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We study numerically the appearance and number of axial vortices in the outlets

of X-shaped junctions of two perpendicular channels of rectangular sections with

facing inlets. We explore the effect of the aspect ratio of the cross section, AR,

on the number of vortices created at the center of the junction. Direct numerical

simulations (DNS) performed for different values of the Reynolds number Re and

AR demonstrate that vortices with their axis parallel to the outlets, referred to as

axial vortices, appear above critical Reynolds numbers Rec. As AR increases from

1 to 11, the number of vortices observed increases from 1 to 4, independently of Re.

For AR = 1, the single axial vortex induces an interpenetration of the inlet fluids

in the whole section; instead, for larger AR’s for which more vortices appear, the

two inlet fluids remain largely segregated in bands, except close to the vortices. The

linear stability analysis demonstrates that only one leading eigenmode is unstable for

a given set of values of AR and Re. This mode provides a simplified model of the flow

field, reproducing its key features such as the number of vortices and their distance.

Its determination with this method requires a much smaller computational load than

the DNS. This approach is shown to allow one to determine quickly and precisely the

critical Reynolds number Rec and the sensitivity function S which characterizes the

influence of variations of the base flow on the unstable one.
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I. INTRODUCTION

One of the challenges of the lab–on–a–chip technology is to develop a micro reactor and ana-

lytical equipment that operates at the scale of a few micrometers and can be used to mix1,2,

separate3–5, trap6 and transport chemicals or small particles7. To allow all those operations,

a perfect control of the fluids and of their flow is required. Knowing and understanding how

vortices are created is, for instance, crucial to combine fluids and to ensure a good mixing

between them in order to enhance mass or heat transfer8. But, due to the small dimen-

sions of those systems and because of the viscosity of the fluids, vortices cannot be obtained

by making the fluid turbulent. Yet, even in relatively viscous flows and in geometries of

small size, vortices can be created by carving cavities9 or by deviating and bending the flow,

thereby playing with the channels geometry10,11. This can be achieved by injecting fluids in

X- and T-junctions in opposing channels: this provides hope for the development of passive

mixers12, using only static parts to promote mixing without the need of any external energy

supply or movable elements10. Another important practical issue is the active control of the

flow within such junctions and, particularly, of the development of instabilities13.

Originally, X-junctions were developed because their geometry allows the generation of a

stagnation point away from channel walls. In the vicinity of this particular point, the flow

is purely planar, elongational, and is free of shear and vorticity along the symmetry axes14.

These properties have been put at work in many areas of research, including studies of

polymer macromolecules dynamics, such as DNA15,16 or fluid rheology17–21 and for imposing

controlled deformations to cells, vesicles or droplets22.

The flow field is quite simple at a low velocity, but increasing it leads to a more complex

vorticity field in the intersection and in the outlets. For a Newtonian fluid of constant

viscosity ν, the onset of the different regimes is determined by the Reynolds number Re =

Ũ W̃ /ν, where Ũ is a characteristic velocity and W̃ is the dimensional width of the channels.

For an X-junction with channels crossing at an angle α = 90o, the flow along the outlet

channels at low Re’s is symmetric with respect to the plane y = 0 (see Figs. 1(b) and 1(c)):

the two injected fluids remain segregated. At higher Re’s, an axial vortex appears at the

intersection of the channels and extends towards each outlet. In channels with a square

cross-section8,20,23, the transition between the two regimes occurs for Rec ∼ 40 , while for

circular channels24 it is slightly higher with Rec ∼ 48.

In these square cross–section junctions, the redirection of the flow around the corners at the

junction of the streams leads to the formation of small Dean vortices at the intersection of

the channels25,26, even for Re < Rec. This secondary flow consists of a double pair of counter

rotating vortices positioned symmetrically on the four corners of the outlet channels, but

out of the z-axis (seeFig.1 in Ref. 27). Both fluids remain segregated by the plane y = 0

despite the presence of these small structures. The intensity of these vortices increases with

the flow rate and, at the critical Reynolds number Rec, two opposite vortices, out of the
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four, intensify and the symmetry is broken. These latter vortices finally merge into a single,

steady, stream-wise, vortex centered on the z-axis. This vortex was shown recently to be

strong enough to deform the membrane of living cells that in turn become porous to nano

materials28 which opens the possibility to use such flow for hydroporation. The creation of

”hot spots” by the vortices where chemical reactions are enhanced were also found to be

a possible method to study chemical reactions29–32. If the velocity is further increased, the

flow becomes unsteady at Re ∼ 100 and periodic oscillations are observed26.

The dynamics of the destabilization and merging of the Dean vortices was studied experi-

mentally using time-resolved flow velocimetry by Burshtein et al27. They also investigated

the influence of the aspect ratio AR = H̃/W̃ , where W̃ and H̃ are respectively the width

and height of the channels, on the dynamics of the formation of the central vortex. They

confirmed that the geometry influences the nature of the transition. For wide channels

corresponding to AR < 0.5, the flow recovers its symmetry at similar Rec values for both

decreasing or increasing inlet velocity variation ramps. For AR ≥ 0.5, the transition changes

and becomes subcritical. As a result, when the flow velocity decreases, the flow configuration

reverts from a single vortex centered in the outlet channel to a Dean-like one with symmetric

vortices at a Reynolds number Re∗c , lower than Rec. This confirmed previous results ob-

tained numerically by Haward et al23: these authors had shown that the symmetry-breaking

flow bifurcation which is supercritical (non symmetric) for wide channels becomes subcritical

(pitchfork bifurcation) for deep ones. These former studies demonstrate therefore that the

geometry of the channel section influences the critical Reynolds number for the transition

between the different regimes. Similar observations were made in Y or T junctions33 and in

X-junctions with varying crossing angles24.

All these studies dealt with the dynamics of vortex formation and of the steady “engulfment”

regime at relatively low values of AR (0.4 < AR < 3.8). Moreover, in this range, there is

only one axial vortex inside the flow section. Higher aspect ratios (AR & 4) are however

also of interest, for instance for rheology, because high AR’s ensure that the strain rate is

approximately uniform throughout the height which makes rheological measurements easier.

To our knowledge, larger aspect ratios were only used in the experiments of Kalashnikov

and Tsiklauri34. For very large values AR = 262 and AR = 32, these authors observed

a periodic array of vortices stacked over the full height of the channels. When increasing

the flow, this structure appeared above respective critical Reynolds numbers Rec = 55 and

Rec ∼ 43. The transition is, again, subcritical so that, when the flow is lowered, the vortices

disappear for Rec = 38.5 and Rec ∼ 30, respectively. Qualitative visualizations suggested

that such devices may mix large quantities of fluids at a relatively low Reynolds number.

Recently, the so-called “structural sensitivity” formalism has been developed to predict the

effect of perturbations brought to a flow in localized regions35,36: it allows detecting the

locations where an external actuation either triggers an instability, or delays it. Giannetti

& Luchini35 and Marquet et al.37 applied this approach to a two dimensional analysis of
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the wake generation downstream of a stationary cylinder. Although the magnitude of linear

instability modes increases continuously with the distance, the region where a feedback force

produces the largest change of the leading eigenvalues (i.e. where the structural sensitivity

is largest), is close to the obstacle and is the best location to control the wake generation.

Using the same approach, Lashgari et al.38 studied the flow instabilities in an X-junction

(three inlets, one outlet), for which the base flow is two dimensional and the perturba-

tions are decomposed into biglobal modes39. In this case, the sensitivity is highest at the

edge of recirculation bubbles at the corners of the junction. Chen et al. 36 performed a

global sensitivity analysis to study flow through a T-shaped pipe bifurcation. They ob-

served recirculation zones resembling the traditional bubble-type breakdown. These regions

are highly sensitive to localized feedback forces and, in contrast with observations on three

inlet X-junctions38, the flow separation at the corners of the T does not display a clear-cut

sensitivity.

The present paper is devoted to the numerical study of the transitions between the different

regimes discussed above for flow in X-junctions of channels of rectangular cross-sections.

More specifically, we report direct numerical simulation (DNS) for AR values between 1 and

11 corresponding to the appearance of 1 to 4 vortices at the junction intersection and along

the height (z–axis); note that these computations become more demanding as AR increases.

For each value of AR, the influence of the Reynolds number on the structure of the flow

is studied at Reynolds numbers below 100 corresponding to stationary flow regimes and

the possible subcritical nature of the instability leading to the appearance of the vortices is

investigated. We analyze in particular whether the number of vortices in the height only

depends on AR or whether Re also has an influence. A three dimensional global stability

analysis has then been performed to model the instability leading to the formation of the

vortices: we shall compare its predictions for the critical values of AR and Re, and the

number and spacing of the vortices to those of the DNS. The sensitivity of the flow to the

application of feedback forces is finally considered, which may be of interest for flow control

applications.

II. PROBLEM STATEMENT AND FORMULATION

We consider the flow of two facing incompressible Newtonian liquids within an X-junction

with an angle 90o between the inlet and outlet channels. The device consists of two perpen-

dicular channels of length 2L and identical rectangular cross-sections, with the inlets aligned

with the y–axis and the outlets parallel to the x–axis, as shown in Fig. 1(a). The dimen-

sional width and height of the channels are W̃ and H̃ , respectively, AR = H̃/W̃ being the

aspect ratio. The origin O of the coordinate system is located at the center of symmetry of

the junction. In the following, all lengths are normalized by the width W̃ , and the velocities

by the mean velocity at the entrances, Ũin. With these scales, the normalized height and
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Figure 1: (a) X-junction of channels of rectangular cross-sections with normalized width and

height W and H, respectively. The inlets are perpendicular to the outlets. (b) Perspective view

of streamlines corresponding to the segregated base flow {u0, p0} discussed in Sec. IIA.

Streamlines corresponding to the fluid entering each inlet are labeled with a different color. (c)

Streamlines of base flow {u0, p0} in the plane x = 0. The streamlines shown in graphs (b) and (c)

correspond to Re = 22 and AR = 1.8

width of the channels are named respectively H(= AR) and W (= 1), respectively.

The flow within the junction is governed by the time-dependent three-dimensional incom-

pressible Navier-Stokes equations:

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇2

u, (1a)

∇ · u = 0, (1b)

where u ≡ (u, v, w) and p are the normalized velocity and pressure, respectively. The

Reynolds number is Re = ŨinW̃/ν, where ν is the viscosity of the liquid. We impose the

same parabolic inflow conditions at both inlets (Poiseuille solution for rectangular pipes), a

stress-free outflow for the outlets, and u = 0 at the walls24.

A. Linear stability analysis

To perform a standard global linear stability analysis35,37,40, the variables in Eq.(1) are

written as the sum of a steady base flow {u0, p0} and an unsteady small perturbation

{u′, p′}. The base state shares the same initial and boundary conditions as {u, p}. In our

case, it is a symmetrical solution of Eq.(1) in which the liquid coming from each inlet splits

equally between both outlets, with the streamlines completely segregated by the plane y = 0,

as shown in Figures 1(b) and 1(c)23,24,41.
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The perturbations are decomposed into global modes, i.e. {u′, p′}={û, p̂}(x, y, z) exp (λ t),

where λ = σ + i ω is a complex eigenvalue. The real part σ is the growth rate and the

imaginary part ω is the oscillation angular frequency of the perturbation. If the growth

rate is positive for, at least, one eigenvalue, the flow is linearly unstable, otherwise the

perturbation decays to zero. This linearization of the flow around the base flow and the

subsequent eigenmode decomposition, result in the following direct eigenvalue equation for

the perturbations35,36

λû+ (u0 · ∇)û+ (û · ∇)u0 =
1

Re
∇2

û−∇p̂ , (2a)

∇ · û = 0. (2b)

Since {u, p} and {u0, p0} share the same boundary conditions, the perturbations satisfy

homogeneous conditions at all boundaries. The components of each velocity field are u0 :=

(u0, v0, w0) and û := (û, v̂, ŵ).

B. Adjoint problem and structural sensitivity

The adjoint of a linear operator is a useful concept in functional analysis that has been

widely applied to problems in turbulence control, receptivity, and transition, and it has

recently been used for the analysis of flow within micro-junctions36,40. Following Chomaz42,

and in order to evaluate the sensitivity of the solutions of eq. (1), we apply some well

known concepts related to the adjoint problem. In the next lines, we summarize the main

equations that we need to solve in order to compute the sensitivity function. A more

detailed derivation of this theory can be found in refs.35,36,42,43. Hill43 and Giannetti &

Luchini35 developed the theory of structural analysis, and showed that the adjoints fields

{u+, p+} = {û+, p̂+}(x, y, z) exp (−λt) associated to the global mode {û, p̂, λ} satisfy the

eigenvalue problem:

−λ∗
û

+ − (∇u0) · û
+ + u0 · ∇û

+ = ∇p̂+ −
1

Re
∇2

û
+, (3a)

∇ · û+ = 0 . (3b)

where we use the notation ((∇a) · b)i :=
∑

j bj∂aj/∂xi
36. The boundary conditions for the

adjoint modes are p̂+n = (u0 · n) û
+ + Re−1 (n · ∇û

+) at the outlets37,40, and û
+ = 0 for

the rest of the boundaries.

Solving equations (2) and (3) allows one to detect the core region of the instability (for some

geometries the region is named wavemaker38,42,44,45), i.e. the spots where a local feedback

force results in the largest drift of the most “dangerous” eigenvalue35,36. This force could be,

for example, the result of the action of an actuator that reacts to the local velocity of the flow

at the point where the actuator is operating. Giannetti & Luchini find that the maximum
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change in the dominant eigenvalue is induced at the location of the greatest overlap of the

direct and adjoint modes, and define the structural sensitivity function as35,45:

S(x, y, z) =
‖û‖‖û+‖

〈û, û+〉
, (4)

where 〈a, b〉 ≡
∫
V
a
∗ · b dV , the asterisk denoting the conjugate of a complex quantity37,40.

The regions of the flow where S is large are the sites where a feedback force will produce

the strongest disturbance on the flow, and it identifies the region where the triggering of the

instability occurs42. Notice that the location of large values of the direct eigenfunction does

not necessarily play a special role in determining the spectrum of a stability equation unless

the adjoint eigenfunction is also large at the same spot. This fact is also helpful for the

numerical simulations, because it gives a criterion for detecting the region where the mesh

should be denser in order to capture accurately the global modes.

C. Numerical implementation and validation

Equations (1)–(3) were discretized and solved numerically by a finite element method. Poly-

nomial shape functions P2 and P1 were used for the discretization of the velocity and pres-

sure, respectively. The time dependent Navier–Stokes equations (1) were solved by means

of a backward differentiation scheme with adaptive time stepping. The steady-state base

flow configuration {u0, p0}(x, y, z), was solved through an iterative method, the General-

ized Minimal RESiduals (GMRES), preconditioned using a standard multigrid algorithm.

A convergence criterion of 10−3 is used for the relative error defined by a weighted euclidean

norm for two successive iteration steps (see Correa et al.24). In the stability problem given in

equations (2), the eigenvalues were computed employing a variant of the implicitly restarted

Arnoldi method in the ARPACK routine46. The junction domain was meshed with tetrahe-

dral elements for the time dependent problem and hexahedral elements for the base flow and

eigenvalue problems, with a higher concentration near the walls and in the crossing region

of the X-junction. We carried out convergence studies to estimate the minimal number of

grid elements needed to obtain accurate results.

The accuracy of our numerical procedure is established by a grid convergence study over

the leading eigenvalue (see Table I). Direct and adjoint eigenvalues, Eqs. (2) and (3), were

obtained for four meshes with AR = 1 and L = 7. The differences among the eigenvalues is

less that 1.3% for all the cases considered, so we used M3 in the rest of the study in order

to achieve an accurate spatial description of the corresponding eigenmodes. The minimum

size of the domain was determined by analyzing the influence of the lengths of the channels

on the value of λ38. According to Table II, L = 6 and L = 7 result in accurate calculations

of λ and the corresponding eigenmode. Solving with L = 8 shows negligible effects on the

leading eigenvalue and the corresponding eigenmode. Choosing L = 7 is a good compromise

7



Mesh Grid elements λD λA

M1 10368 0.08021 0.07979

M2 16072 0.07886 0.07988

M3 22680 0.07828 0.07829

M4 28800 0.07835 0.07802

Table I: Mesh convergence for the leading eigenvalues of the direct and adjoint problems with

AR = 1, L = 7 and Re = 50.

L λD

4 0.08102

6 0.07887

7 0.07889

Table II: Variation of the leading eigenvalue for different channel lengths, L, for AR = 1 and

Re = 50.

between reliable results and computational cost to capture fully the dynamics of the flow

and its instability.

We also validated the Direct Numerical Simulations (DNS) codes and the stability analysis

method by considering the flow in a three-dimensional T-shaped channel with two inlets

and one outlet. This flow configuration was first studied experimentally and numerically

by Engler et al. (2004), and Soleymani et al. (2008), respectively47,48. Fani et al. (2013)

studied the linear stability of the T–junction flow by means of a spectral element method40.

They reported a segregated flow regime for Re < 175 and a first flow bifurcation occurring

at Re = 175. For larger Re’s, the symmetry of the flow is broken in an engulfment regime

that mixes both incoming streams. We reproduced their results by means of the finite

element method. The accuracy of the computation was controlled by a convergence study

on the mesh parameters. A reliable result for the leading eigenvalues is obtained in a mesh

domain of 23460 elements, finding σ = −1.542 × 10−2. This value differs by only 1.4%

from the eigenvalue reported in ref.40. Moreover, the shapes of the direct and adjoint modes

associated with the leading eigenvalue match very well.

III. RESULTS

A. DNS investigation of the flow structure

We analyzed first the flow at low Re values, for which the flow remains stable. For instance,

for Re = 22 (see Fig. 1(b) and 1(c)), the inlet flows are split into two equal parts after they
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meet in the crossing region and are in contact inside the outlet channels only in the plane

y = 0. This behavior is observed at small Reynolds numbers, independent of the value of

the aspect ratio AR > 1. Figure 1(c) shows that this flow displays a noticeable extensional

structure in the z direction.

Figure 2: Streamlines obtained by DNS simulations. (a) AR = 1 and Re = 50, (b) AR = 6 and

Re = 42, and (c) AR = 10 and Re = 44. The blue and orange colors identify liquids coming from

each inlet. Left: 3D perspective views; Right: plane cut showing representative streamlines.

For Re > Rec, the segregated flow configuration becomes unstable and its symmetry is

broken by the appearance of vortices with their axis parallel to the x direction. Their

formation is triggered by inertial effects which let the incoming liquids cross the plane y = 0

(see below), resulting in a swirling motion toward the outlets. Figure 2 shows the streamlines

in X-junctions for AR = 1, 6 and 10 and Re > Rec. A key result is that, for AR > 3.8

and Re > Rec, more than one vortex appear in the flow. In this case, the incoming streams

are sorted vertically in the outlets into alternating layers of the two pure fluids separated

by zones where their streamlines are interlaced (these zones are located at z–coordinates

similar to those of the vortex centers, as shown on the right sides of Figs. 2(b) and 2(c)). In

these two latter cases, the total height of these zones of interlacement represent a smaller

fraction of H than for AR = 1, as shown in Fig. 2(a) (right).
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The number of layers is directly related to the number n of vortices. As shown above, in

the plane y = 0, each vortex is located between stripes of two different fluids. Since there

are fluid layers between both the upper and lower walls and the nearest vortices, the total

number of layers is n + 1. We note that the layered distribution of the two fluids is the

same in both exits, with the stripes of a given fluid at the same location. After a transient

flow settling phase, the flow field and the fluid distribution become time-independent in the

range of Reynolds numbers investigated. Quantitatively, we observed one single vortex for

AR . 3.8, in agreement with Refs.23,49, two vortices for 3.8 . AR . 8.5 and three for

8.5 . AR < 11. For AR = 11, which represents the highest demand for computational–

power which we can deal with, four vortices appear.

Figures 3(a)–3(c) display the streamlines associated with the vortices in the middle plane

x = 0 of the junction, respectively for 1, 2 and 3 vortices. For AR = 1, Fig. 3(a), the upward

deflection of the blue fluid (on the figure) combined with the downward deflection of the

orange one serves as a source for a counter-clockwise rotation which propagates thereafter

in the z direction. For AR = 6, Fig. 3(b), the orange flow is deflected toward the upper and

lower walls of the channel while the blue one is focused toward the middle. One has this time

two sources of local rotation in opposite directions which also propagate along z, creating

two vortices of opposite circulations parallel to the direction of the outlet. The vortices

result therefore from an inertia driven distortion of the initial separation plane y = 0 of the

two opposite flows encountering in the junction. If AR increases further, more distortions

appear, leading to more vortices as shown in Fig. 3(c).

In Fig. 3(a), one notices that, since the two fluids are identical, a configuration in which

the orange fluid is deflected upward and the blue fluid downward is equally possible, leading

to a clockwise rotating vortex. In the same way, in Fig. 3(b), the orange fluid might as

well advance farther in the center and the blue fluid near the walls. This, too, would result

in a reversal of the two vortices with an orange fluid layer in the center of the section and

blue layers near the ends. Similarly, for other values of AR, one may swap the locations of

the two fluids in the outlet channels provided the rotation of the vortices is also reversed.

Experimentally, both configurations should be observed with equal probabilities.

The effect of the transit of the liquid through the output channels is demonstrated by

comparing Figs. 3(a,b,c) (x = 0) and 3(d,e,f) (x = 7). For all AR’s, the vortical flow is

limited to the region close to the center of the section at x = 0. Nevertheless, the aspect

ratio affects the distribution of the two fluids at the outlets. For AR = 1, Fig. 3(d), the blue-

orange streamlines define an helical–shaped interface that is longer than that observed in the

layered fluid distribution for AR = 6 and AR = 10 shown in Figs. 3(e) and 3(f), respectively.

The vorticity distribution at the center differs therefore strongly from that at the outlet. We

identify the 3D structure of the vortices by Q-contours26,36,50,51. The criterion Q is defined

as Q = 1
2
(‖Ω‖2F − ‖S‖2F ), where Ω = 1

2

(
∇u− (∇u)⊤

)
and S = 1

2

(
∇u+ (∇u)⊤

)
are the

rotation and the strain-rate tensors, respectively, and (‖.‖F ) stands for the Frobenius norm.
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Figure 3: (a,b,c) Streamlines in plane x = 0 for same DNS as in Fig. 2 with (a) AR = 1, Re = 50,

(b) AR = 6, Re = 42, (c) AR = 10, Re = 44. Vertical lines: location of outlets walls. (d,e,f) Flow

lines distribution for the same experiments in section x = 7 of outlet channel. Streamlines

intersect the section at a right angle and appear as dots. (g,h,i) 3D views of Q isosurfaces (in

red) for the same three experiments. In blue: streamlines from one entrance. (Multimedia view):

development with time of streamlines in the plane x = 0 for these experiments. Re increases at

first linearly with time from 1 (t = 0) to the Re values corresponding to cases (a,b,c), reached

respectively for t = 100, 50 and 50, and remaining constant afterwards.
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In Figures 3(g)–3(i), Q isosurfaces are represented in red for AR = 1, 6 and 10; in these three

cases, the vortices develop only in the region where the channels meet and hardly penetrate

into the outlet channels. As a result, close to the exits, the axial velocity disappears and

the parabolic profile and its vorticity distribution are recovered.

Figure 4: Time sequence of maps of the x vorticity component (color scale) in plane x = 0 for the

same experiment as in Fig. 3(b) with AR = 6 and Re increasing linearly with time from Re = 1

(t = 0) to Re = 42 (t = 50) and remaining constant thereafter. Black lines: streamlines. (a)

t = 0, (b) t = 20, (c) t = 60 (insets: local inversion of the sign of the vorticity), (d) t = 80, (e)

t = 94, and (f) t = 130. (Multimedia view): development with time of the x-vorticity in the plane

x = 0 for the same three experiments as in Fig. 3.

The physical mechanism of the development of the vortices is the same for all AR analyzed;

it is illustrated in Fig. 4 for AR = 6 by a time sequence of maps of the axial (x-component)

vorticity and streamlines. Initially, in Fig. 4(a), the vorticity is non zero only close to the

upper and lower walls and the flow lines are straight and horizontal. In Fig. 4(b), after Re

has increased with time, the vorticity has diffused from the top and bottom walls towards

z = 0, especially in the region close to the interface. In Fig. 4(c), four Dean cells start to
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develop on both walls of the intersection with an inversion of the sign of the vorticity close

to these walls. In Figs. 4(d) and 4(e), the largest vorticity keeps developing close to the

walls and the flow symmetry is lost. Finally the steady state corresponding to Fig. 3(b)

above is reached in Fig. 4(f). The key influence on the triggering of the instability of the

formation of the Dean vortices and the diffusion of the x-component of the vorticity was

first explained for AR = 1 by Haward et al.23 and Burshtein et al21. The Multimedia view

attached to Fig. 4 displays this same transition from zero to n vortices respectively for the

streamlines and the vorticity for AR = 1, 6, and 10. We will show in Section IIIB that the

regions with the maximum value for the sensitivity S develop four local x-vorticity maxima

(close to the upper and lower walls) for z ± 1.6 (in the present case). Then, the actuation

on these regions may hamper or boost vorticity generation.

AR

1 2 3 4 5 6 7 8 9 10 11

n

0

1

2

3

4

DNS

LSA

Figure 5: Number n of vortices as function of aspect ratio AR. Results from DNS simulations:

©; results from linear stability analysis (LSA): � (see Sec. IIIB for explanations).

A first important result of the simulations is that the number n of vortices observed depends

only on the aspect ratio AR and not on Re provided Re > Rec (Rec depends on AR). The

variation of n with AR is shown in Fig. 5; one observes a stepwise increase with no overlap

between the different steps.

Figure 6 displays the variations of the y–component of the velocity along the z–axis (x = 0,

y = 0) for different AR values, for which respectively n = 2 (Fig. 6(a)) and n = 3 (Fig. 6(b))

vortices are observed. The very good collapse of the normalized velocity profiles (vmax,z is

the maximum absolute value of v along the z-axis) velocity profiles in each graph implies

that the normalized distance dv/H between the centers of two adjacent vortices is nearly

constant with AR: one has dv/H ≃ 0.5 for n = 2 and dv/H ≃ 0.33 for n = 3. Therefore,

the simulations suggest that the vortices are equidistant along the z axis; the distance dv/H

between two adjacent vortex-centers is ≃ 1/n, and the distance of the top and bottom

vortices to the adjacent walls is ≃ 1/2n.

In the same way, we performed these simulations at different Re’s (≥ Rec) for AR = 6 (resp.

10) corresponding to n = 2 (resp. 3) vortices. We also included one case with AR = 11, for
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Figure 6: Variation of the normalized y–velocity component v/vmax,z with z/H along the z–axis

(x = 0, y = 0) for several aspect ratios AR and Re = 44. Profiles correspond to: (a) n = 2, and

(b) n = 3. Boldface numbers: labels for vortex centers; dijv /H = normalized distance between the

centers of vortices i and j

.

Figure 7: (a)Normalized distances dv/H between vortices as a function of Re > Rec. Circles

correspond to DNS simulations (squares for linear stability analysis, Sec. IIIB). For AR = 6,

dv = d12v : ⊕ (⊞) and for AR = 10, dv = (d12v +d23v )/2: ⊗ (⊠), dv = d13v : • (�). (b) Variation with

AR of the mean of the dimensionless distances di,i+1
v between adjacent vortices for different

numbers n of vortices from DNS simulations (linear stability analysis). n = 2: ⊕ (⊞); n = 3: ⊗

(⊠); n = 4: ©. Dashed lines: variations as AR/n.

which one observes 4 vortices; further increments of AR are beyond our current computing

capabilities. Figure 7(a) displays in the two cases the distances between the different vortices

as a function of Re: their relative variation is less than 5%. Figure 7(b) shows the variation

with AR of the spacing dv of adjacent vortices (averaged over several pairs of vortices when

n ≥ 2). Note that the variations of dv with AR are consistent with the estimation dv ≃ AR/n

(dashed lines in Fig. 7(b)) based on the order of magnitude: dv/H ≃ 1/n mentioned above.
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Figure 8: Maximum vmax,z, along the z–axis, of the velocity component v as a function of Re. In

(a), (b) and (c), the instability corresponds to the appearance of one (AR = 1), two (AR = 6)

and three (AR = 10) vortices, respectively.

The onset of the instability is analyzed in Fig. 8. To characterize it, we selected vmax,z as the

order parameter and explored its variation with Re for three different AR’s23. These curves

were obtained by means of numerical simulations using increasing and decreasing ramps of

Re with steps ∆Re = 1 in the vicinity of the critical value Rec. The segregated stable flow is

characterized by vmax,z = 0, which means that the interface between the two fluids remains

in the plane y = 0. The sudden increase of vmax,z indicates the onset of the instability. As

can be seen from the three examples in Fig. 8, there is an hysteresis for all values of the

number n of vortices. The critical Re’s for the increasing ramps are Rec = 44, 37 and 41,

and for the decreasing ramps Re∗c = 41, 30 and 36, for AR = 1, 6 and 10, respectively. The

fact that Re∗c < Rec for all the explored values of AR implies therefore that the instability

leading to the appearance of vortices is subcritical in all these cases.

B. Linear stability analysis

In this section we investigate the global stability of the flow and compare the results, such as

the values of Rec, the number of vortices and their spacing, to those reported in section IIIA)

for the same aspect ratiosAR. The global stability of the flow is analyzed by the computation

of the eigenvalues and eigenmodes of the direct problem (Eqs. 2). The natural choice of the

base flow required in the calculation is the steady-state symmetric segregated flow field. In

order to obtain the latter for Re higher than Rec, we compute the solution in half of the

domain and impose a symmetry boundary condition in the plane y = 0. The solution is

then mirrored to the other half of the domain.

A discrete set of eigenvalues is shown in Fig. 9 for stable (a) and unstable (b) flows with

AR = 1. The excellent agreement between the direct and adjoint spectra demonstrates
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Figure 9: Eigenvalue spectrum for the direct (©) and adjoint (+) problems for AR = 1 and

(a) Re = 40 < Rec and (b) Re = 50 > Rec. The horizontal and vertical axis correspond

respectively to the real (σ) and imaginary (ω) parts of the eigenvalue. Red numbers above the

leading eigenvalues are the number of vortices in the corresponding eigenmodes.

the reliability of the numerical procedure. The eigenvalues λ = σ + iω are distributed

symmetrically with respect to the real axis. In all the simulations, the eigenvalue with the

largest growth rate σ corresponds to a steady-state perturbation (ω = 0). This is also the

case for the two other eigenvalues with σ closest to 0, labeled as 2 and 3 in Fig. 9.

Re

35 40 45 50 55

σ

-0.2

-0.1

0

0.1

0.2

AR = 1

Figure 10: Real part of the leading eigenvalue as function of Re for AR = 1. Vertical dashed line

corresponds to the critical Reynolds number: Rec = 43.5.

The change of the growth rate σ of the leading eigenvalue from negative to positive shown

in Fig. 10 allows us to determine precisely the critical Reynolds number, which is found

to be Rec = 43.5 ± 0.15. The three-dimensional global mode associated to the leading

eigenvalue (labeled 1 in Fig. 9) is shown in Fig. 11 for Re = 50. The eigenmodes are

spatially located mainly in the outlet pipes. The v̂ and ŵ components are composed of

two main lobes, both symmetrical with respect to the plane x = 0 and with a maximum
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of intensity in the intersection (see arrows in Fig.12). On the other hand, û consists of

four lobes, anti-symmetrical with respect to the plane x = 0, with their highest and lowest

intensities outside the junction, at a distance x = ±1.7 (see Fig. 12).

Figure 11: Isosurfaces for AR = 1 and Re = 50 of the û components: (a) û, (b) v̂, and (c) ŵ.

Yellow corresponds to the value −10−6 and green to 10−6.

Figure 12: Perturbation solution in yz-planes for AR = 1 and Re = 50 at several distances x

along an outlet branch (from left to right: x = 0, 0.5, 1.5 and 3). The length of the vectors is

given by the values of the components v̂ and ŵ, and colors code the component û.

The velocity field of the leading eigenmode is displayed in Fig.12 in four sections of an

outlet branch. Similar to the corresponding DNS, one observes in these (y, z) cut planes a

single vortical motion around the junction center. Although all perturbation components

are of the same order of magnitude, v̂ is approximately 2.5 times higher than û and ŵ. The

maximum of v̂ occurs at (x, y, z) = (0, 0,±0.25) where (û, ŵ) = (0, 0). The component ŵ

reaches its maximum value in the plane z = 0 near the lateral walls, at the beginning of the

outlet branches (x = ±0.5).

The stability has also been studied for the junctions with AR = 6 and 10 and the results

compared to those of the DNS simulations. Like for AR = 1, the leading eigenvalues are

real and their variation with Re is shown in Fig. 13. The critical Reynolds numbers are

respectively Rec = 39± 0.15 and 42.4± 0.1 for AR = 6 and 10.

Figure 14 displays isosurfaces of the velocity perturbation components of the mode associated

with the leading eigenvalue for AR and Re values corresponding to 2, Figs. 14(a,b,c), and

3, Figs. 14(d,e,f), vortices. In these cases, like for AR = 1, the values of v̂ and ŵ are largest

inside the intersection and the maximum for û lies in the outlet branches for û. Also, û
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Figure 13: Real part of leading eigenvalues versus Re for (a) AR = 6, and (b) AR = 10. Critical

Reynolds numbers are respectively Rec = 39 and Rec = 42.4.

Figure 14: Isosurfaces of the velocity perturbation components. Top : AR = 6, Re = 42. (a) û,

(b) v̂, and (c) ŵ. Yellow (green) corresponds to the value −3× 10−6 (3× 10−6). Bottom:

AR = 10, Re = 44. (d) û, (e) v̂, and (f) ŵ. Yellow (green) corresponds to the value −1.5× 10−6

(1.5 × 10−6).
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remains antisymmetric with respect to the plane x = 0 while v̂ and ŵ are still symmetric.

There are however significant changes compared to AR = 1. For û, the group of four lobes

in each outlet channel is split, for AR = 6, into two distant groups with a new pair of lobes

at half height while, for AR = 10, an additional pair appears. For v̂, there are three lobes

for AR = 6, instead of two for AR = 1, and they are less elongated along x; for AR = 10,

four elongated lobes are obtained. For ŵ, there are, for AR = 6, four pairs of medium size,

mildly elongated lobes and two small instead of two large, very elongated ones; for AR = 10,

there are two more lobes and they are more elongated. Regarding the symmetry of the lobes

with respect to the plane z = 0, it is determined by the even (n = 2 for AR = 6) or odd

(n = 1 (resp. 3) for AR = 1 (resp. 10)) values of the number of vortices.

Figure 15: Map of the velocity perturbation components (û, v̂, ŵ) of the leading eigenmode in

different sections x = cst. for (a) AR = 6 and Re = 42; (b) AR = 10 and Re = 44. Black arrows

correspond to (v̂, ŵ), and the color map codes the values of û.

In Fig. 15, the three velocity perturbation components of the corresponding leading eigen-

mode for each AR are represented at different distances x along the outlet. For AR = 6,

Fig. 15(a), the field (v̂, ŵ) displays a double vortex structure in the x = 0 plane as in the

DNS velocity field of Fig. 3(b). In the central region, the perturbation points directly toward

the left inlet, extending slightly beyond the section shown in Fig. 15, while the vortices are

distributed in the upper and lower portion of the plane. For AR = 10, Fig. 15(b), one

observes, as expected, 3 vortices like in Fig. 3(c). For both AR’s, the v̂ and ŵ modes decay

slowly along the outlet branch of the junction and û changes sign at the plane y = 0 and

at the height z at which a vortex center is located. For AR = 6, the absolute value of û

increases from the center and is maximal at approximately x = 1 while, for AR = 10, it is

highest at approximately x = 1.5. For AR = 6 and 10, one finds, like for AR = 1, that the
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three eigenvalues closer to σ = 0 correspond to eigenmodes with one, two or three vortices

(see Fig. 9); however, only one of these three eigenvalues may become positive when Re

increases and corresponds to number n of vortices depending only of AR.

AR

2 4 6 8 10

20

30

40

50

Rec

Figure 16: Critical Reynolds numbers Rec as a function of AR: open (resp. filled) symbols for

increasing (resp. decreasing) Re’s. DNS: ©, (•); Linear stability analysis (LSA) method: �;

Haward et al.23 (inset of Fig. 2(i)): △,(N).

In Fig. 16, we compare the variations of Rec with AR (1 < AR < 10) obtained from the

linear stability analysis (LSA) using Eq. 2 to those determined from DNS simulations. The

values of Rec found by the stability analysis are in good agreement with those of the DNS

obtained by using an increasing ramp for Re and display, like them, an initial linear increase

of Rec for AR & 2, leveling off for AR ≥ 5. This suggests that, at large values of AR, Rec
increases only slowly with H ; ref. 34 reports indeed a critical value Rec = 55 at AR = 262

for increasing flow rates and Rec = 43 for decreasing ones. The minimum of Rec is found

at approximately AR = 2, so that, for Re < 23, the flow is completely segregated within

the range of AR values analyzed. The results for both increasing and decreasing Re ramps

compare well with those of Haward et al.23, who reported an increase of Rec for decreasing

AR when AR . 2. The numbers of vortices as a function of AR from the linear analysis

have been superimposed in Fig. 5 onto the equivalent data points from the DNS. The results

are perfectly compatible and the transition from n to n+1 vortices can be determined more

precisely by means of the linear analysis due to the reduced computation time.

Let us compare now the spatial structure of these modes to the single and multiple vortex

instabilities of the nonlinear DNS results. As shown above, the leading mode that dictates

the shape of the base flow instability clearly captures the number of vortices predicted by

the DNS. The distances between adjacent vortices arising from the two methods have been

superimposed in Fig. 7: the values obtained from the linear analysis are slightly higher
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(5%) that those from the DNS. One notes however that, while accurate Rec values may be

expected from the linear analysis, the spacing between vortices is approximated since, in

the DNS, the instability is already developed and the flow structure may be influenced by

nonlinear terms.

Moreover, the null frequency component ω of the leading eigenvalues is compatible with the

steady state of the flow obtained for Re > Rec by means of the direct numerical simulations.

The linear stability analysis indicates indeed that the instability of the flow occurs through a

pitchfork bifurcation. Additionally, the global mode structures suggest in all cases that the

effect of inertia is higher in the intersection of the channels, as shown by the large values of

the component v̂. The accommodation of the vortex flow in the downstream direction leads

to a strong perturbation of the velocity component u0 along the outlet branches. Finally,

we observe that, when Re increases, there is a spatial elongation of all eigenmodes toward

the outlets.

C. Sensitivity function

We investigate now the spatial variations of the sensitivity function S defined by Eq. 4 for

flows in which axial vortices are present. The occurrence and location of regions of large

sensitivity to local feedback forces is indeed closely related to the global mode dynamics42.

For instance, if variations of the flow are induced in regions of low S values, this influences

very little the leading eigenvalue. Any strategy aimed at controlling the instability must

therefore be applied to a region of the flow where S is large.

Figure 17: Maps of isosurfaces of the sensitivity function S for (a) AR = 1, Re = 50 and (b)

AR = 6, Re = 42. Isosurfaces shown correspond to S = 0.25 (yellow), S = 0.5 (orange) and

S = 0.75 (red).
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Figure 17 displays isosurfaces corresponding to several normalized values of the sensitivity

S for the cases AR = 1 (a) and AR = 6 (b) studied above; the results obtained for AR = 10

are not shown for concision but will be briefly mentioned below. The values of S for the

three isosurfaces shown are S = 0.25, 0.5, and 0.75 and the outer (inner) shells correspond

to the smaller (higher) sensitivities.

For AR = 1, Fig. 17(a), S is largest inside two symmetrical regions of the crossing zone

of the junction elongated towards the inlets. More precisely, the maximum of S is located

on the z-axis at z/H ≈ ±0.15. The inspection of the data shows that these two points are

closer to the center of the junction than the locations of the maxima of w0 and v̂. We also

observe that the region where the sensitivity is highest differs from the location of the vortex

(z = 0). This latter feature resembles the result of Chen et al.36 for T–junctions, where the

sensitivity is highest in lobes located in the exterior region of the vortices. However, in the

geometry of this latter work, the S lobes are elongated in the direction of the outlets instead

of the inlets, like in the present work. Interestingly, the minimum of S is located at the

center of the X-junction where the vortex is generated.

For AR = 6, Fig. 17(b), the sensitivity map displays one more lobe in the intersection of

the channels than seen above for AR = 1 (3 instead of 2). S reaches its maximum values

on the z–axis but, here, there is a local maximum at z = 0 instead of a minimum as for

AR = 1. The absolute maximum for S occurs at two points close the upper and lower walls

for both AR = 6 and 10 (in this latter case, S displays four local maxima). This feature may

be interesting for control applications using an external actuator because the most sensitive

(target flow) region is close to the boundaries and not immersed in the bulk of the fluid.

Interestingly, as AR increases, the location of the maximum value for S is closer to that of

the maximum of w0, although the latter is not involved in the definition of the sensitivity.

On the other hand, for all AR′s, the minimum of S is located at the points where the

vortices appear. Following Ref. [42], this suggests that, in order to control the instability

within X-junctions, perturbations must not be applied at the centers of the vortices.

Despite the differences between the distributions of S for different AR′s, an important

feature is that, in all cases, the sensitivity S is largest in the region of the interface where

the two fluids first meet. For a T-shaped junction, Fani et al.40 also report a maximum of

the sensitivity in the crossing region. There are indeed two facing inlets both in the X- and

T-junctions; however, the values of Rec are lower in X- than in T-junctions.

In order to understand better the instability, we compare now the spatial distributions of the

sensitivity S and of the time derivative of the kinetic energy per unit volume Ė ≡ u
′ ·∂u′/∂t

for AR = 1, Figs.18(a,b,c), and AR = 6, Figs. 18(d,e,f). Larger values of Ė are concentrated

in two (AR = 1) and three (AR = 6) main regions (Figs. 18(b) and 18(e)) with the maxima

located very close to those of the sensitivity (Figs. 18(a) and 18(d)). This emphasizes the

importance of these regions for the development of the instability. Moreover, the dominant

contribution to Ė corresponds to the exchange of energy between the perturbation and the
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Figure 18: Comparison between S and Ė at x = 0 for AR = 1 (a,b,c) and AR = 6 (d,e,f). (a,d):

Sensitivity S, (b,e): time derivative Ė of total energy, (c,f): component v̂ v̂ ∂v0/∂y of Ė.

base flow represented by the term v̂ v̂ ∂v0/∂y
38,52, as shown in Figs. 18(c) and 18(f); this is

due to the strong v̂-component and the large gradient of the y–component v0 of the base

flow, as shown in section IIIB. This analysis of the energy exchange confirms therefore the

important contribution of the interaction between the two facing flows in the inlets of the

junction to the triggering of the instability.

23



IV. CONCLUSIONS

In this paper, we have studied numerically the flow structure and the instabilities creat-

ing axial vortices in X-junctions of perpendicular channels of rectangular cross sections

with aspect ratios AR. Previous works had only dealt either with low values of AR (one

vortex)23,26,49 or large ones (many vortices)53. The present study has been focused, instead,

on a transition range: 1 < AR < 11 for which 1 to 4 vortices are observed.

We first used 3D DNS simulations to determine the global structure of the flow field as

a function of AR and of the Reynolds number Re = UinW̃/ν. Up to a critical Reynolds

Rec, one has, for all aspect ratios, segregated outflows of the two fluids in the two outlets,

each on a side of the mid-plane y = 0. Above Rec, steady vortex structures appear at

the intersection of the junction and induce some local mixing of the fluids. Although the

geometry of the domains are different, these steady vortex structures are reminiscent of the

one reported by Kerr & Dold, who analyzed the stability of an stagnation point flow within

an infinite domain54.

For 1 ≤ AR ≤ 3.8 and Re ≥ Rec, a single vortex with the axis parallel to each outlet

develops, in good agreement with the results of ref.23. This feature has also been observed

at the intersection of circular tubes in the range of crossing angles: 68◦ ≤ α ≤ 90◦24.

For AR ≥ 3.8, more vortices stacked along the z–axis appear for Re > Rec and their number

n increases steadily with AR. In the studied cases, the number of vortices only depends on

AR and not on Re(> Rec). Also, the instability leading to the appearance of the vortices

is always subcritical irrespective of AR: the vortices appear and disappear at different

thresholds Rec (respectively Re∗c ) when Re follows an increasing (resp. decreasing) ramp.

Re∗c is always smaller than Rec and both numbers vary with n but retain similar orders of

magnitude.

Compared to the case n = 1, the flow structures for n = 2, 3, and 4 display an important

difference: for n = 1, the vortex interlaces the streamlines of the two fluids across the whole

section. For n > 1, one observes instead, in the outlets, n + 1 alternate stripes of the

two pure fluids separated by zones close to the vortex centers where their streamlines are

interlaced: mixing due to the vortices is therefore less thorough. Another important feature

is that the normalized velocity profiles v(z/H)/vmax,z corresponding to different AR values

collapse precisely. As a result, the distance dv between adjacent vortices is proportional to

H and increases therefore with AR for a given aperture W : the velocity field corresponding

to each vortex is then more and more elongated until a new vortex appears.

The DNS simulations are heavily time consuming which makes difficult, for instance, the

precise determination of the threshold of the instability. In order to obtain such information

and understand better the dynamics of the system, we performed a global linear stability and

sensitivity analysis in which the steady segregated flow is used as the base state. The critical

values Rec for the transition from zero to n vortices obtained in this way agree well with
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those determined from the DNS by increasing Re. For Re > Rec, only one eigenvalue is both

positive and real, which agrees with the idea that both zero and n vortices configurations

are steady, as observed in the DNS simulations. For a given AR value, the corresponding

eigenmode has the same number of vortices as that determined by the DNS, and the locations

of these vortices predicted by both methods agree well.

The analysis of the leading eigenmodes also provides interesting information on the per-

turbation fields of the instability. They do not reach their highest values at the center of

the intersection (origin of coordinates) but on the z–axis and close to the top and bottom

walls (see Figs. 15 and 16). The sensitivity study, for which the adjoint modes must be

considered, shows that, in these spots, the receptivity to feedback local forces is highest:

thus, these are the regions to actuate in order to control the instability. This result may be

interpreted in terms of the kinetic energy variation with time, which reaches its maximum

values close to the regions where S is maximum; this variation is mostly due to the transfer

of momentum from the base state to the v̂ component (this agreement between the loca-

tions of the maxima of S and the variation of the kinetic energy has been also reported for

X-junctions but with three inlets and one outlet38). The sensitivity analysis also shows that

the core of the instability is outside, and not inside, the vortex structures, as also occurs in

T–junctions36.

As indicated above, the total computing time is significantly smaller for the global stability

and sensitivity analysis than for for the DNS simulations. Typically, the CPU time to solve

the non–linear problem is about eight times the required to the computation of five modes

in the linear analysis (direct and adjoint problems). The linear analysis is, therefore, a

robust alternative to study and predict the flow structure, and, also, for the detection of the

most sensitive regions of the flow, which is a key asset for flow control strategies. However,

computing the eigenmodes for large AR values requires a large amount of memory for the

meshing process. This has limited up to now the values of AR which we have reached and

we are currently working to overcome this limitation.

We left for future work the evaluation of the efficiency of active perturbations in the selection

of one of the two steady flow configurations. This control would be achieved by, for example,

suction/injection of fluid through the upper and lower walls at the intersection. The tech-

nique should be the appropriate for our geometry, because the maximum of the sensitivity is

measured close to the walls where it is easier to apply an active external perturbation. This

control strategy was considered by Lashgari38, also for X-junctions but with three inlets and

one outlet, and it was found to be successful and might be applicable in future work to our

flow configuration. Another important issue to be consider in future works is the mixing

efficiency of the junction, which is out of the scope of this article. As an illustration, we

present a preliminary evaluation in the appendix.
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APPENDIX: MIXING EFFICIENCY AND ASPECT RATIO

Figure 19: Variation of the mixing quality index M with the aspect ratio AR. Grey levels images:

maps of the dimensionless concentration at the cross section x = 7, for AR = 1, 6, and 10 (arrows

indicate AR values for each map). Vertical dashed lines= AR values corresponding to the

transition between 1 and 2 vortices (left) and 2 and 3 vortices (right).
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As mentioned in the Introduction, junctions are potentially of interest for fluid mixing

applications55,56. We examined therefore briefly the mixing performance of the present X-

junctions by adding to our direct numerical simulations a transport equation and assuming

a uniform concentration in each inlet (the dimensionless concentration is unity in one inlet

and zero in the other). In a preliminary evaluation, we characterized mixing by the quality

index M47,55 defined by: M = 1−
√

σ2/σ2
0 ; σ

2 is the variance of the concentration field in a

section of the outlet channels, and σ2
0 corresponds to the maximum variance in this section.

For a perfectly segregated flow M is equal to zero, and for a completely mixed one M = 1.

A qualitative trend of the mixing performance, for the range of AR values considered here,

is shown in Fig. 19: it displays the variation of M with AR at the cross section x = 7 of

one outlet channel, far from the center of the junctions. The index M decreases with AR

for a fixed number n of vortices: its value is then highest when AR is near the lower limit

of a range corresponding to a given n value and lowest near the upper limit. This is likely

due to the fact that the height along z of a band of pure injected liquid located between two

vortices (Fig. 2) is smaller near the lower limits mentioned above and larger near the upper

ones. The local maximum of M decreases with n (mixing is most efficient for AR = 1 in

the range considered here) while the local minimum varies less. Summarizing, when a single

junction is used, increasing AR does not enhance mixing in itself, but increases the number

of alternate streams of the two fluids.

The development of new microfluidic and 3D printing techniques opens the possibil-

ity to combine junctions57 and to build complex 3D structures with improved mixing

characteristics58,59. The formation of vortices and their localization in the network will be

key factors of such improvements. In future studies, it will be interesting to consider as a

first step the mixing properties of two junctions placed one behind the other.
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