Extending Riemannian Brain-Computer Interface to Functional Connectivity Estimators
Sylvain Chevallier, Marie-Constance Corsi, Florian Yger, Camille Noûs

To cite this version:
Sylvain Chevallier, Marie-Constance Corsi, Florian Yger, Camille Noûs. Extending Riemannian Brain-Computer Interface to Functional Connectivity Estimators. IROS Workshop on Bringing geometric methods to robot learning, optimization and control, Oct 2020, Las Vegas, NV / Virtual, United States. hal-03015390

HAL Id: hal-03015390
https://hal.archives-ouvertes.fr/hal-03015390
Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Extending Riemannian Brain-Computer Interface to Functional Connectivity Estimators

Sylvain Chevallier1, Marie-Constance Corsi2, Florian Yger3 and Camille Noûs4

Abstract—This abstract describes a novel approach for handling brain-computer interfaces (BCI), that could be used for robotic applications. State-of-the-art approaches rely on the classification of covariance matrices in the manifold of symmetric positive-definite matrices. Functional connectivity estimators have demonstrated their reliability and are good candidates to improve the classification accuracy of covariance-based methods. This abstract explores possible application of functional connectivity in Riemannian BCI.

I. INTRODUCTION

Brain-Computer Interfaces (BCI) consists of a device that translates brain activity into commands for control and communication[1]. BCI devices can be a valuable tool in the treatment of neurological disorders [2]. They can also constitute a motor substitution in the case of neuroprosthesis by building alternative pathways [3]. Recently, an exoskeleton controlled by an epidural wireless BCI enabled a tetraplegic patient to walk [4]. This result constitutes a first proof-of-concept performed in the laboratory. Despite its clinical applications, many issues remain. The most limiting one is the inter/intra-subject variability or also known as "BCI inefficiency" [5]. Indeed, a non-negligible part of the users (between 15 and 30% [6]) cannot control the BCI device despite several training sessions. It clearly limits the BCI usability. Among the possible approaches to tackle this issue is the search of alternative features and classification tools that could enhance the discrimination of subjects’ mental state. Relying on functional connectivity, our approach investigates the contribution of synchrony and/or phase to compensate potential misclassifications induced by power-related information available in golden standard methods.

II. RIEMANNIAN BCI

Approaches relying on covariance estimated over electroencephalographic signals are widespread in BCI. Covariance-based techniques are found in state-of-the-art spatial filters that are necessary for estimating subjects’ mental command. These filters use Euclidean approach to process the symmetric positive-definite (SPD) covariance matrices. Riemannian BCI aims at working with covariance matrices directly on the manifold of SPD matrices, by adapting machine learning algorithms to such curved spaces. These Riemannian approaches outperformed filter-based methods on numerous datasets and have won several data competition[7], [8].

A simple, yet effective, classifier is the Minimum Distance to Mean (MDM). The barycenter of each class of training trial, in the sense of the Fisher distance, is used to determine the class of a newly seen trial. The trial is associated to the class with the closest barycenter. Applying a Fisher Geodesic Discriminant Analysis before computing the barycenter (Fg-MDM) yield robust results on experimental datasets [9].

III. PROPOSED METHOD

Functional connectivity (FC) enables to study the interaction between different brain areas [10], and has the potential to provide alternative features to BCI classifiers [11]. Here, as an exploratory study, we considered complementary undirected FC estimators associated to Riemannian geometry: spectral and phase estimators. In the following subsections, we defined the metrics computed between two given signals referred as $s_1(t)$ and $s_2(t)$ between two EEG sensors.

A. Spectral estimation

We computed one spectral estimator: the coherence (Coh), deduced from the normalized cross-spectral density S_{12} obtained from the two given signals $s_1(t)$ and $s_2(t)$, as follows:

$$Coh_{12}(f) = \frac{|S_{12}(f)|^2}{S_{11}(f).S_{22}(f)}$$

B. Phase estimation

As a phase estimator method, we worked with the Phase Locking Value (PLV), which assesses phase synchrony between two signals in a specific frequency band [12], as follows:

$$PLV = |e^{i\Delta \phi(t)}|$$

where $\Delta \phi(t) = arg(\frac{z_1(t).\bar{z}_2(t)}{|z_1(t)|.|\bar{z}_2(t)|})$.

$\Delta \phi(t)$ represents the associated relative phase computed between signals and $z(t) = s(t) + i.h(s(t))$ the analytic signal obtained by applying the Hilbert transform on the signal $s(t)$.

It is possible to build SPD matrices from coherence and PLV estimators. Instead of using covariance matrices as input for Riemannian classifier, we propose to use functional connectivity matrices. These matrices contains information that is complementary to covariance and could help to achieve better accuracy or more robust decision.
on functional connectivity estimations. While using these
classes as inputs of Riemannian BCI classifier, that are built
consisting of combining Cov + FgMDM and FC + FgMDM
the FC + FgMDM on Fig. 1. This finding suggests that
the Cov + FgMDM approach are correctly classified with
meaning that on average, 50% of the misclassified trials by
averaged diversity of 50% with PLV and of 47% with Coh,
by FC + FgMDM. An illustrative example is proposed in
Cov + FgMDM that have actually been correctly classified
+ FgMDM approach. For that purpose, we defined the
whether the Cov + FgMDM could benefit from the FC
However, we further investigated our results to determine
results than the state-of-the-art (considering each FC estimator separately did not give better
matrices. It could be done
machine learning perspective, relying on ensemble
learning or feature selection, hence benefiting from the
diversity of the features to build a robust and accurate model.
Another direction is to combine the information coming
from functional connectivity and covariance. It could be done
with a combination of features obtained from functional
connectivity and covariance.

IV. PROOF OF CONCEPT

We used the dataset 2a from BCI Competition IV that
gathers electroencephalographic recordings from nine sub-
jects (for a complete description of the dataset the reader
can refer to [13]). In this work, we reduced our study to the
classification of two classes (left vs right hand MI).

For a given FC estimator, we averaged the FC values
within the 8-35 Hz frequency band. Computations were made
using the Brainstorm toolbox [14].

We computed the performance obtained with the different
tested approaches: Cov + FgMDM, PLV + FgMDM and
Coh + FgMDM taken separately. First, we compared the
accuracy (see Table I). Clearly, the approach consisting of
considering each FC estimator separately did not give better
results than the state-of-the-art (i.e. the covariance here).
However, we further investigated our results to determine
whether the Cov + FgMDM could benefit from the FC
+ FgMDM approach. For that purpose, we defined the
diversity [15] as the proportion of trials misclassified by the
Cov + FgMDM that have actually been correctly classified
by FC + FgMDM. An illustrative example is proposed in
Fig. 1. In the present work, we respectively obtained an
averaged diversity of 50% with PLV and of 47% with Coh,
meaning that on average, 50% of the misclassified trials by
the Cov + FgMDM approach are correctly classified with
the FC + FgMDM on Fig. 1. This finding suggests that
Cov + FgMDM could benefit from an ensemble approach
consisting of combining Cov + FgMDM and FC + FgMDM
to compensate potential misclassification.

V. DISCUSSION & CONCLUSION

In the present study, we considered alternative SPD matri-
ces as inputs of Riemannian BCI classifier, that are built
on functional connectivity estimations. While using these
matrices directly as features yield modest accuracy, or at
least lower accuracy than covariance-based classifier, they
could bring interesting opportunities when dealing with a
larger number of classes.

A first direction is to adapt the classifier to the specific
geometry of functional connectivity estimators. For example, some estimators like coherence are complex-valued
and could benefit from a classifier designed to process HPD
matrices. It is also possible to investigate the different esti-
mators formulation to find those that lead to well-conditioned
matrices.

Next direction is to combine the information coming
from functional connectivity and covariance. It could be done
with a combination of features obtained from functional
connectivity and covariance.

TABLE I

<table>
<thead>
<tr>
<th>Approach</th>
<th>Mean ± Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cov + FgMDM</td>
<td>0.78 ± 0.13</td>
</tr>
<tr>
<td>Coh + FgMDM</td>
<td>0.47 ± 0.03</td>
</tr>
<tr>
<td>PLV + FgMDM</td>
<td>0.50 ± 0.03</td>
</tr>
</tbody>
</table>

REFERENCES

T. M. Vaughan, “Brain–computer interfaces for communication and
plying a brain-computer interface to support motor imagery practice
in people with stroke for upper limb recovery: a feasibility study,”
C. Guglielmucci, M. Tangermann, C. Vidaurre, F. Cincotti, A. Köhler,
R. Leeb, C. Neuper, K.-R. Müller, and D. Mattia, “Combining
Brain–Computer Interfaces and Assistive Technologies: State-of-the-
brain–machine interface in a tetraplegic patient: a proof-of-concept
and Engineering Ethics, 2018.
[6] B. Z. Allison and C. Neuper, “Could Anyone Use a BCI?,” in Brain-
[7] F. Yger, M. Berar, and F. Lotte, “Riemannian approaches in brain-
computer interfaces: a review,” IEEE Trans. Neural Syst. Rehabilita-
agg-based brain-computer interfaces; a primer and a review,” Brain-
gameory applied to BCI classification,” in International Conference
analysis of functional brain networks: practical issues in translational
neuroscience,” Philosophical Transactions of the Royal Society B:
F. D. V. Fallani, “Phase/amplitude synchronization of brain signals
C. Brunner, R. Leeb, C. Mehring, K. J. Müller, G. Mueller-Putz,
G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vi-
daurre, S. Waldert, and B. Blankertz, “Review of the BCI Competition
A User-Friendly Application for MEG/EEG Analysis,” Computational
Intelligence and Neuroscience, vol. 2011, 2011.
ensembles and their relationship with the ensemble accuracy,” Machine