
HAL Id: hal-03015025
https://hal.science/hal-03015025

Submitted on 19 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum Matchings in Geometric Intersection Graphs
Edouard Bonnet, Sergio Cabello, Wolfgang Mulzer

To cite this version:
Edouard Bonnet, Sergio Cabello, Wolfgang Mulzer. Maximum Matchings in Geometric Intersection
Graphs. STACS 2020, Mar 2020, Montpellier, France. �hal-03015025�

https://hal.science/hal-03015025
https://hal.archives-ouvertes.fr

Maximum Matchings in Geometric Intersection
Graphs
Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
edouard.bonnet@ens-lyon.fr

Sergio Cabello
Faculty of Mathematics and Physics, University of Ljubljana, and IMFM, Slovenia
sergio.cabello@fmf.uni-lj.si

Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract
Let G be an intersection graph of n geometric objects in the plane. We show that a maximum
matching in G can be found in O(ρ3ω/2nω/2) time with high probability, where ρ is the density of
the geometric objects and ω > 2 is a constant such that n× n matrices can be multiplied in O(nω)
time.

The same result holds for any subgraph of G, as long as a geometric representation is at hand.
For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian
elimination, with the fact that geometric intersection graphs have small separators.

We also show that in many interesting cases, the maximum matching problem in a general
geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum
matching in the intersection graph of any family of translates of a convex object in the plane can be
found in O(nω/2) time with high probability, and a maximum matching in the intersection graph
of a family of planar disks with radii in [1,Ψ] can be found in O(Ψ6 log11 n+ Ψ12ωnω/2) time with
high probability.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Graph algorithms analysis

Keywords and phrases computational geometry, geometric intersection graph, maximum matching,
disk graph, unit-disk graph

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.31

Related Version A full version of the paper is available at http://arxiv.org/abs/1910.02123.

Funding Sergio Cabello: Supported by the Slovenian Research Agency (P1-0297, J1-9109, J1-8130,
J1-8155).
Wolfgang Mulzer : Supported in part by ERC StG 757609.

1 Introduction

Let U be a family of (connected and compact) objects in R2. The intersection graph GU
of U is the undirected graph with vertex set U and edge set

E(GU) = {UV | U, V ∈ U , U ∩ V 6= ∅}.

If the objects in U are partitioned into two sets, one can also define the bipartite intersection
graph, a subgraph of GU , in the obvious way. Consider the particular case when U is a
set of disks. Then, we call GU a disk graph, and if all disks in U have the same radius, a
unit-disk graph. Unit disk graphs are often used to model ad-hoc wireless communication

© Édouard Bonnet, Sergio Cabello, and Wolfgang Mulzer;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1653-5822
mailto:edouard.bonnet@ens-lyon.fr
https://orcid.org/0000-0002-3183-4126
mailto:sergio.cabello@fmf.uni-lj.si
https://orcid.org/0000-0002-1948-5840
mailto:mulzer@inf.fu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2020.31
http://arxiv.org/abs/1910.02123
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Maximum Matchings in Geometric Intersection Graphs

networks and sensor networks [11,14,29]. Disks of varying sizes and other shapes become
relevant when different sensors cover different areas. Moreover, general disk graphs serve as
a tool to approach other problems, like the barrier resilience problem [16].

We consider a classic optimization problem, maximum matching, in the setting of geometric
intersection graphs, and introduce two new techniques, each interesting in its own. First,
we provide an efficient algorithm to compute a maximum matching in any subgraph of the
intersection graph of geometric objects of low density. Second, we provide a sparsification
technique to reduce the maximum matching problem in a geometric intersection graph to
the case of low density. The sparsification works for convex shapes of similar sizes for which
certain range searching operations can be done efficiently.

In this paper, we use ω to denote a constant such that ω > 2 and any two n× n matrices
can be multiplied in time O(nω).1

Maximum matching in intersection graphs of geometric objects of low density

We first introduce some geometric concepts. The diameter of a set X ⊂ R2, denoted by
diam(X), is the supremum of the distances between any two points of X. The density ρ(U)
of a family U of objects is

ρ(U) = max
X⊆R2

∣∣{U ∈ U | diam(U) ≥ diam(X), U ∩X 6= ∅}
∣∣. (1)

One can also define the density by considering for X only disks. Since an object of diameter
d can be covered by O(1) disks of diameter d, this changes the resulting parameter by only a
constant. (See, for example, the book by de Berg et al. [6, Section 12.5] for such a definition.)
The depth (ply) of U is the largest number of objects that cover a single point:

max
p∈R2

∣∣{U ∈ U | p ∈ U}∣∣.
For disk graphs and square graphs, the depth and the density are linearly related; see for
example Har-Peled and Quanrud [13, Lemma 2.7]. More generally, bounded depth and
bounded density are equivalent whenever we consider homothets of a constant number of
shapes. Density and depth are usually considered in the context of realistic input models;
see de Berg et al. [7] for a general discussion.

Let Gρ be the family of subgraphs of intersection graphs of geometric objects in the plane
with density at most ρ. Our goal is to compute a maximum matching in graphs of Gρ,
assuming the availability of a geometric representation of the graph and a few basic geometric
primitives on the geometric objects. For this, we consider the density ρ as an additional
parameter. Naturally, the case ρ = O(1) of bounded density is of particular interest.

In a general graph G = (V,E) with n vertices and m edges, the best running time for
computing a maximum matching in G depends on the ratio m/n. The classic algorithm of
Micali and Vazirani [20,27] is based on augmenting paths, and it finds a maximum matching
in O(

√
nm) time. Mucha and Sankowski [22] use algebraic tools to achieve running time

O(nω). More recently, Mądry [19] showed that an approach through interior-point methods
yields an algorithm with running time roughly O(m10/7). As we shall see, for G ∈ Gρ, we
have m = O(ρn), and this bound is asymptotically tight. Thus, for G ∈ Gρ, the running
times of these three algorithms become O(ρn3/2), O(nω) and O

(
(ρn)10/7), respectively.

1 In the literature, it is more common to assume ω ≥ 2. We adopt the stronger assumption ω > 2 because
it simplifies the bounds. If ω = 2 is allowed, then the running times that we state have additional
logarithmic factors.

É. Bonnet, S. Cabello, and W. Mulzer 31:3

There is a specialized algorithm for certain classes of bipartite geometric intersection
graphs. Efrat, Itai, and Katz [9] show how to compute the maximum matching in bipartite
unit disk graphs in O(n3/2 logn) time. Having bounded density does not help in this
algorithm; it has O(

√
n) rounds, each of which needs Ω(n) time. The same approach can

be used for other geometric shapes if a certain semi-dynamic data structure is available.
In particular, using the data structure of Kaplan et al. [15] for additively-weighted nearest
neighbors, finding a maximum matching in a bipartite intersection graph of disks takes
O(n3/2 polylogn) time. We are not aware of any similar results for non-bipartite geometric
intersection graphs.

We show that a maximum matching in a graph of Gρ with n vertices can be computed in
O(ρ3ω/2nω/2) = O(ρ3.56n1.19) time. The algorithm is randomized and succeeds with high
probability. It uses the algebraic approach by Mucha and Sankowski [23] for planar graphs
with an extension by Yuster and Zwick [28] for H-minor-free graphs. As noted by Alon and
Yuster [4], this approach works for hereditary2 graph families with bounded average degree
and small separators. We note that the algorithm can be used for graphs of Gρ, because we
have average degree O(ρ) and balanced separators of size O(√ρn) [13, 25]. However, finding
the actual dependency on ρ is difficult because it plays a role in the average degree, in the
size of the separators, and the algorithm has a complex structure with several subroutines
that must be distilled.

There are several noteworthy features in our approach. For one, we solve a geometric
problem using linear algebra, namely Gaussian elimination. The use of geometry is limited
to finding separators, bounding the degree, and constructing the graph explicitly. Note that
the role of subgraphs in the definition of Gρ is a key feature in our algorithm. On the one
hand, we need a hereditary family of graphs, as needed to apply the algorithm. On the other
hand, it brings more generality; for example, it includes the case of bipartite graphs defined
by colored geometric objects.

Compared to the work of Efrat, Itai, and Katz [9], our algorithm is for arbitrary subgraphs
of geometric intersection graphs, not only bipartite ones; it works for any objects, as it does
not use advanced data structures that may depend on the shapes. On the other hand, it needs
the assumption of low density. Compared to previous algorithms for arbitrary graphs and
ignoring polylogarithmic factors, our algorithm is faster when ρ = o(n(20−7ω)/(21ω−20)). Using
the current bound ω < 2.373, this means that our new algorithm is faster for ρ = O(n0.113).

Our matching algorithm also applies for intersection graphs of objects in 3-dimensional
space. However, in this case there is no algorithmic gain with the current bounds on ω: one
gets a running time of O(n2ω/3) when ρ = O(1), which is worse than constructing the graph
explicitly and using the algorithm of Micali and Vazirani or the algorithm of Mądry.

Sparsification – Reducing to bounded depth

Consider a family of convex geometric objects U in the plane where each object contains a
square of side length 1 and is contained in a square of side length Ψ ≥ 1. Our objective is to
compute a maximum matching in the intersection graph GU .3 Our goal is to transform this
problem to finding a maximum matching in the intersection graph of a subfamily U ′ ⊂ U
with bounded depth. Then we can employ our result from above for GU ′ or, more generally,
any algorithm for maximum matching (taking advantage of the sparsity of the new instance).

2 closed under taking subgraphs
3 Note that here we do not consider subgraphs of GU ; we need the whole subgraph GU .

STACS 2020

31:4 Maximum Matchings in Geometric Intersection Graphs

We describe a method that is fairly general and works under comparatively mild assump-
tions and also in higher dimensions. However, for an efficient implementation, we require that
the objects under considerations support certain range searching operations efficiently. We
discuss how this can be done for disks of arbitrary sizes, translates of a fixed convex shape in
the plane, axis-parallel objects in constant dimension, and (unit) balls in constant dimension.
In all these cases, we obtain a subquadratic time algorithm for finding a maximum matching,
assuming that Ψ is small. We mostly focus on the planar case, mentioning higher dimensions
as appropriate.

As particular results to highlight, we show that a maximum matching in the intersection
graph of any family of translates of a convex object in the plane can be found in O(nω/2)
time with high probability, and a maximum matching in the intersection graph of a family of
planar disks with radii in [1,Ψ] can be found in O(Ψ6 log11 n+ Ψ12ωnω/2) time with high
probability.

Organization

We begin with some general definitions and basic properties of geometric intersection graphs
(Section 2). Then, in the first part of the paper, we present the new algorithm for finding
a maximum matching in geometric intersection graphs of low density (Section 3). In the
second part, we present our sparsification method. This is done in two steps. First, we
describe a generic algorithm that works for general families of shapes that have roughly the
same size, assuming that certain geometric operations can be performed quickly. (Section 4).
Second, we explain how to implement these operations for several specific shape families,
e.g., translates of a given convex objects and disks of bounded radius ratio (Section 5). The
two parts are basically independent, where the second part uses the result from the first part
as a black box, to state the desired running times. All the proofs are deferred to the long
version [5].

2 Basics of (geometric intersection) graphs

Geometric objects

Several of our algorithms work under fairly weak assumptions on the geometric input: we
assume that the objects in U have constant description complexity. This means that the
boundary of each object is a continuous closed curve whose graph is a semialgebraic set,
defined by a constant number of polynomial equalities and inequalities of constant maximum
degree. For later algorithms we restrict attention to some particular geometric objects, like
disks or squares.

To operate on U , we require that our computational model supports primitive operations
that involve a constant number of objects of U in constant time, e.g., finding the intersection
points of two boundary curves; finding the intersection points between a boundary curve and
a disk or a vertical line; testing whether a point lies inside, outside, or on the boundary of
an object; decomposing a boundary curve into x-monotone pieces, etc. See, e.g., [15] for a
further discussion and justification of these assumptions.

We emphasize that in addition to the primitives on the input objects, we do not require
any special constant-time operations. In particular, even though our algorithms use algebraic
techniques such as fast matrix multiplication or Gaussian elimination, we rely only on
algebraic operations over Zp, where p = Θ(n4). Thus, when analyzing the running time of
our algorithms, we do not need to worry about the bit complexity of these operations.

É. Bonnet, S. Cabello, and W. Mulzer 31:5

NG(v)∩ X
NG(v)∩ Y

NG(v)∩ Z

Y

u2 u3 u4

X

Z

u1

X ∗

vyv

Z∗

Y ∗

u2 u3 u4u1

NG∗(vy)∩ Y ∗

vx

NG∗(vx)∩ X ∗

Figure 1 Splitting one single vertex of Z.

Geometric intersection graphs

The following well-known lemma bounds |GU | in terms of ρ, and the time to construct GU .

I Lemma 1. If U has n objects and density ρ, then GU has at most (ρ − 1)n edges (this
holds in any dimension). If U consists of objects in the plane, then GU can be constructed in
O(ρn logn) time.

Separators in geometric intersection graphs

The classic planar separator theorem by Lipton and Tarjan [8, 18] shows that any planar
graph can be decomposed in a balanced way by removing a small number of vertices. Even
though geometric intersection graphs can be far from planar, similar results are also available
for them. These results are usually parameterized by the depth of the arrangement or by the
area of the separator and the components [3, 10,21]. The following recent result provides a
small separator for general intersection graphs of bounded density.

I Theorem 2 (Lemma 2.21 in [13]). Let U be a set of n objects in R2 with density ρ. In
O(n) expected time, we can find a circle S such that S intersects at most c√ρn objects of U ,
the exterior of S contains at most αn elements of U , and the interior of S contains at most
αn elements of U . Here 0 < c and 0 < α < 1 are universal constants, independent of ρ and
n.

The proof of Theorem 2 goes roughly as follows: Pick a point in each object of U , compute
the smallest circle S′ (or an approximation thereof) that contains, say, n/20 points, and then
take a concentric scaled copy S of S′, with scale factor uniformly at random in [1, 2]. With
constant probability, the circle S′ has the desired property. This can be checked easily in
linear time by determining which objects of U are inside, outside, or intersected by S. In
expectation, a constant number of repetitions is needed to obtain the desired circle.

A family G of graphs is hereditary if for every G ∈ G, it holds that all subgraphs H of G
are also in G. By definition, our family Gρ of subgraphs of geometric intersection graphs
with density ρ is hereditary. A graph G is δ-sparse if every subgraph H of G has at most
δ|V (H)| edges. Lemma 1 implies that all graphs in Gρ are ρ-sparse.

Consider a graph G and a vertex v of G. A vertex split at v consists of adding a pendant
2-path vv′v′′, where v′ and v′′ are new vertices, and possibly replacing some edges uv incident
to v by new edges uv′′; see Figure 1 for a sequence of splits. We note that a vertex split may
not replace any edges. In this case, we are just adding a pendant path of length 2.

Let G′ be a graph obtained from G by a sequence of k vertex splits. Then, the size of
a maximum matching in G′ is the size of a maximum matching in G plus k. Furthermore,

STACS 2020

31:6 Maximum Matchings in Geometric Intersection Graphs

from a maximum matching in G′, we can easily obtain a maximum matching in G in
O(|V (G)|+ |E(G)|+ k) time. We will use vertex splits to ensure that the resulting graphs
have bounded degree and a vertex set of a certain cardinality. (A vertex split may change
the density, but that will not be important.) Note that if we perform a vertex split at v in a
graph of Gρ, in general we obtain a graph of Gρ+2 because we can represent it by making
two new copies of the object corresponding to v. Nevertheless, this increase in the density
will not be problematic in our algorithm.

3 Maximum matching in low-density geometric intersection graphs

3.1 Separators and separator trees
A graph G has a (k, α)-separation if V (G) can be partitioned into three pairwise disjoint
sets X,Y, Z such that |X ∪ Z| ≤ α|V |, |Y ∪ Z| ≤ α|V |, |Z| ≤ k, and such that there is no
edge with one endpoint in X and one endpoint in Y . We say that Z separates X and Y . At
the cost of making the constant α larger, we can restrict our attention to graphs of a certain
minimum size.

Theorem 2 gives a (c√ρn, α′)-separation for every graph of Gρ, for some constant α′ < 1.
(A separator in GU is a separator in each subgraph of GU .) Furthermore, such a separation
can be computed in expected linear time, if the objects defining the graph are available.

A recursive application of separations can be represented as a binary rooted tree. We will
use so-called (weak) separator trees, where the separator does not go into the subproblems.
In such a tree, we store the separator at the root and recurse on each side to obtain the
subtrees. We want to have small separators and balanced partitions at each level of the
recursion, and we finish the recursion when we get to problems of a certain size. This leads
to the following definition. Let γ > 0, 0 < β < 1, and 0 < α < 1 be constants. We say that
a graph G has a (γ, β, α)-separator tree if there is a rooted binary full tree T with the
following properties:
(i) Each node t ∈ T is associated with some set Zt ⊆ V (G).
(ii) The sets Zt, t ∈ T , partition V (G), i.e.,

⋃
t∈T Zt = V (G), and Zt ∩Zt′ = ∅, for distinct

t, t′ ∈ T .
(iii) For each node t ∈ T , let Vt =

⋃
s Zs, where s ranges over the descendants of t (including

t). Note that if t is an internal node with children u and v, then Vt is the disjoint union
of Zt, Vu, and Vv. If t is a leaf, then Vt = Zt.

(iv) For each internal node t ∈ T with children u and v, (Vu, Vv, Zt) is a (γmβ , α)-separation
for G[Vt], the subgraph of G induced by Vt, where m = |Vt| = |Zt|+ |Vu|+ |Vv|.

(v) For each leaf t ∈ T , we have |Vt| ≤ Θ(γ1/(1−β)). We have chosen the size so that Vt is
a (γ|Vt|β , α)-separator for the whole induced subgraph G[Vt].

Yuster and Zwick [28] provide an algorithm that computes a separator tree of some split
graph for a given graph from an H-minor-free family. As Alon and Yuster [4, Lemma 2.13]
point out, this algorithm actually works for any δ-sparse hereditary graph family, as long
as δ is constant. Thus, the result applies to Gρ. We revise the construction to make the
dependency on ρ explicit.

I Lemma 3. Given a graph G of Gρ with n vertices, we can compute in O(ρn logn) expected
time a vertex-split graph G′ of G and a separator tree T ′ for G′ with the following properties:
(i) the graph G′ has Θ(ρn) vertices and edges;
(ii) the maximum degree of G′ is at most 4;
(iii) T ′ is a (γ = O(ρ), β = 1/2, α)-separator tree for G′, where α < 1 is a constant

(independent of ρ and n).

É. Bonnet, S. Cabello, and W. Mulzer 31:7

Note that the split graph G′ in Lemma 3 is not necessarily in Gρ. It is a subgraph of an
intersection graph, but since we introduce copies of geometric objects when we split vertices,
the density increases. In any case, this does not matter because G′ will be accessed through
the separator tree T ′.

3.2 Nested dissection
We will need to compute with matrices. The arithmetic operations take place in Zp, where
p = Θ(n4) is prime. Thus, we work with numbers of O(logn)-bits, and we simply need to
bound the number of arithmetic operations. Using a word-RAM model of computation, each
arithmetic operation needs constant time.

Let A be an n×n matrix. A Gaussian elimination step on row i is the following operation:
for j = i + 1, . . . , n, add an appropriate multiple of row i to row j so that the element at
position (j, i) becomes 0. Elimination on row i can be performed if the entry at position (i, i)
is nonzero. Gaussian elimination on A consists of performing Gaussian elimination steps on
rows i = 1, . . . , n − 1. This is equivalent to computing an LU decomposition of A, where
L is a lower triangular matrix with units along the diagonal, and U is an upper triangular
matrix. Gaussian elimination is performed without pivoting if, for all i, when we are about to
do a Gaussian elimination step on row i, the entry at position (i, i) is non-zero. If Gaussian
elimination is performed without pivoting, then the matrix is non-singular. (Pivoting is
permuting the rows to ensure that the entry at position (i, i) is non-zero.)

Let [n] = {1, . . . , n}. The representing graph G(A) of an n×n matrix A = (ai,j)i,j∈[n]
is

G(A) =
(

[n],
{
ij ∈

(
[n]
2

)
|ai,j 6= 0 or aj,i 6= 0

})
.

Let T be a separator tree for G(A). The row order of A is consistent with T if, whenever t′
is an ancestor of t, all the rows of Zt are before any row of Zt′ . We may assume that all the
rows of Zt are consecutive. In particular, if the rows are ordered according to a post-order
traversal of T , then the row order of A is consistent with T . A careful but simple revision of
the nested dissection algorithm by Gilbert and Tarjan [12] leads to the following theorem.

I Theorem 4. Let A be an n× n matrix such that the representing graph G(A) has bounded
degree and assume that we are given a (γ, β, α)-separator tree T for G(A), were γ > 0,
0 < α < 1, and 1/2 < β < 1 are constants. Furthermore, assume that the row order of A
is consistent with T and that Gaussian elimination on A is done without pivoting. We can
perform Gaussian elimination (without pivoting) on A and find a factorization A = LU of A
in O(γωnβω) time, where L is a lower triangular matrix with units along the diagonal and U
is an upper triangular matrix.

To prove Theorem 4, we need the following folklore lemma.

I Lemma 5. Let A be an n× n matrix, and k ≤ n. Suppose that Gaussian elimination on
the first k rows of A needs no pivoting. Then, we can perform Gaussian elimination on the
first k rows of A with O(n2kω−2) arithmetic operations.

Remark 1: Mucha and Sankowski [23] noted that the result holds when G(A) is planar or,
more generally, has recursive separators, using the approach by Lipton, Rose, and Tarjan [17]
for nested dissection. This approach is based on the strong separator tree. Alon, Yuster, and
Zwick [4, 28] showed that a similar result holds for graphs of bounded degree with recursive

STACS 2020

31:8 Maximum Matchings in Geometric Intersection Graphs

separators if one instead uses the nested dissection given by Gilbert and Tarjan [12]. In this
case, we need bounded degree, but a weak separator tree suffices. Again, since we want to
make the dependency on ρ explicit and since the analysis in terms of matrix multiplication
time does not seem to be written down in detail anywhere, we revise the method carefully.

Remark 2: Usually, the result is stated for symmetric positive definite matrices. Reindexing
a symmetric positive definite matrix gives another symmetric positive definite matrix, and
Gaussian elimination on such matrices can always be performed without pivoting. Thus, for
positive semidefinite matrices, we do not need to assume that the row order is consistent
with T because we can reorder the rows to make it consistent with T . However, Mucha and
Sankowski [23] do need the general statement in their Section 4.2, and they mention this
general case after their Theorem 13. Actually, they need it over Zp, where the concept of
positive definiteness is not even defined!

3.3 The algorithm
Assume we have a graph G of Gρ with n vertices and a geometric representation, i.e.,
geometric objects U of density at most ρ such that G is a subgraph of GU . We want to
compute a maximum matching for G. For this, we adapt the algorithm of Mucha and
Sankowski [23]. We provide an overview of the approach, explain the necessary modifications,
and emphasize the dependency on ρ in the different parts of the algorithm.

Using Lemma 3, we get in O(ρn logn) expected time a vertex-split graph G′ of G and a
separator tree T ′ for G′ such that:
(i) the graph G′ has Θ(ρn) vertices and edges;
(ii) the maximum degree of G′ is at most 4;
(iii) T ′ is a (γ = O(ρ), β = 1/2, α)-separator tree for G′, where α < 1 is a constant

(independent of ρ and n).
Since G′ is obtained from G by vertex splits, it suffices to find a maximum matching in G′.
We set m = |V (G′)| = Θ(ρn), and we label the vertices of G′ from 1 to m. We consider
the variables X = (xij)ij∈E(G′); i.e., each edge ij of G defines a variable xij . Consider the
m×m symbolic matrix A[X] = A[X](G′), defined as follows:

(A[X])i,j =

xij , if ij ∈ E(G′) and i < j,

−xij , if ij ∈ E(G′) and j < i,

0 otherwise.

The symbolic matrix A[X] is usually called the Tutte matrix of G′. It is known [24] that the
rank of A[X] is twice the size of the maximum matching in G′. In particular, G′ has a perfect
matching if and only if det(A[X]) is not identically zero. Take a prime p = Θ(n4), and
substitute each variable in A[X] with a value from Zp, each chosen independently uniformly at
random. Let A be the resulting matrix. Then, with high probability, rank(A) = rank(A[X]),
where on both sides we consider the rank over the field Zp.

From maximum matching to perfect matching

Let B = AAT . Then, B is symmetric, and the rank of B equals the rank of A. Note that
(B)i,j is nonzero only if i and j share a neighbor in G′. Since G′ has bounded degree, from the
separator tree T ′ for G′, we can obtain a separator tree TB for the representing graph G(B).

É. Bonnet, S. Cabello, and W. Mulzer 31:9

Since T ′ was a (γ = O(ρ), β = 1/2, α)-separator tree for G′, TB is a (γ = O(ρ), β = 1/2, α)-
separator tree for G(B), where the constant hidden in O(ρ) is increased by the maximum
degree in G′. Using Theorem 4, we obtain that Gaussian elimination can be done in B in
O(γωmω/2) = O(ρω(ρn)ω/2) = O(ρ3ω/2nω/2) time, assuming that pivoting is not needed.

Mucha and Sankowski [23, Section 5] show how Gaussian elimination without pivoting
can be used in B to find a collection of indices W ⊆ [m] such that the centered matrix
(B)W,W , defined by rows and columns of B with indices in W , has the same rank as B. It
follows that rank(AW,W) = rank(BW,W) and therefore G′[W] contains a maximum matching
of G′ that is a perfect matching in G′[W] (with high probability). The key insight to find
such W is that, if during Gaussian elimination in B we run into a 0 along the diagonal, then
the whole row and column are 0, which means that they can be removed from the matrix
without affecting the rank. We summarize.

I Lemma 6. In time O(ρ3ω/2nω/2) we can find a subset W of vertices of G′ such that, with
high probability, G′[W] has a perfect matching that is a maximum matching in G′.

From now on, we can assume that G′ has a perfect matching. We keep denoting by
T ′ its separator tree, by A the matrix after substituting values of Zp into A[X], and by B
the matrix AAT . (We can compute the tree T ′ anew or we can reuse the same separator
tree restricted to the subset of vertices.) Let Zr denote the set stored at the root r of T ′.
Thus, Zr is the first separator on G′. Let Nr be the set Zr together with its neighbors in G′.
Because G′ has bounded degree, we have |Nr| = O(|Zr|) = O(ρm1/2) = O(ρ3/2n1/2).

Mucha and Sankowski show how to compute with O(1) Gaussian eliminations a matching
M ′ in G′ that covers all the vertices of Zr and is contained in some perfect matching of G′.
There are two ingredients for this. The first ingredient is to use Gaussian elimination on the
matrix B = AAT to obtain a decomposition AAT = LDLT , and then use (partial) Gaussian
elimination on a matrix C composed of L[m],Nr

and ANr,[m]\Nr
to compute (A−1)Nr,Nr

.
(Note that in general (A−1)Nr,Nr is different from (ANr,Nr)−1. Computing the latter is
simpler, while computing the former is a major insight by Mucha and Sankowski [23, Section
4.2].) Interestingly, T ′ is also a separator tree for the representing graph of this matrix
C, and Gaussian elimination can be performed without pivoting. Thus, we can obtain in
O(ρωmω/2) = O(ρ3ω/2nω/2) time the matrix (A−1)Nr,Nr

. The second ingredient is that, once
we have (A−1)Nr,Nr , we can compute for any matching M ′ contained in G′[Nr] a maximal
(with respect to inclusion) submatching M ′ that is contained in a perfect matching of G′.
This is based on an observation by Rabin and Vazirani [24] that shows how to find edges that
belong to some perfect matching using the inverse matrix, and Gaussian elimination on the
matrix (A−1)N,N to identify subsets of edges that together belong to some perfect matching.
The matrix (A−1)Nr,Nr

is not necessarily represented by a graph with nice separators, but it is
of size |Nr|×|Nr|. Thus, Gaussian elimination in (A−1)Nr,Nr

takes O(|Nr|ω) = O(ρ3ω/2nω/2)
time [23, Section 2.4].

Since the graph G′ has bounded maximum degree, making O(1) iterations of finding a
maximal matching M ′ in G′[Nr], followed by finding a maximal subset M ′′ of M ′ contained
in a perfect matching of G′, and removing the vertices contained in M ′ plus the edges of
M ′ \M ′′, gives a matching M∗ that covers Zr and is contained in a perfect matching of G′;
see [23, Section 4.3]. The vertices of M∗ can be removed, and we recurse on both sides of
G′ − V (M∗) ⊂ G′ − Zr using the corresponding subtrees of T ′. The running time is T (n) =
O(ρ3ω/2nω/2) + T (n1) + T (n2), where n1, n2 ≤ αn. This solves to T (n) = O(ρ3ω/2nω/2)
because ω/2 > 1. We summarize in the following result. If only the family U is given, first
we use Lemma 1 to construct GU .

STACS 2020

31:10 Maximum Matchings in Geometric Intersection Graphs

I Theorem 7. Given a graph G of Gρ with n vertices together with a family U of geometric
objects with density ρ such that G is a subgraph of GU , we can find in O(ρ3ω/2nω/2) time a
matching in G that, with high probability, is maximum. In particular, for a family U of n
geometric objects with density ρ, a maximum matching in GU can be found in O(ρ3ω/2nω/2)
time. The same holds for the bipartite or k-partite version of GU .

4 Sparsification

Let U be a family of convex geometric objects in the plane such that each object of U
contains a square of side length 1 and is contained in a square of side length Ψ ≥ 1. Through
the discussion we will treat Ψ as a parameter. Our objective is to reduce the problem of
computing a maximum matching in the intersection graph GU to the problem of computing
a maximum matching in GW for some W ⊆ U of small depth.

Let P = Z2 be the points in the plane with integer coordinates. Each square of unit side
length contains at least one point of P and each square of side length Ψ contains at most
(1 + Ψ)2 = O(Ψ2) points of P . In particular, each object U ∈ U contains at least one and at
most O(Ψ2) points from P .

First we provide an overview of the idea. The objects intersected by a point p ∈ P define
a clique, and thus any even number of them defines a perfect matching. We show that, for
each p ∈ P , it suffices to keep a few objects pierced by p, and we show how to obtain such a
suitable subfamily. The actual number of objects to keep depends on Ψ, and whether the
actual computation can be done efficiently depends on the geometric shape of the objects.

For each object U ∈ U , we find the lexicographically smallest point in P ∩ U . We
assume that we have a primitive operation to compute P ∩ U for each object U ∈ U in
O(1 + |P ∩U |) = O(Ψ2) time. A simple manipulation of these incidences allows us to obtain
the clusters

Up = {U ∈ U | p lexicographically minimum in P ∩ U}, for all p ∈ P .

Note that the clusters Up, for p ∈ P , form a partition of U . This will be useful later. Clearly,
the subgraph of GU induced by Up is a clique, for each p ∈ P .

We will use the usual notation

E(Up,Uq) = {UV | U ∈ Up, V ∈ Uq, U ∩ V 6= ∅} ⊆ E(GU).

The pattern graph H = H(P,Ψ) has vertex set P and set of edges

E(H) = {pq | ‖p− q‖∞ ≤ 2Ψ} ⊆
(
P

2

)
.

The use of the pattern graph is encoded in the following property: if U ∈ Up, V ∈ Uq
and U ∩ V 6= ∅, then pq ∈ E(H). Indeed, if U and V intersect, then the union U ∪ V is
contained in a square of side length 2Ψ, and thus the L∞-distance between each p ∈ P ∩ U
and q ∈ P ∩ V is at most 2Ψ.

The definition of H(P,Ψ) implies that the edge set of GU is the disjoint union of E(Up,Uq),
over all pq ∈ E(H), and the edge sets of the cliques GUp

, over all p ∈ P . Thus, whenever
pq /∈ E(H), there are no edges in E(Up,Uq).

Let λ be the maximum degree of H. Note that λ = O(Ψ2). The value of λ is an upper
bound on how many clusters Uq may interact with a single cluster Up. We will use λ as
a parameter to decide how many objects from each Up are kept. We start with a simple
observation.

É. Bonnet, S. Cabello, and W. Mulzer 31:11

I Lemma 8. There exists a maximum matching in GU that, for all pq ∈ E(H), contains at
most one edge of E(Up,Uq).

Of course we do not know which object from the cluster Up will interact with another
cluster Uq. We will explain how to get a large enough subset of cluster Up.

For each pq ∈ E(H), we construct a set W(p, q) ⊆ Up ∪ Uq as follows. First, we construct
a matching M = M(p, q) in E(Up,Uq) such that M has 2λ+ 1 edges or M has fewer than
2λ+ 1 edges and is maximal in E(Up,Uq). For example, such a matching can be constructed
incrementally. If M has 2λ+ 1 edges, we take W(p, q) to be the endpoints of M . Otherwise,
for each endpoint U ∈ Up (resp. V ∈ Uq) of M , we place U (resp. V) and λ of its neighbors
from Uq (resp. Up) into W(p, q). When U (resp. V) has fewer than λ neighbors, we place
all its neighbors in W(p, q). This finishes the description of W(p, q); refer to Algorithm
Sparsify-one-edge in the appendix (Figure 2) for pseudo-code.'

&

$

%

Algorithm Sparsify-one-edge
Input: p, q, Up and Uq
Output: W(p, q)
1. Ap ← Up
2. Aq ← Uq
3. (∗ compute matching M ∗)
4. M ← ∅
5. while |M | < 2λ+ 1 and Ap 6= ∅ do
6. U ← an arbitrary object of Ap
7. if U intersects some V ∈ Aq then
8. M ←M ∪ {UV }
9. Aq ← Aq \ {V }
10. Ap ← Ap \ {U}
11. (∗ end of computation of M ∗)
12. W ← ∪UV ∈M{U, V } (∗ endpoints of M ∗)
13. if |M | = 2λ+ 1 then (∗ M large enough matching ∗)
14. return W
15. else (∗ M maximal but small; add neighbors of W to the output ∗)
16. W ′ ←W
17. for W ∈ W do
18. if W ∈ Up then
19. add toW ′ min{λ, |E({W},Uq)|} elements of Uq intersecting

W

20. else (∗ W ∈ Up ∗)
21. add toW ′ min{λ, |E(Up, {W})|} elements of Up intersecting

W

22. return W ′

Figure 2 Algorithm Sparsify-one-edge.

STACS 2020

31:12 Maximum Matchings in Geometric Intersection Graphs

I Lemma 9. A maximum matching in

G̃ =

 ⋃
pq∈E(H)

GW(p,q)

 ∪
⋃
p∈P

GUp

 .

is a maximum matching in GU .

I Lemma 10. The family of objects W = ∪pq∈E(H)W(p, q) has depth O(Ψ8).

I Theorem 11. Let U be a family of n geometric objects in the plane such that each object
of U contains a square of side length 1 and is contained in a square of side length Ψ. Suppose
that, for any m ∈ N and for any p, q ∈ Z2 with |Up| + |Uq| ≤ m, we can compute the
sparsification W(p, q) as described above in time Tspars(m), where Tspars(m) = Ω(m) is
convex. In O(Ψ2 · Tspars(n)) time we can reduce the problem of finding a maximum matching
in GU to the problem of finding a maximum matching in GW for some W ⊆ U with maximum
depth O(Ψ8).

Our use of properties in the plane is very mild, and similar results hold in any space with
constant dimension.

I Theorem 12. Let d ≥ 3 be a constant. Let U be a family of n geometric objects in Rd such
that each object of U contains a cube of side length 1 and is contained in a cube of side length
Ψ. Suppose that, for any m ∈ N and for any p, q ∈ Zd with |Up|+ |Uq| ≤ m, we can compute
the sparsification W(p, q) as described above in time Tspars(m), where Tspars(m) = Ω(m) is
convex. In O(Ψd · Tspars(n)) time we can reduce the problem of finding a maximum matching
in GU to the problem of finding a maximum matching in GW for some W ⊆ U with maximum
depth (1 + Ψ)O(d).

As we mentioned in the introduction, for fat objects, bounded depth implies bounded
density; see Har-Peled and Quanrud [13, Lemma 2.7]. If a convex object contains a cube of
unit side length and is contained in a cube of side length Ψ, then it is O(1/Ψ)-fat; see van der
Stappen et al. [26], where the parameter 1/Ψ goes under the name of thickness. Combining
both results, one obtains that the relation between depth and density differs by a factor of
Ψ. For fixed shapes, they depth and density differ by a constant factor.

5 Efficient sparsification

Now, we implement Algorithm Sparsify-one-edge (Figure 2) efficiently. In particular, we
must perform the test in line 7 and find the neighbors in line 19 (and the symmetric case in
line 21). The shape of the geometric objects becomes relevant for this. First, we note that it
suffices to obtain an efficient semi-dynamic data structure for intersection queries.

I Lemma 13. Suppose there is a data structure with the following properties: for any m ∈ N
and for any p, q ∈ Z2 with |Up|+ |Uq| ≤ m, we can maintain a set Aq ⊆ Uq under deletions
so that, for any query U ∈ Up, we either find some V ∈ Aq with U ∩V 6= ∅ or correctly report
that no such V exists. Let Tcon(m) be the time to construct the data structure, Tque(m) an
upper bound on the amortized query time, and Tdel(m) be an upper bound on the amortized
deletion time. Then, the running time of Algorithm Sparsify-one-edge (Figure 2) for the
input (p, q,Up,Uq) is Tsparse(m) = O(Tcon(m) +mTque(m) + λ2Tdel(m)).

É. Bonnet, S. Cabello, and W. Mulzer 31:13

5.1 Disks in the plane
When U consists of disks in the plane, we can use the data structure of Kaplan et al. [15] to
sparsify an edge of the pattern graph. This leads to the following.

I Proposition 14. Consider a family U of n disks in the plane with radii in [1,Ψ]. In
O(Ψ6n log11 n) expected time, we can reduce the problem of finding a maximum matching in
GU to the problem of finding a maximum matching in GW for some subfamily W ⊆ U of
disks with maximum depth O(Ψ8).

Possibly, the method can be extended to homothets of a single object. For this one should
consider the surfaces defined by weighted distances in the approach of Kaplan et al. [15].

Since the depth and the density of a family of disks are linearly related, Proposition 14
and Theorem 7 with ρ = O(Ψ8) imply the following.

I Theorem 15. Consider a family U of n disks in the plane with radii in the interval [1,Ψ].
In O(Ψ6n log11 n+ Ψ12ωnω/2) expected time, we can compute a matching in GU that, with
high probability, is maximum.

5.2 Translates of a fixed convex shape in the plane
Now, suppose U consists of translates of a single convex object with non-empty interior in
the plane. With an affine transformation, we ensure that the object is fat: the radii of the
minimum enclosing disk and of the maximum enclosed disk are within a constant factor.
Such a transformation is standard; e.g., [1, Lemma 3.2]. Thus, we may assume that Ψ = O(1).
We start with a standard lemma.

I Lemma 16. Let U be a family of n translates of a convex object in the plane that are
pierced by a given point q. The union of U can be computed in O(n logn) time.

We will use the following lemma to “simulate” deletions. For this, we will keep a
half-infinite interval of indices that contains the elements that are “deleted”.

I Lemma 17. Let U = {U1, . . . Un} be a family of n translates of a convex object in the plane
that are pierced by a given point q. In O(n log2 n) time, we can construct a data structure for
the following queries: given x ∈ R2 and a value a ∈ {1, . . . , n}, find the smallest i ≥ a such
that Ui contains x, or correctly report that x does not belong to Ua ∪ · · · ∪ Un. The query
time is O(log2 n).

I Lemma 18. Let Uq = {V1, . . . Vn} be a family of n translates of a convex object in the
plane that are pierced by a given point q. Let U0 be a convex object. In O(n log2 n) time, we
can construct a data structure for the following type of queries: given a translate U of U0
and a value a, find the smallest i ≥ a such that U intersects Vi, or correctly report that U
does not intersect Va ∪ · · · ∪ Vn. Each query can be answered in O(log2 n) time.

Lemma 18 can be used to make queries and simulate deletions.

I Proposition 19. Consider a family U of n translates of a convex object with non-empty
interior in the plane. In O(n log2 n) time, we can reduce the problem of finding a maximum
matching in GU to the problem of finding a maximum matching in GW for some subfamily
W ⊆ U with maximum depth O(1).

Combining Proposition 19 and Theorem 7 we obtain the following.

STACS 2020

31:14 Maximum Matchings in Geometric Intersection Graphs

I Theorem 20. Consider a family U of translates of a convex object with non-empty interior
in the plane. In O(nω/2) time we can find matching in GU that, with high probability, is
maximum.

If U consists of unit disks,the sparsification can be done slightly faster using a semi-
dynamic data structure by Efrat, Itai, and Katz [9], which has O(Tcon(m)) = O(m logm), and
O(Top(m)) = O(logm). However the current bottleneck is the computation of the maximum
matching after the sparsification. Thus, improving the sparsification in the particular case of
unit disks does not lead to an improved final algorithm.

Proposition 19 and Theorem 20 also holds if we have translations of O(1) different convex
objects (with nonempty interiors). Indeed, the data structure of Lemma 18 can be made for
each pair of different convex shapes. In this case, the constant Ψ depends on the shapes,
namely the size of the largest square that we can place inside each of the convex shapes and
the size of the smallest square that can be used to cover each of the convex shapes. Also, the
relation between the depth and the density depends on the shapes. However, for a fixed set
of O(1) shapes, both values are constants that depend on the shapes.

I Theorem 21. Consider a family U of translates of a constant number of different convex
objects in the plane with non-empty interiors. In O(nω/2) time we can find matching in GU
that, with high probability, is maximum.

5.3 Axis-parallel objects

A box is the Cartesian product of intervals. Combining standard data structures for
orthogonal range searching [6, Sections 5.4 and 10.3] one obtains the following results.

I Proposition 22. Let d ≥ 2 be an integral constant. Consider a family U of n boxes in
Rd such that each box of U contains a cube of side length 1 and is contained in a cube of
side length Ψ. In O(Ψd · npolylogn) time we can reduce the problem of finding a maximum
matching in GU to the problem of finding a maximum matching in GW , for some W ⊆ U
with maximum depth (1 + Ψ)O(d).

For d = 2, we can combine Theorem 7 and Proposition 22. Since we have assumed ω > 2,
the O(npolylogn) term is asymptotically smaller than O(nω/2), and we obtain the following.

I Theorem 23. Given a family U of n boxes in R2 such that each object of U contains a
square of side length 1 and is contained in a square of side length Ψ, we can compute in
(1 + Ψ)O(1)nω/2 time a matching in GU that, with high probability, is a maximum matching.

Consider now the case d ≥ 3. The set W that we obtain from Proposition 22 has depth
and density ρ = (1 + Ψ)O(d), and therefore the graph GW has O(ρn) edges; see Lemma 1. We
can thus use the algorithm of Mądry [19], which takes Õ(|E(GW)|10/7)) = Õ((1+Ψ)O(d)n10/7)
time. We summarize.

I Corollary 24. Let d ≥ 3 be an integral constant. Given a family U of n boxes in Rd such
that each object of U contains a cube of side length 1 and is contained in a cube of side length
Ψ, we can compute in Õ((1 + Ψ)O(d)n10/7) time a matching in GU that, with high probability,
is a maximum matching.

É. Bonnet, S. Cabello, and W. Mulzer 31:15

5.4 Congruent balls in d ≥ 3 dimensions
Consider now the case of congruent balls in Rd, for constant d ≥ 3. Note that λ = O(1)
in this case. We use the dynamic data structure by Agarwal and Matoušek [2] for the
sparsification. For each m with n ≤ m ≤ ndd/2e, the data structure maintains n points in
Rd, answers O(n) queries for closest point and supports O(λ2) updates in

O

(
m1+ε + λ2m

1+ε

n
+ n · n log3 n

m1/dd/2e

)
time. Here ε > 0, is an arbitrary constant whose choice affects to the constants hidden in
the O-notation. For d ∈ {3, 4}, this running time is

O

(
m1+ε + λ2m

1+ε

n
+ n · n log3 n

m1/2

)
.

Setting m = n4/3, we get a running time of O(n4/3+ε + λ2n1/3+ε) = O(n4/3+ε) to handle
O(n) queries and O(λ2) = O(1) updates. Using this in Lemma 13 and Theorem 12, we get
the following result

I Proposition 25. Consider a family U of n unit balls objects in Rd, for d ∈ {3, 4}. In
O(n4/3+ε) time, we can reduce the problem of finding a maximum matching in GU to the
problem of finding a maximum matching in GW for some W ⊆ U with maximum depth O(1).

For the resulting set W with depth O(1), it is better to use the algorithm of Mądry [19]
for sparse graphs. Note that GW is sparse, and thus has O(n) edges. Therefore, a maximum
matching in GW can be computed in O(n10/7) time. In summary, we spend O(n4/3+ε) for
the sparsification and O(n10/7) for computing the matching in the sparsified setting.

For d > 4, we set m = n
2dd/2e

1+dd/2e . The running time for the sparsification is then
O(n

2dd/2e
1+dd/2e +ε). For each constant d, the resulting instance GW has O(n) edges. For d = 5, 6,

the running time of the sparsification is O(n3/2+ε). However, after the sparsification, we have
a graph with O(n) edges, and we can use the algorithm of Micali and Vazirani [20], which
takes O(n3/2) time. Thus, for d ≥ 5, the running time is dominated by the sparsification.

I Theorem 26. Let d ≥ 3 be a constant. Consider a family U of congruent balls in Rd. For
d = 3, 4, we can find in O(n10/7) time a maximum matching in GU . For d ≥ 5, we can find
in O(n

2dd/2e
1+dd/2e +ε) time a maximum matching in GU , for each ε > 0.

6 Conclusion

We have proposed the density of a geometric intersection graph as a parameter for the
maximum matching problem, and we showed that it can be fruitful in obtaining efficient
matching algorithms. Then, we presented a sparsification method that lets us reduce the
general problem to the case of bounded density for several interesting classes of geometric
intersection graphs. In our sparsification method, we did not attempt to optimize the
dependency on the radius ratio Ψ. It may well be that this can be improved by using
more advanced grid-based techniques. Furthermore, our sparsification needs the complete
intersection graph and does not apply to the bipartite setting. Here, we do not know of a
method to reduce the general case to bounded density. In general, the complexity of the
matching problem is wide open. To the best of our knowledge, there are no (even weak)
superlinear lower bounds for the (static) matching problem in general graphs.

STACS 2020

31:16 Maximum Matchings in Geometric Intersection Graphs

References
1 Pankaj. K. Agarwal, Sariel. Har-Peled, and Kasturi R. Varadarajan. Approximating extent

measures of points. J. ACM, 51(4):606–635, 2004. doi:10.1145/1008731.1008736.
2 Pankaj K. Agarwal and Jiří Matoušek. Ray shooting and parametric search. SIAM J. Comput.,

22(4):794–806, 1993. doi:10.1137/0222051.
3 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.
4 Noga Alon and Raphael Yuster. Matrix sparsification and nested dissection over arbitrary

fields. J. ACM, 60(4):25:1–25:18, 2013. doi:10.1145/2505989.
5 Édouard Bonnet, Sergio Cabello, and Wolfgang Mulzer. Maximum matchings in geometric

intersection graphs. CoRR, abs/1910.02123, 2019. arXiv:1910.02123.
6 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational

geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: http://www.
worldcat.org/oclc/227584184.

7 Mark de Berg, A. Frank van der Stappen, Jules Vleugels, and Matthew J. Katz. Realistic
input models for geometric algorithms. Algorithmica, 34(1):81–97, 2002. doi:10.1007/
s00453-002-0961-x.

8 Hristo Djidjev and Shankar M. Venkatesan. Reduced constants for simple cycle graph
separation. Acta Inf., 34(3):231–243, 1997.

9 Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001. doi:10.1007/s00453-001-0016-8.

10 David Eppstein, Gary L. Miller, and Shang-Hua Teng. A deterministic linear time algorithm
for geometric separators and its applications. Fundam. Inform., 22(4):309–329, 1995.

11 J. Gao and L. Guibas. Geometric algorithms for sensor networks. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370(1958):27–
51, 2011. doi:10.1098/rsta.2011.0215.

12 John R. Gilbert and Robert E. Tarjan. The analysis of a nested dissection algorithm.
Numerische Mathematik, 50(4):377–404, 1986. doi:10.1007/BF01396660.

13 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion and
low-density graphs. SIAM J. Comput., 46(6):1712–1744, 2017. doi:10.1137/16M1079336.

14 M. L. Huson and A. Sen. Broadcast scheduling algorithms for radio networks. In IEEE
MILCOM ’95, volume 2, pages 647–651 vol.2, 1995. doi:10.1109/MILCOM.1995.483546.

15 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar voronoi diagrams for general distance functions and their algorithmic applications. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, pages 2495–2504. SIAM, 2017. doi:10.1137/1.9781611974782.165.

16 Santosh Kumar, Ten H. Lai, and Anish Arora. Barrier coverage with wireless sensors. Wireless
Networks, 13(6):817–834, 2007.

17 Richard J. Lipton, Donald J. Rose, and Robert E. Tarjan. Generalized nested dissection.
SIAM J. Numer. Anal., 16(2):346–358, 1979. doi:10.1137/0716027.

18 Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem.
SIAM J. Comput., 9(3):615–627, 1980.

19 Aleksander Mądry. Navigating central path with electrical flows: From flows to matchings,
and back. In Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2013, pages 253–262, 2013. doi:10.1109/FOCS.2013.35.

20 Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum matching

in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of Computer
Science, FOCS 1980, pages 17–27. IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.

21 Gary L. Miller, Shang-Hua Teng, William P. Thurston, and Stephen A. Vavasis. Separators
for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29, 1997.

https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1137/0222051
https://doi.org/10.1145/2505989
http://arxiv.org/abs/1910.02123
http://www.worldcat.org/oclc/227584184
http://www.worldcat.org/oclc/227584184
https://doi.org/10.1007/s00453-002-0961-x
https://doi.org/10.1007/s00453-002-0961-x
https://doi.org/10.1007/s00453-001-0016-8
https://doi.org/10.1098/rsta.2011.0215
https://doi.org/10.1007/BF01396660
https://doi.org/10.1137/16M1079336
https://doi.org/10.1109/MILCOM.1995.483546
https://doi.org/10.1137/1.9781611974782.165
https://doi.org/10.1137/0716027
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/SFCS.1980.12

É. Bonnet, S. Cabello, and W. Mulzer 31:17

22 Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In
Proceedings of the 45th Symposium on Foundations of Computer Science, FOCS 2004, pages
248–255. IEEE Computer Society, 2004. doi:10.1109/FOCS.2004.40.

23 Marcin Mucha and Piotr Sankowski. Maximum matchings in planar graphs via gaussian
elimination. Algorithmica, 45(1):3–20, 2006. doi:10.1007/s00453-005-1187-5.

24 Michael O. Rabin and Vijay V. Vazirani. Maximum matchings in general graphs through
randomization. J. Algorithms, 10(4):557–567, 1989. doi:10.1016/0196-6774(89)90005-9.

25 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems and applications.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS,
pages 232–243, 1998.

26 A. Frank van der Stappen, Dan Halperin, and Mark H. Overmars. The complexity of
the free space for a robot moving amidst fat obstacles. Comput. Geom., 3:353–373, 1993.
doi:10.1016/0925-7721(93)90007-S.

27 Vijay V. Vazirani. A simplification of the MV matching algorithm and its proof. CoRR,
abs/1210.4594, 2012. URL: http://arxiv.org/abs/1210.4594.

28 Raphael Yuster and Uri Zwick. Maximum matching in graphs with an excluded minor. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,
pages 108–117. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283396.

29 F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing Approach.
Elsevier/Morgan-Kaufmann, 2004.

STACS 2020

https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1007/s00453-005-1187-5
https://doi.org/10.1016/0196-6774(89)90005-9
https://doi.org/10.1016/0925-7721(93)90007-S
http://arxiv.org/abs/1210.4594
http://dl.acm.org/citation.cfm?id=1283383.1283396

	Introduction
	Basics of (geometric intersection) graphs
	Maximum matching in low-density geometric intersection graphs
	Separators and separator trees
	Nested dissection
	The algorithm

	Sparsification
	Efficient sparsification
	Disks in the plane
	Translates of a fixed convex shape in the plane
	Axis-parallel objects
	Congruent balls in three or more dimensions

	Conclusion

