

Given y0 ∈ Rd, we will investigate the behavior when T � 1 of global minimizers
uT ∈ L2(0, T ;Rm) to nonnegative functionals of the form

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u(t)‖2 dt, (2.3)

and of the corresponding solutions yT to (2.1) with yT (0) = y0. Here, φ ∈ C0(Rd;R+)
is a given final cost, while y ∈ Rd is a given running target which we select as an
uncontrolled steady state of the nonlinear dynamics, namely

f0(y) = 0. (2.4)

We provide further comments on the specific choice of the running target just below, in
Remark 1. Due to the coercivity of JT and the explicit form of f in (2.2), the existence
of a minimizer of JT follows from the direct method in the calculus of variations.

Due to the presence of the state tracking term in the definition of JT , which regulates
the state over the entire time interval [0, T ], the turnpike property is expected to hold:
over long time horizons, the optimal control-state pair (uT , yT ) should be "near" the
optimal steady control-state pair (us, ys), namely a solution to the problem

inf
(y,u)∈Rd×Rm

subject to f(y,u)=0

‖y − y‖2 + ‖u‖2. (2.5)

Now note that, due to the assumption (2.4) on the running target y, and the form of
the nonlinearity f in (2.2), it can be seen that (us, ys) ≡ (0, y) designates the unique
optimal stationary solution, namely the unique solution to (2.5).

Remark 1 (Controlled steady states). The choice of the running target y in (2.4) is
tailored to our proof strategy and the choice of the functional JT in (2.3). The key
feature our methodology requires is that the Lagrangian L(u, y) = ‖y − y‖2 + ‖u − u‖2
equals zero when evaluated at the optimal steady state. In fact, we could more generally
consider the functional

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u(t)− u‖2 dt

where (u, y) ∈ Rm × Rd is chosen so that f(y, u) = 0 (with f as in (2.2)), as discussed
in the introduction. The results presented below could then readily be adapted to this
case (by additionally changing (2.9) and Assumption 1 to an L2–bound of uT − u). We
have taken u = 0 for presentational simplicity.
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In the context of nonlinear optimal control, such turnpike results have been shown in
[46] (see also [44]) for C2–regular nonlinearities f . This order of regularity is required
due to the proof strategy, which relies on linearizing the optimality system given by the
Pontryagin Maximum Principle. As a consequence, the results in [46] are also local, in
the sense that smallness conditions are assumed on the initial data and target in view
of applying a fixed point argument. In this work, we take a further step and obtain
global results for globally Lipschitz nonlinearities.

2.2. Main results. Controllability plays a key role in the context of turnpike. Hence,
before proceeding, we state the following assumption.

Assumption 1 (Controllability & cost estimate). We will assume that (2.1) is con-
trollable in some time T0 > 0, meaning that there exists some time T0 > 0 such that
for any y0, y1 ∈ Rd, there exists a control u ∈ L2(0, T0;Rm) such that the corresponding
solution y ∈ C0([0, T0];Rd) to (2.1) with y(0) = y0 satisfies y(T0) = y1.

We will moreover assume that there exists a radius r > 0 and a constant C(T0) > 0
such that

inf
u

such that
y(0)=y0, y(T0)=y

‖u‖L2(0,T0;Rm) 6 C(T0)
∥∥y0 − y

∥∥ , (2.6)

and
inf
u

such that
y(0)=y, y(T0)=y1

‖u‖L2(0,T0;Rm) 6 C(T0)
∥∥y1 − y

∥∥ , (2.7)

hold for any y0, y1 ∈
{
x ∈ Rd : ‖x− y‖ 6 r

}
, where y ∈ Rd is fixed as in (2.4).

We discuss the feasibility of this assumption later on, in Remark 3. Note that this is
not a smallness assumption – it merely stipulates that, inside some ball centered at y,
the cost of controlling from y0 to y and from y to y1 can be estimated by means of the
distance of y0 and y1 to y. We may now state our first main result.

Theorem 2.1 (Turnpike). Assume that f0, . . . , fm ∈ Lip(Rd;Rd) in (2.2), and assume
that (2.1) is controllable in some time T0 > 0 in the sense of Assumption 1. Let y0 ∈ Rd
be given, and let y ∈ Rd be as in (2.4). Then there exists a time T ∗ > 0, and constants
C > 0 and µ > 0, all depending on T0, y

0, y, such that for any T > T ∗, any global
minimizer uT ∈ L2(0, T ;Rm) to JT defined in (2.3) and corresponding optimal state yT
solution to (2.1) with yT (0) = y0 satisfy

‖yT (t)− y‖ 6 C
(
e−µt + e−µ(T−t)

)
(2.8)

for all t ∈ [0, T ], and
‖uT ‖L2(0,T ;Rm) 6 C. (2.9)

We sketch the idea of the proof (which may be found in Section 5.2) in Section 2.2.1
below. The rate µ > 0 appearing in (2.8) depends on the datum y0 due to the mul-
tiplicative form of the control, but is uniform with respect to y0 when the control is
additive, namely, when f1, . . . , fm are nonzero constants. This is due to the form of
the constant provided by Grönwall inequality-based arguments (e.g. in Lemma 4.1 and
Lemma 5.2). We delay a discussion of the specific form of the constants to Section 2.3.

Remark 2 (On (2.9)). An exponential estimate for the optimal control uT is a hallmark
of turnpike results obtained by analyzing the optimality system. Therein, the optimal
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control can be characterized explicitly via the adjoint state, which, much like the optimal
state, fulfills an exponential estimate. Since in this work we do not use the optimality
system, we do not have as much information on uT (t) as we have on yT (t) − y. The
latter quantity, in addition to being penalized by JT , may be further estimated by using
the system dynamics. In the context of driftless systems, we show that uT (t) too decays
exponentially in Corollary 2.2, by using the homogeneity of the system with respect to
the control.

Before proceeding with further remarks, which we postpone to Section 2.3, let us state a
couple of important corollaries of Theorem 2.1. Firstly, when one considers an optimal
control problem for JT without a final cost for the endpoint y(T ), namely taking φ ≡ 0
in (2.3), Theorem 2.1 can in fact be improved to an exponential stabilization estimate
to the running target y.

Corollary 2.1 (Stabilization). Suppose that φ ≡ 0 in (2.3). Under the assumptions of
Theorem 2.1, there exists a time T ∗ > 0, and constants C > 0 and µ > 0, all depending
on T0, y

0, y, such that for any T > T ∗, any global minimizer uT ∈ L2(0, T ;Rm) to JT
defined in (2.3) and corresponding optimal state yT solution to (2.1) with yT (0) = y0

satisfy (2.9) as well as
‖yT (t)− y‖ 6 Ce−µt (2.10)

for all t ∈ [0, T ].

Strictly speaking, we see Corollary 2.1 as a consequence of the strategy of proof of
Theorem 2.1, rather than a direct corollary of the statement. Corollary 2.1 may be
proven independently of Theorem 2.1 by a simple adaptation of the proof strategy
presented in Section 2.2.1, so we omit the proof. This adaptation is transparent in
the proof of Theorem 3.2, for which we provide greater detail, albeit for more specific
dynamics (the semilinear heat equation).

On another hand, when the underlying dynamics (2.1) are of driftless control affine
form (namely, f0 ≡ 0 in (2.2)), we can obtain an exponential decay for the optimal
controls as well. Note that in this case, any y ∈ Rd is an admissible running target for
JT , since f(y, 0) = 0 for any y ∈ Rd.

Corollary 2.2 (Control decay). Suppose that f0 ≡ 0 in (2.2) and φ ≡ 0 in (2.3).
Under the assumptions of Theorem 2.1, there exists a time T ∗ > 0, and constants C > 0
and µ > 0, all depending on T0, y

0, y, such that for any T > T ∗, any global minimizer
uT ∈ L2(0, T ;Rm) to JT defined in (2.3) and corresponding optimal state yT solution
to (2.1) with yT (0) = y0 satisfy (2.10) as well as

‖uT (t)‖ 6 Ce−µt (2.11)

for a.e. t ∈ [0, T ].

Corollary 2.1 and Corollary 2.2 are in particular applicable for the continuous time
analog (1.3) of ResNets (see Remark 6 for (1.2)). The proof of Corollary 2.2 (see
Section 5.3) will follow by firstly using a specific suboptimal control (constructed using
the time-scaling specific to driftless systems) to estimate JT (uT ) and obtain

1

2

∫ t+h

t
‖uT (s)‖2 ds 6

∫ t+h

t
‖yT (s)− y‖2 ds

for h small enough, an estimate which, chained with Corollary 2.1 and the Lebesgue
differentiation theorem, will suffice to conclude.
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2.2.1. Sketch of the proof of Theorem 2.1. The proof of Theorem 2.1 may be found in
Section 5.2. It roughly follows the following scheme (see Figure 2).

• Uniform bound of JT (uT ). In Lemma 5.1 we show that there exists a con-
stant C0 > 0 independent of T (but depending on y0, y, f, φ) such that

JT (uT ) 6 C0 (2.12)

holds for all T > 0. As y is a steady state, (2.12) can be shown easily. Indeed,
using controllability (without the estimates on the cost) one finds a control
u† such that the solution y† to (2.1) on [0, T0] satisfies y†(T0) = y. Setting
uaux(t) := u†(t)1[0,T0](t) for t ∈ [0, T ], one sees that yaux(t) = y for t ∈ [T0, T ],
whence JT (uaux) = JT0(u†), and using the inequality JT (uT ) 6 JT (uaux) yields
(2.12).
• L∞t bound of y(t)− y. In Lemma 4.1, we show that

sup
t∈[0,T ]

‖y(t)− y‖ 6 C
(
‖y(0)− y‖+ ‖y − y‖L2(0,T ;Rd) + ‖u‖L2(0,T ;Rm)

)
(2.13)

holds for some constant C > 0 depending on T solely through ‖u‖L2(0,T ;Rm), in
a continuous and increasing manner. The estimate holds for any, not necessarily
optimal u. The globally Lipschitz assumption on the dynamics in (2.1) is used
precisely for this estimate. Combined with (2.12), estimate (2.13) yields

sup
t∈[0,T ]

‖yT (t)− y‖2 + JT (uT ) 6 C2
1 (2.14)

for some constant C1 > 0 independent of T (but depending on y0, y, f, φ).
• Turnpike away from the middle of [0, T ]. Estimate (2.14) yields turnpike
for t ∈ [0, τ + T0] ∪ [T − (τ + T0), T ], where τ > 0 is a degree of freedom,
independent of T , to be chosen later on, while T0 is the controllability time for
(2.1). Indeed, for t ∈ [0, τ + T0], from (2.14) one sees that

‖yT (t)− y‖ 6 C1e
µt e−µt 6 C1e

µ(τ+T0)
(
e−µt + e−µ(T−t)

)

holds for all µ > 0, with C1 > 0 as in (2.14) (thus independent of T, τ). A
similar computation can be repeated for t ∈ [T − (τ + T0), T ]. At this point,
one already notes that T needs to be chosen sufficiently large, namely,

T > 2(τ + T0). (2.15)

Actually, T ∗ := 2(τ + T0) in Theorem 2.1.
• Turnpike in the middle of [0, T ]. To obtain the exponential estimate for
t ∈ [τ + T0, T − (τ + T0)], it is critical to choose τ > 0 large enough. The clue
is to first prove that there exists some constant C∗ > 0 independent of both T
and τ such that

sup
t∈[nτ,T−nτ ]

‖yT (t)− y‖ 6
(
C∗√
τ

)n
(2.16)

holds for all integers 1 6 n 6 1
τ (T2 −T0). See Figure 2 for a graphical depiction.

By virtue of (2.15) we have 1
τ (T2 − T0) > 1, and this upper bound on n will
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become clear in the next step. Suppose that (2.16) does indeed hold. Then
from (2.16)

‖yT (t)− y‖ 6 exp

(
−n log

(√
τ

C∗

))
(2.17)

holds for all t ∈ [nτ, T−nτ ] and n as above. Choosing τ > C2
∗ , which up to this

point was arbitrary, yields the positivity of the logarithm appearing in (2.17):

σ := log

(√
τ

C∗

)
> 0.

Now fix t ∈ [τ + T0, T − (τ + T0)]. We look to choose the integer n = n(t) as
to have t ∈ [n(t)τ, T − n(t)τ ] as well as 1 6 n(t) 6 1

τ (T2 − T0), so that estimate
(2.17) also holds for t fixed as just before. After some elementary computations,
one can see that for both these conditions to hold, it is necessary and sufficient
for n(t) to be such that

1 6 n(t) 6 t

τ + T0
and 1 6 n(t) 6 T − t

τ + T0
.

This leads us to set

n(t) := min

{⌊
t

τ + T0

⌋
,

⌊
T − t
τ + T0

⌋}
.

With t fixed as above, and n(t) set as such, one sees that (2.17) holds. Namely,
we have

‖yT (t)− y‖ 6 exp (−n(t)σ) . (2.18)
But furthermore, one of either

n(t) > t

τ + T0
− 1 or n(t) > T − t

τ + T0
− 1

holds by definition of n(t), and so

exp (−n(t)σ) 6 exp(σ)

(
exp

(
− t

τ + T0
σ

)
+ exp

(
− T − t
τ + T0

σ

))
. (2.19)

Since t ∈ [τ + T0, T − (τ + T0)] was arbitrary, chaining (2.18) and (2.19) leads
us to the desired turnpike inequality in [τ + T0, T − (τ + T0)]:

‖yT (t)− y‖ 6 eσ
(
e−µt + e−µ(T−t)

)
,

where

µ :=
σ

τ + T0
=

log
(√

τ
C∗

)

τ + T0
> 0.

Thus, the proof would be complete once (2.16) is shown to hold.
• Proving (2.16) by induction. To show (2.16), one performs an induction
over 1 6 n 6 1

τ (T2 − T0). The upper bound on n appears so that there are
always a couple of disjoint intervals of length T0 within every interval of the
form [nτ, T − nτ ]. Let us sketch the proof of the initialization stage n = 1.
Arguing by contradiction (see Lemma 5.3), one can first find τ1 ∈ [0, τ) and
τ2 ∈ (T − τ, T ] such that

‖yT (τj)− y‖
Lem.5.3
6

‖yT − y‖L2(0,T ;Rd)√
τ

(2.14)
6 C1√

τ
. (2.20)
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0

(
C∗√
τ

)3

(
C∗√
τ

)2

C∗√
τ

C1

1

τ

τ + T0

2τ 3τ T − τ

T − (τ + T0)

T − 2τT − 3τ T

Figure 2. The strategy is inspired by the shape of t 7→ e−t + e−(T−t)

on [0, T ], which attains its minimum at t = T
2 . Over successively smaller

intervals of the form [nτ, T −nτ ], with 1 6 n 6 1
τ (T2 −T0), one sees that

the upper bound in (2.16), which is uniform in T , decreases exponentially
and captures the double-arc exponential of ‖yT (t) − y‖ (dotted) more
accurately.

This allows us to recover the desired factor of an inverse of τ . Then, restricting
uT to the subinterval [τ1, τ2], one sees that it is a solution to

inf
u∈L2(τ1,τ2;Rm)

ẏ=f(y,u) in (τ1,τ2)
y(τ1)=yT (τ1)
y(τ2)=yT (τ2)

∫ τ2

τ1

‖y(t)− y‖2 dt+

∫ τ2

τ1

‖u(t)‖2 dt. (2.21)

Just as in the first step of the proof, we look to estimate the functional min-
imized in (2.21), but this time, not only uniformly in T, τ1, τ2, rather also in
terms of the distance of yT (τj) to y. More specifically, we show that there exists
some constant C(r) > 0 independent of T, τ1, τ2, τ (but depending on r, T0, f)
such that

‖yT (t)− y‖ 6 C(r)
(
‖yT (τ1)− y‖+ ‖yT (τ2)− y‖

)
(2.22)

holds for all t ∈ [τ1, τ2]. To this end, we invoke Lemma 4.1, and thus it suffices
to bound the functional in (2.21) by means of the right-hand-side in (2.22).
To achieve this, since τ2 − τ1 > 2T0, we may first control starting from yT (τ1)
at time t = τ1 to y in time t = τ1 + T0; we stay at y by switching off the
control until time t = τ2 − T0, from which we control to yT (τ2) in time t = τ2.



12 CARLOS ESTEVE-YAGÜE, BORJAN GESHKOVSKI, DARIO PIGHIN, AND ENRIQUE ZUAZUA

By chaining this strategy into one single control4 uaux, we note that uaux is
precisely bounded by the right-hand-side in (2.22) via Assumption 1 (we are
in the desired ball by selecting τ > C2

1/r2 in (2.20)), while the state tracking
term can subsequently be covered by the Grönwall inequality. Estimate (2.22)
combined with (2.20) leads to

‖yT (t)− y‖ 6 2C1 · C(r)√
τ

for all t ∈ [τ1, τ2], and thus also for all t ∈ [τ, T − τ ]. This is precisely (2.16)
for n = 1. The above argument can then be repeated by induction on smaller
intervals [nτ, T − nτ ] to obtain (2.16) in the general case.

2.3. Discussion. Several pertinent remarks are in order.

Remark 3 (On Assumption 1). • In the driftless case (f0 = 0 in (2.2)), the
Chow-Rashevskii theorem ([8, Chapter 3, Section 3.3]), characterized by iter-
ated Lie brackets, is a necessary and sufficient condition for the global exact
controllability of systems with smooth vector fields. But general necessary and
sufficient conditions which ensure the exact controllability of control-affine sys-
tems are not known to our knowledge – see [8, Chapter 3]. This is mainly due
to the drift term f0, which affects the geometry of the problem and may pose
obstructions to the controllability in arbitrary time – see [3] for a survey on
these issues. We do insist however, that we merely require controllability in a
possibly large time T0, and not necessarily in any arbitrarily small time.
• While we suppose that the underlying system is controllable for arbitrarily large
data, through (2.6) – (2.7) we solely assume that the cost is proportionate to
the distance from the chosen steady state y in some, possibly arbitrarily small
ball around this steady state. As the estimates (2.6) – (2.7) are more commonly
encountered in the linear systems setting ẏ = Ay +Bu, they thus also hold for
semilinear systems where controllability is obtained by perturbation arguments.
In such contexts, it is well-known (see e.g. [53, Remark 2.2]) that the minimal
L2–norm control u satisfies

‖u‖L2(0,T0;Rm) 6 C(T0)
(∥∥y0

∥∥+
∥∥y1
∥∥
)

for some C(T0) > 0. This makes Assumption 1 entirely plausible in the settings
mentioned above. Indeed, we consider z := y−y, then either z0 = 0 (if y0 = y)
or z1 = 0 (if y1 = y). The control u steering y from y0 to y1 in time T would
then be the same as the one steering z from either 0 to y1 − y or from y0 − y
to 0 in time T , and the above estimate would yield the desired assumption.
• While there exist necessary and sufficient conditions for ensuring the exact
controllability of driftless systems: ẏ(t) =

∑m
j=1 uj(t)fj(y(t)), we cannot en-

sure the validity of estimates (2.6) – (2.7) in the underactuated regime, namely
when m < d. This is due to the so-called ball-box theorem in sub-Riemannian
geometry ([1]), for smooth vector fields f1, . . . , fm. This theorem states the
following. Suppose that the vector fields f1, . . . , fm satisfy the Hörmander
condition, namely that the iterated Lie brackets of these vector fields at any

4Such controls are referred to as quasi-turnpike controls, since they (and their associated trajectories)
look like rough approximations of exact turnpikes (see Figure 4).
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point span Rd. Denote 41(x) := span{f1(x), . . . , fm(x)} for x ∈ Rd, and
4k+1 := 41 + [4k,41] for k > 1. Then by virtue of the Hörmander condi-
tion, there exists some κ > 1 such that 4κ(x) = Rd for all x. Furthermore,
by the ball-box theorem, for y0 close enough to y1, an estimate of the form
‖y0 − y1‖ . dSR(y0, y1) . ‖y0 − y1‖1/κ holds, where dSR(y0, y1) is the sub-
Riemannian distance of y0 to y1, equal (modulo a scalar multiple depending
on T0) to the inf defined in (2.6) – (2.7). Herein, one sees that if m > d, it
may happen to find at least d among m vector fields which are linearly indepen-
dent, thus ensuring that κ = 1, as desired; this is quite simply impossible when
m < d. This exact constraint is also encountered in [12, Theorem 5.1], where
the estimates (2.6) – (2.7) are shown to hold for m > d in the driftless setting.
In view of this, generalizing the assumptions (2.6) – (2.7) to fractional powers
of the upper bounds appearing therein is an important open problem. Further
clarity regarding this issue is also needed for general control-affine systems be-
yond semilinear systems, namely those for which linearization techniques might
not apply. We refer to [25, 41] for developments in this direction.

Remark 4 (On the time T ∗). Reading the sketch of proof, one notes that T ∗ = 2(T0+τ),
where T0 is the controllability time, and τ > 0 is chosen sufficiently large. Reading even
further, one sees that τ needs to be at least larger than C2

1/r2, where the constant C1 > 0
appears in (2.12) and (2.14). The latter constant is independent of T and r, but does
depend on T0 (and the data y0, y) through the map

T0 7→ C(T0) := inf
u

y(0)=y0

y(T0)=y

(
‖u‖L2(0,T0;Rm) + ‖y − y‖L2(0,T0;Rd)

)
.

Actually, due to the innate Grönwall-based argument in Lemma 4.1, C1 will roughly
be of the form C1 = C(T0) exp(C(T0)). If the system is controllable in any time, the
cost C(T0) typically explodes as T0 ↘ 0, and is bounded for T0 � 1 (all relative to the
distance of y0 to y). Therefore, according to our strategy, T ∗ should increase at least
linearly with T0 � 1, and should explode with C(T0) when T0 ↘ 0. This discussion
also indicates the dependence of T ∗ with respect to the radius r of the ball in which the
estimates of Assumption 1 hold.

Remark 5 (On the constants C and µ). Once again, by reading the sketch of proof,
one can see that the constants C > 0 and µ > 0 appearing in the turnpike estimate (2.8)
are explicit (albeit rather compound). Per the sketch and (5.33), µ > 0 is given by

µ :=
log
( √

τ
4C2
•

)

τ + T0
=

log
(

τ
16C4
•

)

T∗
,

where C• = C•(r, T0) > 0 is the constant appearing in (2.22); more specifically, the
constant stemming from Lemma 5.2. Moreover, τ > 16C4

• +
C2

1+4C2
1C

2
•

r2
is arbitrary but

fixed (as seen in (5.18), where C1 is the same as in Remark 4). On the other hand, per
(5.34), the constant C > 0 appearing in (2.8) takes the form

C := max

{
C1,

√
τ

8C2
•

max

{
1,
C•
C1

}}
.
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Remark 6 (On the nonlinearity). With little modifications, Theorem 2.1 and Corol-
lary 2.1 also apply to system (2.1) with nonlinearities f of the form

f(y, u) =

m∑

j=1

fj(ujy) for (y, u) ∈ Rd × Rm (2.23)

where the vector fields f1, . . . , fm ∈ Lip(Rd;Rd) are additionally assumed to be positively
homogeneous of degree 1. Such nonlinearities are motivated by (1.2). Due to the homo-
geneity of the vector fields in (2.23), the corresponding optimal steady states coincide
with those of the driftless case, namely (us, ys) = (0, y) for any y ∈ Rd.

3. Infinite-dimensional systems

We illustrate the flexibility of the finite-dimensional arguments and adapt them to the
semilinear wave and heat equation. As a matter of fact, the only difference between
the finite and infinite dimensional setting is in the proof of uniform control and state
bounds by means of quasi-turnpike controls. The specific proof of turnpike is identical
in both cases. We distinguish the case of the wave and heat equation because of the
validity of the PDE analog of Assumption 1, as made more precise below.

3.1. Semilinear wave equation. Let T > 0 and let Ω ⊂ Rd be a bounded and (at
least C2) regular domain. We will be interested in control systems of the form





∂2
t y −∆y + f(y) = u1ω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

(y, ∂ty)|t=0 = y0 in Ω.

(3.1)

Here f ∈ Lip(R), ω ⊂ Ω is open (with geometric assumptions given in (3.5)), whereas
y0 =

(
y0

1, y
0
2

)
is a given initial datum. It is well-known, by fixed-point arguments, that

for any initial data y0 =
(
y0

1, y
0
2

)
∈ H1

0 (Ω) × L2(Ω) and for any u ∈ L2((0, T ) × ω),
there exists a unique finite-energy solution y ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) to
(3.1). As in the finite-dimensional case, we will address the behavior when T � 1 of
global minimizers uT ∈ L2((0, T )× ω) to nonnegative functionals of the form

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2H1

0 (Ω) dt+

∫ T

0
‖∂ty(t)‖2L2(Ω) dt+

∫ T

0
‖u(t)‖2L2(ω) dt,

(3.2)
and of the corresponding solution yT to (3.1). Here φ : L2(Ω)→ R+ is a given continu-
ous functional, while y ∈ H1

0 (Ω) is a running target which we select as an uncontrolled
steady state of (3.1), namely we assume that y is some solution5 to

{−∆y + f(y) = 0 in Ω

y = 0 on ∂Ω.
(3.3)

We henceforth moreover assume that f,Ω are such that a solution to (3.3) exists. This
can be ensured in a variety of different cases, including, for instance (see [6, 32] for
further results):

5There is no need for the solution of (3.3) to be unique.
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• If f(0) = 0, then clearly y ≡ 0 is one solution. But if moreover there exist
p ∈ (1,∞) for d = 1, 2 or p ∈ (1, d+ 2/d− 2), σ < λ1(Ω) and θ > 2 such that

|f(s)| 6 C(1 + |s|p) for all s ∈ R

−
∫ s

0
f(ζ) dζ 6 σ

2
s2 for |s| � 1

0 < −θ
∫ s

0
f(ζ) dζ 6 −s

∫ s

0
f(ζ) dζ for |s| � 1

then a nontrivial solution y ∈ H1
0 (Ω), y 6≡ 0 also exists. We refer to [6, Theorem

2.5.6]. This fact is a consequence of the mountain pass theorem. Here λ1(Ω)
denotes the first eigenvalue of the Dirichlet Laplacian −∆.
• When d = 1 and Ω = (−R,R), then both necessary and sufficient conditions
on f can be provided ensuring the existence of nontrivial solutions – see [6,
Theorem 1.2.3].

The case of a controlled steady state (namely adding u1ω in (3.3)) may also be consid-
ered, under the condition that the functional JT is modified appropriately as discussed in
Remark 1. The existence of minimizers to JT again follows by the direct method in the
calculus of variations. We note that, since y is fixed as above, the pair (us, ys) ≡ (0, y)
is the unique solution to the steady optimal control problem

inf
(y,u)∈H1

0 (Ω)×L2(ω)
y solves (3.4)

‖y − y‖2H1
0 (Ω) + ‖u‖2L2(ω)

where the steady equation is
{−∆y + f(y) = u1ω in Ω

y = 0 on ∂Ω.
(3.4)

This is because the functional in the expression above attains its minimum, equal to 0,
precisely at (0, y), a pair which satisfies the constraint provided by the elliptic equation.
Before proceeding, we need to define the appropriate geometric setup for ensuring the
exact controllability of (3.1) when d > 2. For any fixed x◦ ∈ Rd \ Ω, we define

Γ(x◦) := {x ∈ ∂Ω: (x− x◦) · ν(x) > 0}
where ν(x) denotes the outward unit normal at x ∈ ∂Ω. The set Γ(x◦) coincides with
the subset of the boundary arising usually in the context of the multiplier method [31].
We will suppose that for some δ > 0 and x◦ ∈ Rd \ Ω,

ω = Oδ(Γ(x◦)) ∩ Ω, (3.5)

where Oδ(Γ(x◦)) :=
{
x ∈ Rd : ‖x− x′‖ < δ for some x′ ∈ Γ(x◦)

}
. It is known that,

under these geometric assumptions on ω, and since f ∈ Lip(R), the wave equation (3.1)
is exactly controllable in any time T > Tmin(ω,Ω), where

Tmin(ω,Ω) = 2 max
x∈Ω
‖x− x◦‖. (3.6)

(See [14, 51, 52], and also the introduction of [26] for an ample survey of controllability
results for semilinear wave equations.) We may now state our main result in the context
of the wave equation.



16 CARLOS ESTEVE-YAGÜE, BORJAN GESHKOVSKI, DARIO PIGHIN, AND ENRIQUE ZUAZUA

Theorem 3.1 (Turnpike). Suppose that f ∈ Lip(R) and f(0) = 0. Let y ∈ H1
0 (Ω) be

any solution to (3.3). Let φ ∈ L(L2(Ω);R+), and suppose that ω is as in (3.5). Then
for any y0 ∈ H1

0 (Ω)×L2(Ω), there exists a time T ∗ > Tmin(ω,Ω), and constants C > 0
and µ > 0, such that for any T > T ∗, any global minimizer uT ∈ L2((0, T )× ω) to JT
defined in (3.2) and corresponding optimal state yT solution to (3.1) satisfy

‖yT (t)− y‖H1
0 (Ω) + ‖∂tyT (t)‖L2(Ω) 6 C

(
e−µt + e−µ(T−t)

)

for all t ∈ [0, T ], and
‖uT ‖L2((0,T )×ω) 6 C.

Moreover, µ > 0 is independent of y0.

The proof of turnpike (see Section 6) is identical to the finite-dimensional case. Some
technical adaptations are however needed for obtaining the bounds through quasi-
turnpike controls, wherein one uses the Duhamel formula for mild solutions in view
of applying an integral Grönwall inequality-based argument, in the spirit of the ODE
setting. The assumption f(0) = 0 is of technical nature, and is clarified in Remark 10.

Remark 7 (On the choice of JT ). We note that in existing turnpike results for the
wave equation, e.g. [23, 45, 54], a slightly weaker functional is sometimes considered.
For instance, in [54] for the linear wave equation, only the L2(0, T ;H1

0 (Ω))–norm of
y − y is penalized, and not the L2((0, T ) × Ω)–norm of ∂ty, yet turnpike is shown to
hold for the full state (y, ∂ty). This is justified by the equipartition of energy property,
which states that, along a given time interval [0, T ], the energy concentrated on the y
component in H1

0 (Ω) and on the ∂ty component in L2(Ω) is comparably the same up
to a compact remainder term. We choose to work with a functional penalizing the full
state of the system due to the specificity of our proof strategy.

Similarly to the finite-dimensional case, when φ ≡ 0 in (3.2), the strategy for proving
Theorem 3.1 can be slightly tweaked to obtain an exponential stabilization property for
the optimal states.

Corollary 3.1 (Stabilization). Suppose that φ ≡ 0 in JT defined in (3.2). Under the
assumptions of Theorem 3.1, there exists a time T ∗ > Tmin(ω,Ω), and constants C > 0
and µ > 0, such that for any T > T ∗, any global minimizer uT ∈ L2((0, T )× ω) to JT
defined in (3.2) and corresponding optimal state yT solution to (3.1) satisfy

‖yT (t)− y‖H1
0 (Ω) + ‖∂tyT (t)‖L2(Ω) 6 Ce−µt

for all t ∈ [0, T ] and
‖uT ‖L2((0,T )×ω) 6 C.

Moreover, µ > 0 is independent of y0.

3.2. Semilinear heat equation. To complete our presentation, we will also discuss
control systems of the form





∂ty −∆y + f(y) = u1ω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y|t=0 = y0 in Ω,

(3.7)

were f ∈ Lip(R), ω ⊂ Ω is any open, non-empty subset, whereas y0 is a given initial
datum. It is well-known that for any given T > 0, y0 ∈ L2(Ω) and u ∈ L2((0, T )× ω),
there exists a unique globally-defined solution y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω))
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to (3.7). We will again study global minimizers uT ∈ L2((0, T ) × ω) to nonnegative
functionals of the form

JT (u) :=

∫ T

0
‖y(t)− y‖2L2(Ω) dt+

∫ T

0
‖u(t)‖2L2(ω) dt, (3.8)

and the corresponding solution yT to (3.7) in the regime T � 1. Once again, y ∈ L2(Ω)
is a running target which we select as an uncontrolled steady state, namely a solution to
(3.3). The existence of minimizers to JT defined in (3.8) follows by the direct method
in the calculus of variations.

Theorem 3.2 (Stabilization). Suppose that f ∈ Lip(R) and Ω ⊂ Rd are such that
(3.3) admits at least one solution, and let y ∈ H1

0 (Ω) be any such solution. Then for
any y0 ∈ L2(Ω), there exist constants C, µ > 0 (depending solely on f, ω) such that
for any T > 0, any global minimizer uT ∈ L2((0, T ) × ω) of JT defined in (3.8) and
corresponding optimal state yT solution to (3.7) satisfy

‖yT (t)− y‖L2(Ω) 6 Ce−µt
∥∥y0 − y

∥∥
L2(Ω)

for all t ∈ [0, T ], and
‖uT ‖L2((0,T )×ω) 6 C

∥∥y0 − y
∥∥
L2(Ω)

.

We refer to Section 7 for the proof. We consider the heat equation, in addition to
the wave equation, because of the validity (or rather, the partial lack thereof) of the
PDE analog of Assumption 1. The heat equation is exactly controllable to controlled
trajectories, namely solutions ŷ to (3.7) for given controls û. Instead of an estimate
such as (2.7), one has

‖u− û‖L2((0,T0)×ω) 6 C(T0)
∥∥y0 − ŷ(0)

∥∥
L2(Ω)

for minimal L2–norm controls u steering y to ŷ in time T0 (see [38, Lemma 8.3] and the
references therein). Such an estimate does not suffice for applying our methodology, as
we clearly need to estimate the minimal L2–norm control by means of the distance of
the initial data to the target. Nonetheless, we illustrate that the stabilization result can
be shown independently of the turnpike result. Indeed, the proof closely follows that of
Theorem 2.1, with the exception that we only need to perform the bootstrap forward
in time, whence we do not require that the system is controllable to anything else but
a steady state. The constants C > 0 and µ > 0 are actually explicit (see (7.15), (7.16))
precisely due to the global validity of this estimate (i.e. (7.1)); the factor

∥∥y0 − y
∥∥ also

appears because of this and due to the absence of a final cost φ.
The semilinear heat equation is a commonly used benchmark for nonlinear turnpike

results, thus this example serves to compare with existing results. For instance, while we
assume that the running targets are steady states, we make no smallness assumptions
on the targets or on the initial data, unlike [21, 40]. Furthermore, since we do not use
(or thus linearize) the optimality system, we may work with solely globally Lipschitz
nonlinearities, in which case the techniques of [21, 36, 40] do not apply.

Remark 8 (On the nonlinearity). The assumption that f is globally Lipschitz in (3.1)
and (3.7) could perhaps be relaxed to a locally Lipschitz f (for which blow-up is avoided
and controllability is ensured – for instance, f(y) = y3), under the condition that one
can show a uniform L∞((0, T ) × Ω)–estimate of yT with respect to T > 0. Arguments
of this sort in the context of turnpike can be found in [36] under smallness assump-
tions on the target. We refer to the end of Section 9.1 for a discussion of a (possibly
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technical) impediment encountered in applying our methodology to the cubic heat equa-
tion. In addition to the controllability properties it entails for (3.1) – (3.7) as blow-up is
avoided,we use the Lipschitz character of f in the estimates in Lemma 6.1, Lemma 6.2
and Lemma 7.1.

4. Preliminary results

We begin by presenting a couple of simple but important lemmas, containing bounds of
the quantity ‖y(t)− y‖ for both the nonlinear ODE and PDE setting, solely by means
of ‖y0−y‖ and the tracking terms appearing in the functional JT . These bounds would
thus imply that bounding the functional JT uniformly in T would entail a bound for
the desired quantity ‖y(t)− y‖. Let us begin with the ODE estimate.

Lemma 4.1. Let T > 0, and let y ∈ Rd be as in (2.4). For any u ∈ L2(0, T ;Rm) and
y0 ∈ Rd, let y ∈ C0([0, T ];Rd) be the solution to (2.1) with y(0) = y0. Then there exist
constants C1 = C1(f, y) > 0 and C2 = C2(f) independent of T such that

sup
t∈[0,T ]

‖y(t)− y‖ 6 C
(∥∥y0 − y

∥∥+ ‖u‖L2(0,T ;Rm) + ‖y − y‖L2(0,T ;Rd)

)

holds, where
C := C1 exp

(
C2‖u‖L2(0,T ;Rm)

)
.

As insinuated by the form of the constant in the estimate, the proof follows a Grönwall
inequality-based argument. However, as this constant depends on T only through the
L2–norm of the control u, we present the proof for the sake of clarity.

Proof of Lemma 4.1. Let us first suppose that t ∈ [0, 1]. By integrating the equation
satisfied by y on [0, t], namely writing

y(t)− y = y0 − y +

∫ t

0


f0(y) +

m∑

j=1

ujfj(y)


 dτ

= y0 − y +

∫ t

0
(f0(y)− f0(y)) dτ +

∫ t

0

m∑

j=1

uj

(
fj(y)− fj(y)

)
dτ

+

∫ t

0

m∑

j=1

ujfj(y) dτ,

we see that, by using the fact that f0, . . . , fm ∈ Lip(Rd;Rd) and the Cauchy-Schwarz
inequality for the sums,

‖y(t)− y‖ 6
∥∥y0 − y

∥∥+ C(f)

∫ t

0

(
1 + ‖u(τ)‖

)
‖y(τ)− y‖ dτ + C1(f, y)

∫ t

0
‖u(τ)‖ dτ

holds for some constant C1(f, y) > 0 independent of T . Here and henceforth, C(f) > 0
designates the largest among the Lipschitz constants of all f0, . . . , fm. Now applying
the Cauchy-Schwarz inequality for the last term, the fact that t 6 1, and the Grönwall
inequality, in conjunction to the estimate just above, lead us to

‖y(t)− y‖ 6 C2 exp


C(f)

√
1 +

∫ t

0
‖u(τ)‖2 dτ



(∥∥y0 − y

∥∥+ ‖u‖L2(0,T ;Rm)

)
,
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for some C2(f, y) > 0, from which, using
√
x2 + y2 6 x + y for x, y > 0, the desired

statement readily follows. Now suppose that t ∈ (1, T ]. We begin by showing that for
any such t, there exists a t∗ ∈ (t− 1, t] such that

‖y(t∗)− y‖ 6 ‖y − y‖L2(0,T ;Rd). (4.1)

To this end, we argue by contradiction. Suppose that

‖y(t∗)− y‖ > ‖y − y‖L2(0,T ;Rd)

for all t∗ ∈ (t− 1, t]. Then

‖y − y‖2L2(0,T ;Rd) =

∫ T

0
‖y(t)− y‖2 dt >

∫ t

t−1
‖y(τ)− y‖2 dτ > ‖y − y‖2L2(0,T ;Rd),

which is a contradiction. Thus (4.1) holds. Consequently, we know that there exists
t∗ ∈ (t− 1, t] such that (4.1) holds. By integrating the equation satisfied by y in [t∗, t],
namely writing

y(t)− y = y(t∗)− y +

∫ t

t∗


f0(y) +

m∑

j=1

ujfj(y)


 dτ

= y(t∗)− y +

∫ t

t∗
(f0(y)− f0(y)) dτ +

∫ t

t∗

m∑

j=1

uj

(
fj(y)− fj(y)

)
dτ

+

∫ t

t∗

m∑

j=1

ujfj(y) dτ,

we see that, by using the Lipschitz character of f0, . . . , fm and the Cauchy-Schwarz
inequality for the sums,

‖y(t)− y‖ 6 ‖y(t∗)− y‖+C(f)

∫ t

t∗

(
1 + ‖u(τ)‖

)
‖y(τ)− y‖ dτ +C1(f, y)

∫ t

t∗
‖u(τ)‖ dτ.

Now applying the Cauchy-Schwarz inequality for the last term, the fact that t− t∗ 6 1,
(4.1), and the Grönwall inequality, in conjunction to the estimate just above, we obtain

‖y(t)− y‖ 6 C2 exp


C3(f)

√
1 +

∫ t

t∗
‖u(τ)‖2 dτ



(
‖y − y‖L2(0,T ;Rd) + ‖u‖L2(0,T ;Rm)

)
,

for some C2(f, y) > 0 and C3(f) > 0, from which, using
√
x2 + y2 6 x+ y for x, y > 0,

the desired statement readily follows. �
Remark 9. Let us make two brief observations.

• We note that in the case where the running target is (u, y) with f(y, u) = 0 and
u 6= 0, and thus we minimize JT defined in (1.4), we argue as above to obtain
a bound of the form

sup
t∈[0,T ]

‖y(t)− y‖ 6 C
(∥∥y0 − y

∥∥+ ‖u− u‖L2(0,T ;Rm) + ‖y − y‖L2(0,T ;Rd)

)

with C ∼ exp
(
‖u− u‖L2(0,T ;Rm)

)
. Obtaining a dependence of the constant C

with respect to ‖u−u‖L2(0,T ;Rm) rather than just ‖u‖L2(0,T ;Rm) is important, as
by using the functional and optimality arguments, we will be able to obtain a
uniform bound with respect to T of the former, which does not necessarily entail
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a bound on the latter. The argument for deducing such a bound is identical to
the proof of Lemma 4.1 – assume that m = 1 for notational simplicity, and
observe that, since f0(y) + uf1(y) = 0,

y(t)− y = y(t∗)− y +

∫ t

t∗
(f0(y)− f0(y)) ds+

∫ t

t∗
(u− u) (f1(y)− f1(y)) ds

+

∫ t

t∗
(u− u) f1(y) ds+

∫ t

t∗
u (f1(y)− f1(y)) ds.

One may then proceed as before.
• It may readily be seen that if the control is of additive rather than multiplicative
form, i.e. if f1, . . . , fm are nonzero constants, then the constant appearing in
the estimate provided by Lemma 4.1 will not depend on the time horizon T .

We state and prove an analogous result for the semilinear heat equation (3.7).

Lemma 4.2. Let T > 0 be given, and let y be as in (3.3). For any u ∈ L2((0, T )× ω)
and y0 ∈ L2(Ω), let y ∈ C0([0, T ];L2(Ω))∩L2(0, T ;H1

0 (Ω)) be the unique weak solution
to (3.7). Then there exists a constant C = C(f) > 0 independent of T such that

‖y(t)− y‖L2(Ω) 6 C
(∥∥y0 − y

∥∥
L2(Ω)

+ ‖u‖L2((0,T )×ω) + ‖y − y‖L2((0,T )×Ω)

)

holds for all t ∈ [0, T ].

The proof is almost identical to the ODE case, but we sketch it for the sake of clarity.

Proof of Lemma 4.2. The proof closely follows that of Lemma 4.1. We first note that
by uniqueness, y− y can be shown (see [2]) to coincide with the unique mild solution to





∂tz −∆z + f(z + y)− f(y) = u1ω in (0, T )× Ω

z = 0 on (0, T )× ∂Ω

z|t=0 = y0 − y in Ω

which is given by the Duhamel/variation by constants formula:

y(t)− y = et∆(y0 − y) +

∫ t

0
e(t−s)∆u(s)1ω ds−

∫ t

0
e(t−s)∆

(
f(y)− f(y)

)
ds, (4.2)

where
{
et∆
}
t>0

denotes the heat semigroup on L2(Ω) generated by the Dirichlet Lapla-
cian −∆ : H2(Ω) ∩ H1

0 (Ω) → L2(Ω). Of course, (4.2) is interpreted as an identity in
L2(Ω). We may thus proceed and use (4.2) throughout. First suppose that 0 < t 6 1.
Using the well-known decay

∥∥et∆
∥∥
L(L2(Ω))

6 e−λ1(Ω)t 6 1 of the heat semigroup, where
λ1(Ω) > 0 denotes the first eigenvalue of −∆, and the Lipschitz character of f , we find
using (4.2) that

‖y(t)− y‖L2(Ω) 6
∥∥et∆

(
y0 − y

)∥∥
L2(Ω)

+

∫ t

0

∥∥∥e(t−s)∆u(s)
∥∥∥
L2(ω)

ds

+

∫ t

0

∥∥∥e(t−s)∆
(
f(y(s))− f(y)

)∥∥∥
L2(Ω)

ds

6
∥∥y0 − y

∥∥
L2(Ω)

+

∫ t

0
‖u(s)‖L2(ω) ds

+ C0

∫ t

0
‖y(t)− y‖L2(Ω) ds,
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where C0 = C0(f) > 0 is the Lipschitz constant of f . As t 6 1, we may use the Cauchy-
Schwarz and Grönwall inequalities to conclude. Now suppose that t ∈ (1, T ]. Arguing
as in the proof of Lemma 4.1, we know that there exists a t∗ ∈ (t− 1, t] such that

‖y(t∗)− y‖L2(Ω) 6 ‖y − y‖L2((0,T )×Ω) (4.3)

holds. By writing the Duhamel formula for y − y in [t∗, t], namely writing

y(t)− y = et∆ (y(t∗)− y) +

∫ t

t∗
e(t−s)∆u(s)1ω ds−

∫ t

t∗
e(t−s)∆

(
f(y)− f(y)

)
ds

we see just as before that

‖y(t)− y‖L2(Ω) 6 ‖y(t∗)− y‖L2(Ω) +

∫ t

0
‖u(s)‖L2(ω) ds+ C0

∫ t

t∗
‖y(t)− y‖L2(Ω) ds

where C0 = C0(f) > 0 is the Lipschitz constant of f . Using the fact that t∗ − t 6 1
and (4.3), we may, as before, apply the Cauchy-Schwarz and Grönwall inequalities to
conclude. �

We finally show the analog estimate for the semilinear wave equation, which is, after
defining the proper functional setup, identical to the proof of Lemma 4.2.

Lemma 4.3. Let T > 0 be given, and let y be as in (3.3). For any u ∈ L2((0, T )× ω)
and y0 = (y0

1, y
0
2) ∈ H1

0 (Ω) × L2(Ω), let y ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) be

the unique weak solution to (3.1). Then there exists a constant C = C(f,Ω) > 0
independent of T such that

‖y(t)− y‖H1
0 (Ω) + ‖∂ty(t)‖L2(Ω) 6 C

(∥∥y0
1 − y

∥∥
H1

0 (Ω)
+
∥∥y0

2

∥∥
L2(Ω)

+ ‖u‖L2((0,T )×ω)

+ ‖y − y‖L2(0,T ;H1
0 (Ω)) + ‖∂ty‖L2((0,T )×Ω)

)

holds for all t ∈ [0, T ].

Proof of Lemma 4.3. Once (3.1) is written as a first order evolution equation in an
appropriate Hilbert space X, the proof is identical to that of Lemma 4.2. Define the
energy space X := H1

0 (Ω)× L2(Ω), and consider the closed, densely-defined operator

A :=

[
0 Id
∆ 0

]
, D(A) = D(∆)×H1

0 (Ω),

where D(∆) = H2(Ω) ∩ H1
0 (Ω). The operator A is skew-adjoint and thus generates

a strongly continuous semigroup
{
etA
}
t>0

in X by virtue of the Stone-Lumer-Phillips
theorem (see e.g. [47, Theorem 3.8.6]). We now denote

y :=

[
y
∂ty

]
, y :=

[
y
0

]
.

Analog arguments to those in Lemma 4.2 lead us to deduce that

y(t)− y = etA
(
y0 − y

)
+

∫ t

0
e(t−s)A

[
0

u(s)1ω − f(y(s)) + f(y)

]
ds (4.4)

for t > 0 is the unique mild solution to the equation satisfied by the perturbation
y−y. Of course, (4.4) is interpreted as an identity in X. By virtue of the conservative
character of the semigroup, namely

∥∥etAg
∥∥
X

= ‖g‖X for all t > 0 and g ∈ X, we see
that one may apply precisely the same arguments as in the proof of Lemma 4.2, this
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time to the integral formulation (4.4) in X (with an intermediate application of the
Poincaré inequality after using the Lipschitz character of f) to conclude. �

5. Proof of Theorem 2.1

In this section, we present the proof of Theorem 2.1, Corollary 2.1 and Corollary 2.2.
The proof of Theorem 2.1 requires a couple of preliminary results. In particular, we will,
by means of a quasi-turnpike control strategy, provide bounds – uniform with respect
to the time horizon T– of the tracking terms appearing in the definition (2.3) of the
functional JT for the optimal control-state pairs (uT , yT ).

5.1. Quasi-turnpike lemmas. Both of the following results are heavily based on the
specific choice of target y as a steady state of the nonlinear system without control, and
on the Lipschitz character of the nonlinear terms. We begin with the following lemma.

Lemma 5.1. Let y0 ∈ Rd be given, and assume that system (2.1) is controllable in
some time T0 > 0. Let T > 0 be fixed, and let uT ∈ L2(0, T ;Rm) be a global minimizer
of JT defined in (2.3), with yT denoting the associated solution to (2.1) with yT (0) = y0.
Then, there exists a constant C = C(f, φ, T0, y, y

0) > 0 independent of T > 0 such that

‖uT ‖L2(0,T ;Rm) + ‖yT − y‖L2(0,T ;Rd) + ‖yT (t)− y‖ 6 C (5.1)

holds for all t ∈ [0, T ].

0 T

0

T0 0 T

y0

0

y

T0

Figure 3. Proof of Lemma 5.1. The first two terms appearing
in (5.1) also appear in the functional JT (uT ). We construct a quasi-
turnpike control uaux (red), for which the corresponding state yaux (blue)
coincides with y over (T0, T ). In this way, as JT (uT ) 6 JT (uaux), and
JT (uaux) is independent of T , we can conclude. The estimate of the
third term then follows from Lemma 4.1.

Proof of Lemma 5.1. Case 1). We begin by considering the case T > T0. Using the
controllability assumption, we know that there exists a control u† ∈ L2(0, T0;Rm) such
that the corresponding solution y† to




ẏ† = f

(
y†, u†

)
in (0, T0)

y†(0) = y0
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satisfies y†(T0) = y. Now set

uaux(t) :=

{
u†(t) in (0, T0)

0 in (T0, T )

and let yaux be the corresponding solution to (2.1) with yaux(0) = y0. Clearly yaux(t) = y
for t ∈ [T0, T ]. Hence, using φ > 0 and JT (uT ) 6 JT (uaux), we see that

‖yT − y‖2L2(0,T ;Rd) + ‖uT ‖2L2(0,T ;Rm) 6 φ(y) +
∥∥∥y† − y

∥∥∥
2

L2(0,T0;Rd)
+
∥∥∥u†
∥∥∥

2

L2(0,T0;Rm)
.

As the right-hand side in the above inequality is clearly independent of T , and depends
solely on the L2(0, T0) cost of controlling from y0 to y in time T0, we conclude the proof
by applying Lemma 4.1 after noting the uniform boundedness of ‖uT ‖L2(0,T ;Rm) with
respect to T > 0.
Case 2). Now suppose that T 6 T0. In this case, we use φ > 0 and the optimality
inequality JT (uT ) 6 JT (uT0) with the effect of obtaining

‖yT − y‖2L2(0,T ;Rd) + ‖uT ‖2L2(0,T ;Rm) 6 φ (yT0(T )) + ‖yT0 − y‖2L2(0,T ;Rd) + ‖uT0‖2L2(0,T ;Rm)

Now yT0 ∈ C0([0, T0];Rd) is uniformly bounded with respect to T ∈ [0, T0], whence,
using the continuity of φ, as well as T 6 T0, we may conclude that

‖yT − y‖2L2(0,T ;Rd) + ‖uT ‖2L2(0,T ;Rm) 6 C
for some C > 0 independent of T . We may use Lemma 4.1 to conclude. �
We will now focus on an auxiliary control problem with fixed endpoints. Namely, given
0 6 τ1 < τ2 6 T , and yτ1 , yτ2 ∈ Rd, this problem consists in minimizing the nonnegative
functional

Jτ1,τ2(u) :=

∫ τ2

τ1

‖y(t)− y‖2 dt+

∫ τ2

τ1

‖u(t)‖2 dt (5.2)

over all u ∈ Uad, where y ∈ C0([τ1, τ2];Rd) denotes the unique solution to
{
ẏ = f(y, u) in (τ1, τ2)

y(τ1) = yτ1
(5.3)

and
Uad :=

{
u ∈ L2(τ1, τ2;Rm) : y(τ2) = yτ2

}
.

The following lemma is of key importance in what follows. It ensures that the optimal
controls (for Jτ1,τ2) and trajectories are in fact bounded by means of the distance of the
starting point yτ1 and endpoint yτ2 from the running target y. This estimate will be
the cornerstone of the bootstrap argument performed in the proof of Theorem 2.1.

Lemma 5.2. Let y ∈ Rd be as in (2.4), and assume that system (2.1) is controllable
in some time T0 > 0 in the sense of Assumption 1. Let r > 0 be the radius provided by
Assumption 1, let 0 6 τ1 < τ2 6 T be fixed such that τ2−τ1 > 2T0, and let yτ1 , yτ2 ∈ Rd
be such that

‖yτi − y‖ 6 r
for i = 1, 2. Suppose uT ∈ Uad is a global minimizer to Jτ1,τ2 defined in (5.2), with
yT denoting the associated solution to (5.3) with yT (τ2) = yτ2. Then, there exists a
constant C = C(f, T0, y, r) > 0 independent of T, τ1, τ2 > 0 such that

‖uT ‖2L2(τ1,τ2;Rm) + ‖yT − y‖2L2(τ1,τ2;Rd) + ‖yT (t)− y‖2 6 C
(
‖yτ1 − y‖2 + ‖yτ2 − y‖2

)
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holds for all t ∈ [τ1, τ2]. Moreover, the map r 7−→ C(f, T0, y, r) is non-decreasing as a
function from R+ to R+.

The key idea of the proof of Lemma 5.2 lies in the construction of a quasi-turnpike
control (steering the corresponding trajectory from yτ1 to yτ2 in time τ2 − τ1, whilst
remaining at y over an interval of length τ2 − τ1 − 2T0; see the figure just below) in
view of estimating each individual addend of Jτ1,τ2(uT ), which is the minimal value of
the functional Jτ1,τ2 . This construction will yield the desired result.

τ1 τ2

0

τ1 + T0 τ2 − T0

∫
| . . . |2dt 6 C(T0)‖yτ1 − y‖2

C(T0)‖yτ2 − y‖2 >
∫
| . . . |2dt

τ1 τ2

yτ1

yτ2

y

τ1 + T0 τ2 − T0

Figure 4. Proof of Lemma 5.2. The first two terms appearing in the
estimate implied by Lemma 5.2 also appear in the functional Jτ1,τ2(uT ).
We construct a quasi-turnpike control uaux (red), for which the corre-
sponding state yaux (blue) coincides with y over (τ1 + T0, τ2 − T0). In
this way, as Jτ1,τ2(uT ) 6 Jτ1,τ2(uaux), and Jτ1, τ2(uaux) is independent of
T, τ1, τ2, we can conclude. The estimate of the third term follows from
Lemma 4.1.

Proof of Lemma 5.2. Using the controllability assumption, we know the following.

• There exists a control u† ∈ L2(τ1, τ1 + T0;Rm) satisfying

∥∥∥u†
∥∥∥

2

L2(τ1,τ1+T0;Rm)
6 C(T0) ‖yτ1 − y‖2 , (5.4)

for some C(T0) > 0 independent of yτ1 , τ1, and which is such that the corre-
sponding solution y† to




ẏ† = f

(
y†, u†

)
in (τ1, τ1 + T0)

y†(τ1) = yτ1
(5.5)

satisfies y†(τ1 + T0) = y. By integrating (5.5), and using the Lipschitz charac-
ter of f0, . . . , fm, the Grönwall inequality, the Cauchy-Schwarz inequality, and
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(5.4), we see that
∥∥∥y†(t)

∥∥∥ 6 C0

(
‖yτ1‖+

∥∥∥u†
∥∥∥
L2(τ1,τ1+T0;Rm)

+ 1

)
exp

(
C0

∥∥∥u†
∥∥∥
L2(τ1,τ1+T0;Rm)

)

6 C1

(
‖yτ1‖+ ‖yτ1 − y‖+ 1

)
exp

(
C1 ‖yτ1 − y‖

)

6 C1

(
‖yτ1‖+ r + 1

)
exp

(
C1r

)

6 C2

(
‖y‖+ r + 1

)
exp

(
C2r

)
(5.6)

for some C0 = C0(f, T0) > 0, C1 = C1(f, T0) > 0, C2 = C2(f, T0) > 0, and
for every t ∈ (τ1, τ1 + T0). Then, by integrating (5.5) once again, and using
f0(y) = 0, the Cauchy-Schwarz inequality and (5.6), we moreover see that

∥∥∥y†(t)− y
∥∥∥ 6 ‖yτ1 − y‖+

∫ t

τ1

m∑

j=1

∣∣∣u†j(s)
∣∣∣
∥∥∥fj(y†)

∥∥∥ ds+

∫ t

τ1

∥∥∥f
(
y†
)
− f(y)

∥∥∥ ds

6 ‖yτ1 − y‖+ C3

∥∥∥u†
∥∥∥
L2(τ1,τ1+T0;Rm)

+ C(f)

∫ t

τ1

∥∥∥y†(s)− y
∥∥∥ ds (5.7)

for some C3(f, T0, r, y) > 0, with C(f) > 0 being the Lipschitz constant of the
vector fields fj . Finally, applying the Grönwall inequality to (5.7) and using
(5.4), we deduce that

∥∥∥y†(t)− y
∥∥∥ 6 C4 exp (C(f)T0) ‖yτ1 − y‖ (5.8)

for some C4(f, T0, y, r) > 0 independent of T, τ1 and τ2 > 0, and for every
t ∈ (τ1, τ1 +T0). Note that in view of (5.6), both C3 and C4 are non-decreasing
with respect to the parameter r > 0.
• There exists a control u‡ ∈ L2(τ1, τ1 + T0;Rm) satisfying

∥∥∥u‡
∥∥∥

2

L2(τ1,τ1+T0;Rm)
6 C(T0) ‖y − yτ2‖2 , (5.9)

and which is such that the corresponding solution y‡ to



ẏ‡ = f

(
y‡, u‡

)
in (τ1, τ1 + T0)

y‡(τ1) = y
(5.10)

satisfies y‡(τ1 + T0) = yτ2 . By integrating (5.10), and using the Lipschitz
character of f0, . . . , fm, the Grönwall inequality, the Cauchy-Schwarz inequality
and (5.9), we see that

∥∥∥y‡(t)
∥∥∥ 6 C5

(
‖y‖+

∥∥∥u‡
∥∥∥
L2(τ1,τ1+T0;Rm)

+ 1

)
exp

(
C5

∥∥∥u‡
∥∥∥
L2(τ1,τ1+T0;Rm)

)

6 C6

(
‖y‖+ ‖y − yτ2‖+ 1

)
exp

(
C6 ‖y − yτ2‖

)

6 C6

(
‖y‖+ r + 1

)
exp

(
C6r

)
(5.11)

for some C5(f) > 0 and C6(f, T0) > 0, and for every t ∈ (τ1, τ1 + T0). Then,
by integrating (5.10) once again, and using f0(y) = 0, the Cauchy-Schwarz
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inequality and (5.11), we moreover see that
∥∥∥y‡(t)− y

∥∥∥ 6
∫ t

τ1

m∑

j=1

∣∣∣u‡j(s)
∣∣∣
∥∥∥fj(y‡)

∥∥∥ ds+

∫ t

τ1

∥∥∥f
(
y‡
)
− f(y)

∥∥∥ ds

6 C7

∥∥∥u‡
∥∥∥
L2(τ1,τ1+T0;Rm)

+ C(f)

∫ t

τ1

∥∥∥y‡(s)− y
∥∥∥ ds (5.12)

for some C7(f, T0, r, y) > 0, with C(f) > 0 being the Lipschitz constant of the
vector fields fj . Finally, applying the Grönwall inequality to (5.12) and using
(5.9), we deduce that

∥∥∥y‡(t)− y
∥∥∥ 6 C8 exp (C(f)T0) ‖yτ2 − y‖ (5.13)

for some C8(f, T0, y, r) > 0 independent of T, τ1, τ2 > 0, and for every t ∈
(τ1, τ1 + T0). Note that in view of (5.6), both C7 and C8 are non-decreasing
with respect to the parameter r > 0.

Now set

uaux(t) :=





u†(t) in (τ1, τ1 + T0)

0 in (τ1 + T0, τ2 − T0)

u‡ (t− (τ2 − τ1 − T0)) in (τ2 − T0, τ2),

and let yaux be the corresponding solution to (5.3). By construction, we have

yaux(t) = y†(t) in [τ1, τ1 + T0],

and thus
yaux(t) = y in [τ1 + T0, τ2 − T0], (5.14)

whereas we also have yaux(τ2) = yτ2 , whence uaux ∈ Uad. We now evaluate Jτ1,τ2 at
uaux, which by virtue of a simple change of variable as well as (5.14), (5.4), (5.8), (5.9)
and (5.13), leads us to

Jτ1,τ2(uaux) =
∥∥∥u†
∥∥∥
L2(τ1,τ1+T0;Rm)

+
∥∥∥u‡
∥∥∥
L2(τ1,τ1+T0;Rm)

+

∫ τ1+T0

τ1

∥∥∥y†(t)− y
∥∥∥

2
dt+

∫ τ1+T0

τ1

∥∥∥y‡(t)− y
∥∥∥

2
dt

6 C9

(
‖y − yτ1‖2 + ‖y − yτ2‖2

)
(5.15)

where C9 = C9(f, y, T0, r) > 0 is independent of T, τ1, τ2 > 0, and is non-decreasing
with respect to r. Hence uT ∈ Uad is uniformly bounded with respect to T, τ1, τ2 > 0,
as in view of (5.15) we have

‖yT − y‖2L2(τ1,τ2;Rd) + ‖uT ‖2L2(τ1,τ2;Rm) 6 Jτ1,τ2 (uT ) 6 Jτ1,τ2 (uaux)

6 C9

(
‖y − yτ1‖2 + ‖y − yτ2‖2

)
.

An application of Lemma 4.1 combined with the uniform boundedness of ‖uT ‖L2(τ1,τ2;Rm)

with respect to T, τ2, τ1 > 0 suffices to conclude. �

Before proceeding with the proof of Theorem 2.1, we will need the following key lemma.
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Lemma 5.3. Let X be a Banach space, T > 0 and f ∈ C0([0, T ];X). For any τ 6 T
2 ,

there exist t1 ∈ [0, τ) and t2 ∈ (T − τ, T ] such that

‖f(ti)‖X 6
‖f‖L2(0,T ;X)√

τ
for i = 1, 2.

Proof of Lemma 5.3. Denote

η(τ) :=
‖f‖L2(0,T ;X)√

τ
.

We argue by contradiction. Assume that either

‖f(t)‖X > η(τ) for all t ∈ [0, τ)

or
‖f(t)‖X > η(τ) for all t ∈ (T − τ, T ].

hold. Then we have
∫ T

0
‖f(t)‖2X dt >

∫ τ

0
‖f(t)‖2X dt+

∫ T

T−τ
‖f(t)‖2X dt > τη(τ)2.

Hence

η(τ)2 <
1

τ

∫ T

0
‖f(t)‖2X dt = η(τ)2,

which yields a contradiction. This concludes the proof. �

5.2. Proof of Theorem 2.1. We are now in a position to prove our first main result.

Proof of Theorem 2.1. We begin by noting that (2.9) follows from Lemma 5.1. We thus
concentrate on proving (2.8), and we split the proof in two parts. Before proceeding,
let us first note that by Lemma 5.1, there exists a constant C1 > 0, depending only on
f, T0, y, y

0, φ, such that

sup
t∈[0,T ]

‖yT (t)− y‖+ ‖yT − y‖L2(0,T ;Rd) 6 C1 (5.16)

holds for any T > 0 and pair (uT , yT ) which is optimal for (2.3). Let r > 0 be the
radius provided by Assumption 1. By Lemma 5.2, we also know that there exists a
constant C2 > 0, depending only on r, f, T0, y, such that whenever T > 2T0, for any
τ1, τ2 ∈ [0, T ] such that τ2 − τ1 > 2T0 and

‖yT (τi)− y‖ 6 r,
the estimate

sup
t∈[τ1,τ2]

‖yT (t)− y‖+ ‖yT − y‖L2(τ1,τ2;Rd) 6 C2

(
‖yT (τ2)− y‖+ ‖yT (τ1)− y‖

)
(5.17)

holds for any pair (uT , yT ) which is optimal for (5.2). Now fix

τ > 16C4
2 +

C2
1

r2
+

4C2
1C

2
2

r2
, (5.18)

and let
T > 2(τ + T0) := T ∗

be fixed. Let (uT , yT ) thus be an optimal pair for (2.3) with T as such. The choice of
the buffer time τ will become clear in what follows.



28 CARLOS ESTEVE-YAGÜE, BORJAN GESHKOVSKI, DARIO PIGHIN, AND ENRIQUE ZUAZUA

Part 1. We note that for t ∈ [0, τ + T0] and t ∈ [T − (τ + T0), T ], the desired estimate
(2.8) can be obtained without too much difficulty, as the length of both time intervals
is independent of T . Indeed, by (5.16), for any µ > 0 we have

‖yT (t)− y‖ 6 C1e
µt e−µt

6 C1e
µ(τ+T0)

(
e−µt + e−µ(T−t)

)
(5.19)

for t ∈ [0, τ + T0], and

‖yT (t)− y‖ 6 C1e
µ(T−t) e−µ(T−t)

6 C1e
µ(τ+T0)

(
e−µt + e−µ(T−t)

)
(5.20)

for t ∈ [T − (τ + T0), T ].
Part 2. We now aim to show that (2.8) holds for t ∈ [τ + T0, T − (τ + T0)]. To this
end, we proceed in three steps.
Step 1): Preparation. Since τ 6 T

2 , by Lemma 5.3 there exist a couple of time instances
τ1 ∈ [0, τ) and τ2 ∈ (T − τ, T ] such that

‖yT (τi)− y‖ 6
‖yT − y‖L2(0,T ;Rd)√

τ

(5.16)
6 C1√

τ
. (5.21)

Note that, by virtue of the choice of τ in (5.18), we have that C1√
τ
6 r and thus

‖yT (τi)− y‖ 6 r (5.22)

also holds. We shall now restrict our analysis onto [τ1, τ2], and extrapolate onto the
subset [τ, T −τ ]. First note that uT |[τ1,τ2] is a global minimizer6 of Jτ1,τ2 defined in (5.2)
with fixed endpoints yτ1 = yT (τ1) and yτ2 = yT (τ2), and thus clearly yT |[τ1,τ2] solves
(5.3). As

τ2 − τ1 > T − 2τ > 2T0,

in view of (5.22), we may use (5.17) to find that

‖yT (t)− y‖ 6 C2

(
‖yT (τ1)− y‖+ ‖yT (τ2)− y‖

)
(5.23)

holds for all t ∈ [τ1, τ2]. Setting

κ := max

{
1,
C1

C2

}
,

and applying (5.21) to inequality (5.23), we deduce that

‖yT (t)− y‖ 6 2C1C2√
τ

(5.24)

6 κ

2

4C2
2√
τ

(5.25)

holds for all t ∈ [τ1, τ2]. As τ1 6 τ and T − τ 6 τ2, estimates (5.24) and (5.25) clearly
hold for all t ∈ [τ, T − τ ].
Step 2): Bootstrap. Inequality (5.25) motivates performing a bootstrap – we will show
that for any n ∈ N satisfying

n 6 1

τ

(
T

2
− T0

)
,

6This can be shown by contradiction.
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one has

sup
t∈[nτ,T−nτ ]

‖yT (t)− y‖ 6 κ

2

(
4C2

2√
τ

)n
. (5.26)

The choice of n is done as to guarantee that T − 2nτ > 2T0 in view of a repeated
application of Lemma 5.2 (namely (5.17)). Note that (5.24), combined with the choice
of τ in (5.18), also implies that

‖yT (t)− y‖ 6 r (5.27)

for all t ∈ [τ, T − τ ]. To prove (5.26), we proceed by induction. The case n = 1 clearly
holds by (5.25). Thus, assume that (5.26) holds – we aim to show that (5.26) holds at
step n+ 1. To this end, suppose that

n+ 1 6 1

τ

(
T

2
− T0

)
.

This is equivalent to T − 2nτ − 2T0 > 2τ (and recall that τ > 0 is fixed), and it also
clearly implies that

τ 6 T − 2nτ

2
. (5.28)

Since T−2nτ > 2T0, as in Step 1, it can be shown that uT |[nτ,T−nτ ] is a global minimizer
of Jnτ,T−nτ defined in (5.2). Taking these facts into account, and noting that (5.27)
holds7, we can apply Lemma 5.3 on [nτ, T − nτ ] (noting (5.28)), and Lemma 5.2 with
τ1 = nτ and τ2 = T −nτ , to deduce that there exist a couple of times t1 ∈ [nτ, (n+1)τ)
and t2 ∈ (T − (n+ 1)τ, T − nτ ] such that

‖yT (ti)− y‖ 6
‖yT − y‖L2(nτ,T−nτ ;Rd)√

τ
6 C2√

τ

(
‖yT (nτ)− y‖+ ‖yT (T − nτ)− y‖

)
.

We now use the induction hypothesis (5.26) in the above inequality to obtain

‖yT (ti)− y‖ 6 κ
C2√
τ

(
4C2

2√
τ

)n
(5.29)

Now since
t2 − t1 > T − 2(n+ 1)τ > 2T0,

and since uT |[t1,t2] is a global minimizer of Jt1,t2 defined in (5.2), combining Lemma 5.28

and (5.29) we are led to deduce that

‖yT (t)− y‖ 6 C2

(
‖yT (t1)− y‖+ ‖yT (t2)− y‖

)

6 κ

2

4C2
2√
τ

(
4C2

2√
τ

)n
(5.30)

for t ∈ [t1, t2]. Since t1 < (n + 1)τ and T − (n + 1)τ < t2, estimate (5.30) clearly also
holds for t ∈ [(n+ 1)τ, T − (n+ 1)τ ]. Identity (5.26) is thus proven.
Step 3): Conclusion. We now look to use (5.26) as to conclude the proof. Suppose that
t ∈ [τ + T0, T − (τ + T0)]. We set

n(t) := min

{⌊
t

τ + T0

⌋
,

⌊
T − t
τ + T0

⌋}
,

7Note that nτ > τ and T − nτ 6 T − τ , so (5.27) also holds for t ∈ [nτ, T − nτ ], hence Lemma 5.2
is applicable.

8May be applied once again since (5.27) holds for t = t1 > τ and t = t2 6 T − τ .
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where bzc denotes the integer part of z ∈ R. Clearly n(t) > 1 and

n(t)τ 6 t 6 T − n(t)τ.

Moreover, since z 7→ z−2T0
z is non-decreasing,

n(t) 6 T

2(τ + T0)
=

T

2τ

2(τ + T0)− 2T0

2(τ + T0)
6 T

2τ

T − 2T0

T
=

1

τ

(
T

2
− T0

)
.

We may then apply (5.26) to obtain

‖yT (t)− y‖ 6 κ

2

(
4C2

2√
τ

)n(t)

. (5.31)

By virtue of the choice of τ in (5.18), we see that

4C2
2√
τ
< 1.

Moreover, since either

n(t) > t

τ + T0
− 1 or n(t) > T − t

τ + T0
− 1,

we may rewrite (5.31) to obtain

‖yT (t)− y‖ 6 κ

2
exp

(
−n(t) log

( √
τ

4C2
2

))

6 κ

2

√
τ

4C2
2


exp


−

log
( √

τ
4C2

2

)

τ + T0
t


+ exp


−

log
( √

τ
4C2

2

)

τ + T0
(T − t)




 . (5.32)

Looking at (5.32), we see that estimate (2.8) thus holds for all t ∈ [τ +T0, T − (τ +T0)],
with

C :=
κ
√
τ

8C2
2

> 0,

and

µ :=
log
( √

τ
4C2

2

)

τ + T0
> 0. (5.33)

By virtue of (5.19), (5.20) and (5.32), we deduce that (2.8) holds for all t ∈ [0, T ], with
T ∗ := 2(τ + T0),

C := max

{
C1,

κ
√
τ

8C2
2

}
> 0, (5.34)

and µ > 0 as in (5.33). This concludes the proof. �

5.3. Proof of Corollary 2.2. We finish this section with the proof of Corollary 2.2,
which stipulates an exponential decay of optimal controls in the context of driftless
control-affine systems, namely (2.1) with a nonlinearity of the form

f(y, u) =
m∑

j=1

ujfj(y) for (y, u) ∈ Rd × Rm. (5.35)

We recall that f1, . . . , fm ∈ Lip(Rd;Rd). We begin with the following result.
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Lemma 5.4. Suppose T0 > 0, y0 ∈ Rd and uT0 ∈ L2(0, T0;Rm) are all given. Let
yT0 ∈ C0([0, T0];Rd) be the unique solution to

{
ẏT0 = f(yT0 , uT0) in (0, T0)

yT0(0) = y0 (5.36)

with f as in (5.35). Let T > 0, and define

uT (t) :=
T0

T
uT0

(
t
T0

T

)
for t ∈ [0, T ],

and

yT (t) := yT0

(
t
T0

T

)
for t ∈ [0, T ].

Then yT ∈ C0([0, T ];Rd) is the unique solution to (2.1) with yT (0) = y0 and control
uT .

This sort of time-scaling in the context of driftless control affine systems is commonly
used – a canonical example is the proof of the Chow-Rashevskii theorem ([8, Chapter
3, Section 3.3]). We provide the short proof for completeness.

Proof of Lemma 5.4. Using the fact that yT0 is the solution to (7.8) and the change of
variable τ = s TT0 , we see that

yT (t) := yT0

(
t
T0

T

)
= y0 +

∫ t
T0
T

0
f(yT0(s), uT0(s)) ds

= y0 +

∫ t

0

T0

T
f

(
yT0

(
τ
T0

T

)
, uT0

(
τ
T0

T

))
dτ

= y0 +

∫ t

0
f (yT (τ), uT (τ)) dτ.

It follows that yT solves (2.1) with yT (0) = y0, and we conclude by uniqueness. �

Proof of Corollary 2.2. Fix any t ∈ [0, T ) and 0 < h� 1 so that t+ 2h ∈ [0, T ], and set

uaux(s) :=





uT (s) for s ∈ [0, t]

1

2
uT

(
t+

s− t
2

)
for s ∈ (t, t+ 2h]

uT (s− h) for s ∈ (t+ 2h, T ].

By Lemma 5.4, the state yaux, solution to (2.1) associated to uaux is precisely

yaux(s) =





yT (s) for s ∈ [0, t]

yT

(
t+

s− t
2

)
for s ∈ (t, t+ 2h]

yT (s− h) for s ∈ (t+ 2h, T ].
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By means of simple changes of variables, and using the suboptimality of uaux, we can
readily see that

JT (uT ) 6 JT (uaux) =

∫ T

0
‖uaux(s)‖2 ds+

∫ T

0
‖yaux(s)− y‖2 ds

=

∫ T−h

0
‖uT (s)‖2 ds− 1

2

∫ t+h

t
‖uT (s)‖2 ds

+

∫ T−h

0
‖yT (s)− y‖2 +

∫ t+h

t
‖yT (s)− y‖2 ds

6
∫ T

0
‖uT (s)‖2 ds− 1

2

∫ t+h

t
‖uT (s)‖2 ds

+

∫ T

0
‖yT (s)− y‖2 +

∫ t+h

t
‖yT (s)− y‖2 ds. (5.37)

From (5.37), one sees that

1

2

∫ t+h

t
‖uT (s)‖2 ds 6

∫ t+h

t
‖yT (s)− y‖2 ds. (5.38)

We combine (5.38) with (2.11) to deduce that

1

h

∫ t+h

t
‖uT (s)‖2 ds 6 2

h

∫ t+h

t
‖yT (s)− y‖2 ds 6 2C

h

∫ t+h

t
e−2µs ds

6 2C

h

∫ t+h

t
e−2µt ds

= 2Ce−2µt. (5.39)

By the Lebesgue differentiation theorem, using (5.39) we deduce that

‖uT (t)‖ = lim
h↘0

(
1

h

∫ t+h

t
‖uT (s)‖2 ds

) 1
2

6 2Ce−µt,

for a.e. t ∈ (0, T ), as desired. This concludes the proof. �

6. Proof of Theorem 3.1

In this section, we provide details of the proof of Theorem 3.1. The proof of Corollary 3.1
follows by repeating the proof of Corollary 2.1 in the appropriate functional setting, so
we omit it.

Proof of Theorem 3.1. Once (3.1) is written as a first order evolution equation set in
X := H1

0 (Ω) × L2(Ω) (see the proof of Lemma 4.3 for this setup), the only noticeable
difference in the proof of Theorem 3.1 with respect to the proof of Theorem 2.1 are the
specific "quasi-turnpike" lemmas one applies in the preparation (Lemma 6.1 in Part 1
& Step 1 of Part 2) and bootstrap (Lemma 6.2 in Step 2). So one simply repeats the
proof of Theorem 2.1 whilst applying Lemma 6.1, Lemma 6.2 and Lemma 5.3 with X
as above. Whence, the proof follows from these two lemmas, stated and proven just
below. �

Lemma 6.1. Let y0 = (y0
1, y

0
2) ∈ H1

0 (Ω)× L2(Ω) be given. Let T > 0 be fixed, and let
uT ∈ L2((0, T )× ω) be a global minimizer to JT defined in (3.2), with yT denoting the
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associated solution to (3.1). Then, there exists a constant C = C(f, φ, ω,Ω, y,y0) > 0
independent of T > 0 such that

JT (uT ) + ‖yT (t)− y‖2H1
0 (Ω) + ‖∂tyT (t)‖2L2(Ω) 6 C

holds for all t ∈ [0, T ].

Proof of Lemma 6.1. The proof follows the lines of that of Lemma 5.1, simply adapted
to the PDE setting. Fix T0 := Tmin(ω,Ω) + 1 where Tmin(ω,Ω) > 0 is the minimal
controllability time for the semilinear wave equation, defined in (3.6).
Case 1). We begin by considering the case T > T0. By controllability, we know that
exists some control u† ∈ L2((0, T0)× ω) such that the corresponding solution y† to





∂2
t y
† −∆y† + f(y†) = u†1ω in (0, T0)× Ω

y† = 0 on (0, T0)× ∂Ω

(y†, ∂ty
†)|t=0 = y0 in Ω.

satisfies y†(T0) = y and ∂ty†(T0) = 0 (in L2(Ω), and thus a.e.). Now set

uaux(t) :=

{
u†(t) in (0, T0)

0 in (T0, T )

and let yaux be the corresponding solution to (3.1). Clearly

yaux(t) = y and ∂ty
aux(t) = 0 for t ∈ [T0, T ].

Combining this fact with JT (uT ) 6 JT (uaux), we see that

JT (uT ) 6 φ(y) +
∥∥∥y† − y

∥∥∥
2

L2(0,T0;H1
0 (Ω))

+
∥∥∥∂ty†

∥∥∥
2

L2((0,T0)×Ω)
+
∥∥∥u†
∥∥∥

2

L2((0,T0)×ω)
.

As the right-hand side in the above inequality is clearly independent of T , we conclude
by applying Lemma 4.3.
Case 2). Now suppose that T 6 T0. We use JT (uT ) 6 JT (uT0) to obtain

JT (uT ) 6 φ (yT0(T )) + ‖yT0 − y‖2L2(0,T ;H1
0 (Ω)) + ‖∂tyT0‖2L2((0,T )×Ω) + ‖uT0‖2L2((0,T )×ω).

Now yT0 ∈ C0([0, T0];L2(Ω)) is bounded uniformly with respect to T ∈ [0, T0]. Hence,
using the fact that φ ∈ L(L2(Ω);R+) and T 6 T0, we deduce that

JT (uT ) 6 C (6.1)

for some C > 0 independent of T . Combining (6.1) with Lemma 4.3 allows us to
conclude. �

Since (3.1) is a Lipschitz perturbation of an exactly controllable linear system, the
following claim holds.

Claim 6.1 (Cost estimate). Let T0 > Tmin(ω,Ω), where Tmin(ω,Ω) > 0 is defined in
(3.6). There exists r > 0 and C = C(T0, ω, f) > 0 such that

inf
u

such that
(y,∂ty)|t=0=y0

and
(y,∂ty)|t=T0=(y,0)

‖u‖2L2((0,T0)×ω) 6 C
(∥∥y0

1 − y
∥∥2

H1
0 (Ω)

+
∥∥y0

2

∥∥2

L2(Ω)

)
,
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and
inf
u

such that
(y,∂ty)|t=0=(y,0)

and
(y,∂ty)|t=T0=y1

‖u‖2L2((0,T0)×ω) 6 C
(∥∥y1

1 − y
∥∥2

H1
0 (Ω)

+
∥∥y1

2

∥∥2

L2(Ω)

)
,

hold for any y0 =
(
y0

1, y
0
2

)
and y1 =

(
y1

1, y
1
2

)
such that

y0,y1 ∈
{[

y1

y2

]
∈ H1

0 (Ω)× L2(Ω) :

∥∥∥∥
[
y1

y2

]
−
[
y
0

]∥∥∥∥
H1

0 (Ω)×L2(Ω)

6 r
}
,

where y solves (3.1) and y ∈ H1
0 (Ω) is fixed as in (3.3).

Remark 10 (Regarding Claim 6.1). Let us provide more detail regarding Claim 6.1,
following [51, 52], and also the proofs of [50, Theorem 2.1] and [14, Theorem 2.2]. For
showing the controllability of the semilinear wave equation, one typically proceeds by
considering

∂2
t y −∆y + g(ζ)y = f(0) in Ω× (0, T ),

where ζ ∈ L2((0, T ) × Ω) is given, and g(s) = f(s)−f(0)
s for s ∈ R is bounded and

continuous. It can be shown that the above system is controllable in time T > Tmin(ω,Ω)
with continuous dependence of the minimal L2-norm control with respect to the data
and f(0). The result is transferred to the semilinear system by Schauder’s fixed point
theorem. To have precisely the same estimates as in Claim 6.1, namely, to remove
the dependence of the minimal L2-norm control with respect to f(0), we assume that
f(0) = 0.

As in the finite-dimensional case, the second "quasi-turnpike" result is one for an
auxiliary control problem with fixed endpoints. For 0 6 τ1 < τ2 6 T and given
yτ1 ,yτ2 ∈ H1

0 (Ω) × L2(Ω), this auxiliary problem consists in minimizing the nonnega-
tive functional

Jτ1,τ2(u) :=

∫ τ2

τ1

‖y(t)− y‖2H1
0 (Ω) dt+

∫ τ2

τ1

‖∂ty(t)‖2L2(Ω) +

∫ τ2

τ1

‖u(t)‖2L2(ω) dt (6.2)

over all u ∈ Uad, where y ∈ C0([τ1, τ2];H1
0 (Ω)) ∩ C1([τ1, τ2];L2(Ω)) denotes the unique

solution to 



∂2
t y −∆y + f(y) = u1ω in (τ1, τ2)× Ω

y = 0 on (τ1, τ2)× ∂Ω

(y, ∂ty)|t=τ1 = yτ1 in Ω.

(6.3)

and where
Uad :=

{
u ∈ L2((τ1, τ2)× ω) : (y, ∂ty)|t=τ2 = yτ2

}
.

We recall that f ∈ Lip(R). We now state and prove the wave equation analog of
Lemma 5.2, which we recall, is the cornerstone of the bootstrap argument in our turnpike
proof.

Lemma 6.2. Fix T0 > Tmin(ω,Ω). Suppose T > 0 and 0 6 τ1 < τ2 6 T are fixed such
that τ2 − τ1 > 2T0. Let r > 0 be as in Claim 6.1, and let yτ1 ,yτ2 be such that

yτi ∈
{[

y1

y2

]
∈ H1

0 (Ω)× L2(Ω) :

∥∥∥∥
[
y1

y2

]
−
[
y
0

]∥∥∥∥
H1

0 (Ω)×L2(Ω)

6 r
}
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for i = 1, 2. Let uT ∈ Uad be a global minimizer to Jτ1,τ2 defined in (6.2), with yT
denoting the associated solution to (6.3). Then, there exists C = C(f, T0,Ω, ω) > 0
independent of T, τ1, τ2,y

τi , r, such that

Jτ1,τ2(uT ) + ‖yT (t)− y‖2H1
0 (Ω) + ‖∂tyT (t)‖2L2(Ω)

6 C
(
‖yτ11 − y‖2H1

0 (Ω) + ‖yτ12 ‖2L2(Ω) + ‖yτ21 − y‖2L2(Ω) + ‖yτ22 ‖2L2(Ω)

)

holds for all t ∈ [τ1, τ2].

Proof of Lemma 6.2. The proof follows the lines of that of Lemma 5.2, with some slight
technical differences. We provide details for the sake of completeness. For notational
purposes, it will be significantly simpler to operate in the canonical first order system
framework presented in the proof of Lemma 4.3. For the same reason, we will also drop
the subscripts of T . We set X := H1

0 (Ω)× L2(Ω), and we denote

y :=

[
y
∂ty

]
, y :=

[
y
0

]
.

We also recall the definition of the skew-adjoint operator

A :=

[
0 Id
∆ 0

]
, D(A) = D(∆)×H1

0 (Ω),

where D(∆) = H2(Ω) ∩H1
0 (Ω). Then the desired estimate simply writes as

Jτ1,τ2(u) + ‖y(t)− y‖2X 6 C
(
‖yτ1 − y‖2X + ‖yτ2 − y‖2X

)

for all t ∈ [τ1, τ2]. We proceed similarly as in the proof of Lemma 5.2. Using Claim 6.1,
we know the following.

• There exists a control u† ∈ L2((τ1, τ1 + T0)× ω) satisfying

∥∥∥u†
∥∥∥

2

L2((τ1,τ1+T0)×ω)
6 C0 ‖yτ1 − y‖2X , (6.4)

for some C0 = C0(T0, ω, f) > 0, and such that the corresponding solution

y† =

[
y†

∂ty
†

]
to




∂ty
† −Ay† +

[
0

f(y†)

]
=

[
0

u†1ω

]
in (τ1, τ1 + T0)

y†|t=τ1 = yτ1

satisfies y†(τ1 + T0) = y in X. By writing the Duhamel formula for y† − y,
and using the conservative character of

{
etA
}
t>0

in X, the Cauchy-Schwarz
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inequality, the Lipschitz character of f and the Poincaré inequality, we see that
∥∥∥y†(t)− y

∥∥∥
X
6
∥∥etA(yτ1 − y)

∥∥
X

+

∫ t

τ1

∥∥∥∥e(t−s)A
[

0
u†(s)1ω

]∥∥∥∥
X

ds

+

∫ t

τ1

∥∥∥∥e(t−s)A
[

0(
f
(
y†
)
− f(y)

)
]∥∥∥∥

X

ds

6 ‖yτ1 − y‖X +
√
T0

∥∥∥u†
∥∥∥
L2((τ1,τ1+T0)×ω)

+ C(f,Ω)

∫ t

τ1

∥∥∥y†(s)− y
∥∥∥
X

ds, (6.5)

with C(f, Ω) > 0 depending solely on the Poincaré constant and the Lipschitz
constant of f . Applying the Grönwall inequality to (6.5) and using (6.4), we
deduce that∥∥∥y†(t)− y

∥∥∥
X
6 C1 exp (C(f,Ω)T0) ‖yτ1 − y‖X (6.6)

holds for some C1(f, T0, ω) > 0 independent of T, τ1, τ2 > 0, and for every
t ∈ (τ1, τ1 + T0).
• There exists a control u‡ ∈ L2((τ1, τ1 + T0)× ω) satisfying

∥∥∥u‡
∥∥∥

2

L2((τ1,τ1+T0)×ω)
6 C0 ‖y − yτ2‖2X , (6.7)

and which is such that the corresponding solution y‡ =

[
y‡

∂ty
‡

]
to




∂ty
‡ −Ay‡ +

[
0

f(y‡)

]
=

[
0

u‡1ω

]
in (τ1, τ1 + T0)

y‡|t=τ1 = y

satisfies y‡(τ1 + T0) = yτ2 in X. Arguing just as above, we see that
∥∥∥y‡(t)− y

∥∥∥
X
6
∫ t

τ1

∥∥∥∥e(t−s)A
[

0
u‡(s)1ω

]∥∥∥∥
X

ds+

∫ t

τ1

∥∥∥∥e(t−s)A
[

0(
f
(
y‡
)
− f(y)

)
]∥∥∥∥

X

ds

6
√
T0

∥∥∥u‡
∥∥∥
L2((τ1,τ1+T0)×ω)

+ C(f,Ω)

∫ t

τ1

∥∥∥y‡(s)− y
∥∥∥
X

ds, (6.8)

with C(f, Ω) > 0 depending solely on the Poincaré constant and the Lipschitz
constant of f . Applying the Grönwall inequality to (6.8) and using (6.7), we
deduce that∥∥∥y‡(t)− y

∥∥∥
X
6 C2 exp (C(f,Ω)T0) ‖yτ2 − y‖X (6.9)

holds for some C2(f, T0, ω) > 0 independent of T, τ1, τ2 > 0, and for every
t ∈ (τ1, τ1 + T0).

Now set

uaux(t) :=





u†(t) in (τ1, τ1 + T0)

0 in (τ1 + T0, τ2 − T0)

u‡ (t− (τ2 − τ1 − T0)) in (τ2 − T0, τ2),
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and let yaux =

[
yaux

∂ty
aux

]
be the corresponding solution to (6.3). By construction, we

have
yaux(t) = y†(t) in [τ1, τ1 + T0],

and thus
yaux(t) = y in [τ1 + T0, τ2 − T0], (6.10)

whereas we also have yaux(τ2) = yτ2 , whence uaux ∈ Uad. We now evaluate Jτ1,τ2 at
uaux, which by virtue of a simple change of variable as well as (6.10), (6.4), (6.6), (6.7)
and (6.9), leads us to

Jτ1,τ2(uaux) =
∥∥∥u†
∥∥∥
L2((τ1,τ1+T0)×ω)

+
∥∥∥u‡
∥∥∥
L2((τ1,τ1+T0)×ω)

+

∫ τ1+T0

τ1

∥∥∥y†(t)− y
∥∥∥

2

X
dt+

∫ τ1+T0

τ1

∥∥∥y‡(t)− y
∥∥∥

2

X
dt

6 C3

(
‖y − yτ1‖2X + ‖y − yτ2‖2X

)
(6.11)

where C3(f, T0,Ω, ω) > 0 is independent of T, τ1, τ2 > 0. By virtue of the optimality of
u and (6.11), we have

Jτ1,τ2 (u) 6 Jτ1,τ2 (uaux) 6 C3

(
‖y − yτ1‖2X + ‖y − yτ2‖2X

)
.

An application of Lemma 4.3 suffices to conclude. �

7. Proof of Theorem 3.2

For the semilinear heat equation, we can adapt the proof strategy of Theorem 2.1 to
directly prove the stabilization result stipulated by Theorem 3.2. We provide details
of the proof, as it is not an immediate application of that of Theorem 2.1. We recall
that since f ∈ Lip(R), as presented in [38, Lemma 8.3] (and the references therein),
given any T0 > 0, y0 ∈ L2(Ω) and y ∈ H1

0 (Ω) solution to (3.3), there exists a control
u ∈ L2((0, T0)× ω) such that the unique solution y to (3.7) satisfies y(T0) = y, and

‖u‖L2((0,T0)×ω) 6 C(T0, ω, f)
∥∥y0 − y

∥∥
L2(Ω)

(7.1)

for some C(T0, ω, f) > 0 (the dependence on f is through the Lipschitz constant which
is an upper bound for the potential appearing in the associated linear problem). Indeed,
we may consider z := y − y, and the control u steering z to 0 in time T is the same as
that steering y to y in time T . But then, ‖u‖L2((0,T0)×ω) 6 C(T0, ω, f)‖z(0)‖L2(Ω) from
the linear system and a fixed-point argument. Let T > 0 and 0 6 τ1 < T be fixed, and
suppose yτ1 ∈ L2(Ω) is given. Consider

Jτ1,T (u) :=

∫ T

τ1

‖y(t)− y‖2L2(Ω) dt+

∫ T

τ1

‖u(t)‖2L2(ω) dt, (7.2)

where y solves 



∂ty −∆y + f(y) = u1ω in (τ1, T )× Ω

y = 0 on (τ1, T )× ∂Ω

y|t=τ1 = yτ1 in Ω.

(7.3)

We will only need the following lemma, which is similar to Lemma 6.2. In fact, the
blueprint of the proof below is contained therein.
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Lemma 7.1. Let T > 0 and τ1 > 0 be given such that T > τ1, and let yτ1 ∈ L2(Ω). Let
uT ∈ L2((τ1, T )×ω) be any global minimizer to Jτ1,T defined in (7.2), with yT denoting
the corresponding solution to (7.3). Then, there exists a constant C = C(f, ω) > 0
independent of T, τ1 > 0 and yτ1 such that

Jτ1,T (uT ) + ‖yT (t)− y‖2L2(Ω) 6 C ‖yτ1 − y‖2L2(Ω)

holds for all t ∈ [τ1, T ].

Proof of Lemma 7.1. Case 1). Let us first suppose that T > τ1 + 1. By controllability
to the steady state y (see the discussion around (7.1)), we know that exists a control
u† ∈ L2((τ1, τ1 + 1)× ω) satisfying

∥∥∥u†
∥∥∥
L2((τ1,τ1+1)×ω)

6 C1 ‖yτ1 − y‖L2(Ω) (7.4)

for some C1 = C1(ω, f) > 0 and such that the corresponding solution y† to




∂ty
† −∆y† + f(y†) = u†1ω in (τ1, τ1 + 1)× Ω

y† = 0 on (τ1, τ1 + 1)× ∂Ω

y†|t=0 = y0 in Ω.

satisfies y†(τ1 + 1) = y. Arguing as in the proof of Lemma 4.2, we see that
∥∥∥y†(t)− y

∥∥∥
L2(Ω)

6 ‖yτ1 − y‖L2(Ω) +
∥∥∥u†
∥∥∥
L2((τ1,τ1+1)×ω)

+ C(f)

∫ t

τ1

∥∥∥y†(s)− y
∥∥∥
L2(Ω)

ds (7.5)

for t ∈ (τ1, τ1 + 1), with C(f) > 0 being the Lipschitz constant of f . Applying the
Grönwall inequality to (7.5) and using (7.4), we deduce that

∥∥∥y†(t)− y
∥∥∥
L2(Ω)

6 C2 exp (C(f)) ‖yτ1 − y‖L2(Ω) (7.6)

for some C2(f, ω) > 0 independent of T, τ1, and for every t ∈ (τ1, τ1 + 1). Now set

uaux(t) :=

{
u†(t) in (τ1, τ1 + 1)

0 in (τ1 + 1, T )

and let yaux be the corresponding solution to (3.7). Clearly

yaux(t) = y for t ∈ [τ1 + 1, T ].

Hence, using Jτ1,T (uT ) 6 Jτ1,T (uaux), (7.6) and (7.4), we see that

Jτ1,T (uT ) 6
∥∥∥y† − y

∥∥∥
2

L2((τ1,τ1+1)×Ω)
+
∥∥∥u†
∥∥∥

2

L2((τ1,τ1+1)×ω)

6 C3 ‖yτ1 − y‖2L2(Ω)

for some C3(f, ω) > 0 independent of T, τ1 > 0. Applying Lemma 4.2 suffices to
conclude.
Case 2). Now suppose that τ1 < T < τ1 +1. We may then use the optimality inequality
Jτ1,T (uT ) 6 Jτ1,T (uτ1+1), as well as Jτ1,T (uτ1+1) 6 Jτ1,τ1+1(uτ1+1), and since by the
previous step, we know that

Jτ1,τ1+1(uτ1+1) 6 C3 ‖yτ1 − y‖2L2(Ω) ,
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where C3 = C3(f, ω) > 0 is independent of T, τ1, we deduce

Jτ1,T (uT ) 6 C3 ‖yτ1 − y‖2L2(Ω) . (7.7)

We may conclude by combining (7.7) with Lemma 4.2. �

Proof of Theorem 3.2. The proof is of the same spirit9 as that of Theorem 2.1, the only
difference being the fact that we only need to bootstrap forward in time due to the lack
of final cost, which renders the proof significantly less technical. The control estimate
follows from Lemma 7.1. We thus concentrate solely on estimating the state. Let T0 > 0
be arbitrary, and fix

τ > C4
1

where C1 = C1(f, ω) > 0 is the (square root of the) constant appearing in Lemma 7.1.
We note that if T 6 2τ + T0, then the desired estimate clearly follows by arguing as in
previous proofs. We thus suppose that

T > 2τ + T0

is fixed. First note that for t ∈ [0, τ +T0], just as in Part 1 of the proof of Theorem 2.1,
the desired estimate can easily be obtained for such t since the length of the time interval
is independent of T . Hence, we will solely concentrate on the case t ∈ [τ + T0, T ]. To
this end, we will mimic the steps done in the proof of Theorem 2.1.
Step 1). Preparation. Since 2τ < T and thus τ 6 T

2 , by Lemma 5.3 there exists a
τ1 ∈ [0, τ) such that

‖yT (τ1)− y‖L2(Ω) 6
‖yT − y‖L2((0,T )×Ω)√

τ
6 C1√

τ

∥∥y0 − y
∥∥
L2(Ω)

, (7.8)

where we used Lemma 7.1 for the second estimate. The control uT |[τ1,T ] can be shown
to minimize Jτ1,T with initial data yτ1 = yT (τ1) for (7.3), to which clearly the solution
is yT |[τ1,T ]. So by Lemma 7.1 and (7.8),

‖yT (t)− y‖L2(Ω) 6 C1‖yT (τ1)− y‖L2(Ω) 6
C2

1√
τ

∥∥y0 − y
∥∥
L2(Ω)

(7.9)

holds for all t ∈ [τ1, T ]. Since τ1 < τ , (7.9) also holds for all t ∈ [τ, T ].
Step 2). Bootstrap. We bootstrap (7.9) and prove that for any n ∈ N satisfying

n 6 T

2τ
,

the estimate

sup
t∈[nτ,T ]

‖yT (t)− y‖L2(Ω) 6
(
C2

1√
τ

)n ∥∥y0 − y
∥∥
L2(Ω)

(7.10)

9Actually, as already commented below the statement of Corollary 2.1, the proof presented below
also roughly applies to show Corollary 2.1, where one also would need to account for the constants
which should also depend on the radius r > 0. In fact, just as for the heat equation, one could first
adapt Lemma 5.2 to a functional of the form (7.2); an adaptation which would hold for initial data in
a ball of radius r > 0 around y, and then use the global estimate of Lemma 5.1 and argue as in the
beginning of the proof of Theorem 2.1 to fit within this ball, where one bootstraps forward in time only
(namely, over intervals of the form [nτ, T ]).
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holds. We proceed by induction. The case n = 1 holds by (7.9). Thus assume that
(7.10) holds at some stage n ∈ N and suppose that

n+ 1 6 T

2τ
.

This clearly implies that

τ 6 T − 2nτ

2
. (7.11)

The control uT |[nτ,T ] can again be shown to be a global minimizer of Jnτ,T . We can
thus apply Lemma 7.1 with τ1 = nτ , and Lemma 5.3 (noting (7.11)) on [nτ, T − nτ ],
to deduce that there exists t1 ∈ [nτ, (n+ 1)τ) such that

‖yT (t1)− y‖L2(Ω) 6
‖yT − y‖L2((nτ,T )×Ω)√

τ
6 C1√

τ
‖yT (nτ)− y‖L2(Ω).

We may apply the induction hypothesis (7.10) to deduce

‖yT (t1)− y‖L2(Ω) 6
C1√
τ

(
C2

1√
τ

)n ∥∥y0 − y
∥∥
L2(Ω)

. (7.12)

Since uT |[t1,T ] is a global minimizer of Jt1,T , we can apply Lemma 7.1 and use (7.12) to
deduce that

‖yT (t)− y‖L2(Ω) 6 C1‖yT (t1)− y‖L2(Ω) 6
C2

1√
τ

(
C2

1√
τ

)n ∥∥y0 − y
∥∥
L2(Ω)

(7.13)

holds for all t ∈ [t1, T ]. Clearly, as t1 < (n+1)τ , (7.13) also holds for all t ∈ [(n+1)τ, T ].
This concludes the induction proof, and so (7.10) does indeed hold.
Step 3). Conclusion. We now use (7.10) to conclude the proof. Suppose t ∈ [τ+T0, T ]

is arbitrary and fixed. Set n(t) :=
⌊

t
τ+T0

⌋
. Clearly n(t) > 1, t > n(t)τ and n(t) 6 T

2τ

due to the choice of T0. We may then apply (7.10) to find that

‖yT (t)− y‖L2(Ω) 6
(
C2

1√
τ

)n(t) ∥∥y0 − y
∥∥
L2(Ω)

(7.14)

Now since τ > C4
1 and n(t) > t

τ+T0
− 1, we can see from (7.14) that

‖yT (t)− y‖L2(Ω) 6 exp

(
−n(t) log

(√
τ

C2
1

))∥∥y0 − y
∥∥
L2(Ω)

6
√
τ

C2
1

exp


−

log
(√

τ
C2

1

)

τ + T0
t


∥∥y0 − y

∥∥
L2(Ω)

The desired estimate thus holds for all t ∈ [τ + T0, T ], with

µ :=
log
(√

τ
C2

1

)

τ + T0
> 0 (7.15)

and

C :=

√
τ

C2
1

> 0. (7.16)

This concludes the proof. �
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8. Numerics

We briefly comment on the setting of the numerical experiment shown in Figure 1. We
make use of the neural ODE (1.3) with σ ≡ tanh, and discretize with an explicit mid-
point rule with 4t = 1/2. The operator P : R3 → [−1, 1] appearing in (1.1) is defined as
Px = hardtanh(p1x+ p2), through the nonlinear thresholding operator hardtanh(z) =
1{s>1}(z) + z1s∈(−1,1)(z) + 1{s61}(z), and the parameters p1 ∈ R3×3 and p2 ∈ R3 which
are randomly sampled10 from a normal distribution. We use n = 2400 points for train-
ing, and 600 points for testing (see Figure 5). We originally consider a dataset of points
in R2, but we embed them in R3 by adding a 0 to each point. This is to avoid the inter-
section of trajectories in R2, which takes place due to uniqueness ([9]). This is why we
actually plot the predictor as a map R2 → [−1, 1] in Figure 5. The code for reproducing
all figures is available at https://github.com/borjanG/dynamical.systems.

x1

x
2

Generalization outside training data

train

test

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5. We see that the trained predictor, plotted on [−2, 2]2, has
generalized the shape of the dataset, as desired.

−4

−2

0

2

4

−4

−2

0

2

4

−4

−2

0

2

4

Figure 6. To further corroborate the graph showing the decay of op-
timal controls ‖u(t)‖ in Figure 1, where u(t) = (w(t), b(t)), we display
the values of the matrix w(t) ∈ R3×3 in times t ∈ {0.67, 1.33, 5} (left to
right).

10As a byproduct of the Johnson–Lindenstrauss lemma ([43, Lemma 23.4]), such random projections
are of low distortion with respect to the Euclidean distance, in the sense that distances between points
are nearly preserved after projecting.

https://github.com/borjanG/dynamical.systems
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9. Concluding remarks and outlook

We have presented a new methodology for proving the turnpike property for nonlinear
optimal control problems set in large time horizons, under the assumption that the
running target is a steady control-state pair, and that the system is controllable with a
local estimate on the cost. These assumptions allow us to bypass necessary optimality
conditions and a study of the adjoint system, and rather relies on calculus of variations–
based arguments. More precisely, we have concluded that

• The exponential turnpike property holds for optimal state trajectories of op-
timal control problems for nonlinear finite and infinite-dimensional dynamics,
whenever the cost functional is coercive with respect to the distance of the
state to the target steady state. The nonlinearity may be assumed to be only
globally Lipschitz continuous (and thus possibly nonsmooth). The result holds
without any smallness assumptions on the initial data.
• The last exponential arc (near t = T ) can be removed whenever the optimal
control problem is considered without a final time cost, and thus entails an
exponential stabilization estimate for the optimal state trajectory.

The motivation behind the consideration of steady state running targets in (2.3) was the
link with machine learning applications, namely problem (1.1) (although, we saw that
our results also apply to many contexts which arise naturally in mechanics). While we
see a turnpike phenomenon in the numerical simulations of (1.1), our analysis done for
(2.3) strictly applies to (1.1) only when dx = dy and P is the identity. On another hand,
since P is surjective, we can see (2.3) as a relaxed version of (1.1), in which case, we
select the running targets in the functional (2.3) as xi ∈ P−1

({
y(i)
})

for i ∈ {1, . . . , n},
which are steady states of the underlying system with 0 control (as are all constants,
actually). The numerical simulations in Figure 1 are all the more curious because of the
fact that 1). we see the stabilization of the full state, while we solely penalize projections
of it, and 2). the projection x 7→ Px is actually not coercive with respect to x (see
Section 8). For problems manifesting a lack of observability of certain components of
the state in the tracking term, the turnpike property for the observed components and
the full controls has been shown in [37], in the setting of linear systems. Should such a
property also hold for (1.1), then the stability of the full state seen in Figure 1 can be
explained through the decay of the optimal controls to 0 and the specific form of the
dynamics. One could envision a fusion of our strategy with Loyasewicz-type inequalities
to provide theoretical guarantees, but this remains an open problem.

9.1. Outlook. Let us conclude with a select list of additional open problems.
• Necessity of assuming that y is a steady state. The assumption that
the running target y in (2.3) is a steady state of the dynamics allows us to
easily obtain quasi-turnpike controls allowing us to obtain the key estimates in
Lemma 5.1 and Lemma 5.2 (resp. Lemma 6.1, Lemma 6.2, Lemma 7.1 in the
PDE setting). The case of controlled steady states y associated to a presecribed
control u can readily be addressed by penalizing u − u over [0, T ] instead of
solely u as noted in Remark 1. But we were unable to see if this is a necessary
assumption in the nonlinear context in the absence of smallness conditions on
the target, and whether the controlled steady state case can be covered by
solely penalizing u. These questions merit in-depth investigation.
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• Weakening Assumption 1. An important hypothesis we made throughout is
Assumption 1, which required that, at least for data y0, y1 in the vicinity of the
free steady state y, the minimal L2–norm control steering the system from y0 to
y may be estimated by

∥∥y0 − y
∥∥, and similarly for that from y to y1. This is a

hallmark of linear control systems, which is also expected for nonlinear systems
for which controllability results are obtained by linearization or perturbation
methods and a fixed-point argument. But in the general context of control-
affine systems, such an assumption may appear restrictive, even-though it is
local. It is thus of interest to see how the results and methodology can be
pertained whilst weakening Assumption 1.

• Turnpike with state or control constraints. A problem which has not been
extensively covered in the literature is the turnpike property with positivity (or
box) constraints on either the state or the control. Slightly weaker integral
turnpike results under such constraints have been obtained in [33] by means of
quantitative inequalities. Such a study would complement the already existent
nonlinear controllability under constraints theory – a topic covered in several
recent works, see e.g. [28, 35, 38, 42] and the references therein.

• More general control systems. We have considered homogeneous Dirich-
let boundary conditions in (3.1) and (3.7) merely to avoid additional technical
details. The proofs of Theorem 3.1 (resp. Theorem 3.2) only require that the
underlying dynamics are exactly controllable (resp. controllable to a steady
state), thus, the same results hold with Neumann boundary conditions. Sim-
ilarly, variable coefficients and lower order terms may be considered, as long
as these coefficients are time-independent, as we are using a Duhamel formula
along with a semigroup representation of the solution, and this semigroup ought
to be uniformly bounded for all times.

In fact, we have chosen the wave and heat equation for the sake of presen-
tation, but the respective results could possibly be extended to a more general
scenario of exactly controllable semilinear systems with similar assumptions,
e.g. dispersive equations (Schrödinger, Korteweg-de Vries), coupled systems,
and so on.

The (apparent) necessity of a Duhamel formula may however be an impedi-
ment to the extension of our results to the context of quasilinear systems such
as the porous medium equation (see [15] and the references therein). Similarly,
boundary control systems may pose technical difficulties, since they require for
the introduction of admissible control operators (a general functional frame-
work for lifting the trace on the boundary – see [47, Chapter 4]) to be written
in a canonical first order form, and consequently, to admit a Duhamel formula
representation for the solution. The particular issue for boundary control sys-
tems is that there is no guarantee that the inferred control operator would be
bounded with respect to T , which is of paramount importance to our strategy.
We leave these extensions open to future studies.

• Bilinear control systems. It would also be of interest to establish the turn-
pike property for bilinear control systems. This would be the somewhat true
analog of the control-affine systems presented herein, and under suitable as-
sumptions on the nonlinearity, one could expect that our methodology applies
to such cases as well. We have not addressed such systems for the simplicity of
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presentation and due to the controllability assumptions we make, as the con-
trollability theory for bilinear problems is not complete (albeit, see [4, 5, 10, 34]
for recent developments). Notwithstanding, our results should be applicable to
a system of the form (see [4])





∂ty − ∂2
xy = u(t)f(y) in (0, T )× (0, π)

∂xy(t, 0) = ∂xy(t, π) = 0 in (0, T )

y|t=0 = y0 in (0, π)

where u is a scalar control and f is an appropriate nonlinearity (see [4] for suffi-
cient conditions for ensuring controllability, and globally Lipschitz for applying
our methodology).
• More general nonlinearities. Finally, it would be of interest to investi-
gate problems where our methodology does not immediately apply, such as the
paradigmatic example of the cubic heat equation. This problem consists in
seeing whether one may prove Theorem 3.2 (with the estimate on uT changed
by an estimate of uT − u) for minimizers uT of

JT (u) :=

∫ T

0
‖y(t)− y‖2 dt+

∫ T

0
‖u− u‖2 dt

where yT is the unique solution to




∂ty −∆y + y3 = u1ω in (0, T )× Ω

y = 0 on (0, T )× ∂Ω

y|t=0 = y0 in Ω,

(9.1)

and y ∈ H1
0 (Ω) is a controlled steady state associated to some u ∈ L2(ω) (the

case u ≡ 0 is somewhat trivial due to the inherent stabilization to y ≡ 0). Let
us elaborate on a possible technical impediment in the direct application of our
strategy. Clearly, for Theorem 3.2 to hold in this case, it would suffice to prove
Lemma 7.1 for f(s) = s3 (while replacing the estimate of uT by an estimate of
uT−u). To this end, first of all, for any u ∈ L2((0, T )×ω), using the variational
formulation and standard arguments including the Cauchy-Schwarz, Young and
Poincaré inequalities, one can find

d

dt

∫

Ω
|y(t, x)|2 dx 6 ε

∫

ω
‖u(t, x)‖2 dx

for a.e. t ∈ [0, T ], where ε > C(Ω)
4 , whereas y solves (9.1), and thus

‖y‖C0([0,T ];L2(Ω)) 6 C1(Ω)
(
‖u‖L2((0,T )×ω) +

∥∥y0
∥∥
L2(Ω)

)
. (9.2)

Following the proof of Lemma 4.2 for f(s) = s3 and using (9.2), we may find

‖y(t)− y‖L2(Ω) 6 C
(∥∥y0 − y

∥∥
L2(Ω)

+ ‖u− u‖L2((0,T )×ω) + ‖y − y‖L2((0,T )×Ω)

)
,

where now
C ∼ exp

(
‖u‖L2((0,T )×ω)

)
.

It is precisely at this point where the issue appears, since simply by using the
form of the functional, we are not in a position to prove that ‖u‖L2((0,T )×ω)

is uniformly bounded with respect to T , but rather only ‖u − u‖L2((0,T )×ω).
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Should this be possible, then one can expect our methodology to apply to the
cubic heat equation as well, but as things stand, turnpike without smallness
conditions in this case remains open.

Further examples worth analyzing include the heat equation with a con-
vective nonlinearity f(y,∇y), even in one space dimension (e.g. the Burgers
equation); along these lines we refer to [49] for a local turnpike result for the
2d Navier-Stokes system. Similar questions can be asked for the semilinear
wave equation, where the nonlinearity is sometimes only assumed to be super-
linear (see [27] for a subcritical optimal control study) – our methodology a
priori applies if the nonlinearity is either truncated by some cut-off, or if one
manages to prove uniform estimates of ‖yT ‖L∞((0,T )×Ω) with respect to T . Fur-
ther nonlinear problems which could be investigated include hyperbolic systems
(see [22] for a related study) or free boundary problems (see [17] for a control
perspective).
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