
HAL Id: hal-03013416
https://hal.science/hal-03013416

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ultimate complexity for numerical algorithms
Joris van Der Hoeven, Grégoire Lecerf

To cite this version:
Joris van Der Hoeven, Grégoire Lecerf. Ultimate complexity for numerical algorithms. ACM Com-
munications in Computer Algebra, 2020, 54 (1), pp.1-13. �10.1145/3419048.3419049�. �hal-03013416�

https://hal.science/hal-03013416
https://hal.archives-ouvertes.fr


DEFINE ISSUE using n issue

Ultimate complexity for numerical algorithms

Joris van der Hoeven

CNRS, �Ecole polytechnique, Institut Polytechnique de Paris

Laboratoire d'informatique de l'�Ecole polytechnique (LIX, UMR 7161)
1, rue Honor�e d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
Email: vdhoeven@lix.polytechnique.fr

Gr�egoire Lecerf

CNRS, �Ecole polytechnique, Institut Polytechnique de Paris

Laboratoire d'informatique de l'�Ecole polytechnique (LIX, UMR 7161)
1, rue Honor�e d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
Email: lecerf@lix.polytechnique.fr

Abstract

Most numerical algorithms are designed for single or double precision 
oating point arith-

metic, and their complexity is measured in terms of the total number of 
oating point oper-

ations. The resolution of problems with high condition numbers (e.g. when approaching a

singularity or degeneracy) may require higher working precisions, in which case it is impor-

tant to take the precision into account when doing complexity analyses. In this paper, we

propose a new \ultimate complexity" model, which focuses on analyzing the cost of numerical

algorithms for \su�ciently large" precisions. As an example application we will present an

ultimately softly linear time algorithm for modular composition of univariate polynomials.

1 Introduction

The total number of 
oating point operations is a good measure for the complexity of numerical
algorithms that operate at a �xed working precision. However, for certain ill-conditioned problems
it may be necessary to use higher working precisions. In order to analyze the complexity to solve
such problems, it is crucial to take into account the working precision as an additional parameter.

Multiple precision algorithms are particularly important in the area of symbolic-numeric compu-
tation. Two examples of applications are polynomial factorization and lattice reduction. Analyzing

This document has been written using GNU TEXmacs [15].



DEFINE SHORT TITLE USING n titlehead DEFINE TYPE OF PAPER USING n articlehead

the bit complexities of multiple precision algorithms is often challenging. Even in the case of a
simple operation such as multiplication, there has been recent progress [11]. The complexities of
other basic operations such as division, square roots, and the evaluation of elementary functions
have also been widely studied; see for instance [5, 25].

For high level algorithms, sharp complexity analyses become tedious. This happens for instance
in the area of \numerical algebraic geometry" when analyzing the complexity of homotopy contin-
uation methods: condition numbers are rather intricate and worst case complexity bounds do not
well re
ect practical timings that can be observed with generic input data. This motivated the
introduction of new average complexity models and lead to an active new area of research; see for
instance [2, 7].

Studying the complexity of algorithms has various bene�ts. First, it is useful to predict practical
running times of implementations. Secondly, it helps to determine which part of an algorithm
consumes most of the time. Thirdly, for algorithms that are harder to implemented, complexity
bounds are a way to estimate and compare algorithmic advances.

The present paper is devoted to a new \ultimate complexity" model. It focuses on the asymp-
totic complexity of a numerical algorithm when the working precision becomes su�ciently large.
This means in particular that we are in the asymptotic regime where the working precision becomes
arbitrarily large with respect to other parameters for the algorithm, such as the degree of a poly-
nomial or the size of a matrix. The ultimate complexity model allows for rather simple and quick
analyses. In particular, it is easy to transfer algebraic complexity results over an abstract e�ective
�eld K into ultimate complexity results over the complex numbers. However, it does not provide
any information on how large the precision should be in order for the asymptotic bounds to be
observable in practice.

As a �rst example, let us consider the problem of multiplying two n� n matrices with 
oating
point entries of bit size < p. The usual cost is O(n!) 
oating point operations, for some feasible
exponent ! > 2 for matrix multiplication; in [24] it has been shown that one may take ! < 2:3729.
Using the above transfer principle, this leads to an ultimate bit complexity bound of O(n!p log p),
where we used the recent result from [11] that p-bit integers can be multiplied in time O(p log p). In
practical applications, one is often interested in the case when n� p, in which the bit-complexity
rather becomes linear in p. But this is not what the ultimate complexity model does: it rather
assumes that p � n, and even p � �

exp �k�: : : � exp� (n) for any k. Under this assumption, we
actually have the sharper ultimate bit complexity bound O(n2p log p), which is proved using FFT
techniques [10].

As a second example, which will be detailed in the sequel, consider the computation of the
complex roots of a separable polynomial f of degree n over the complex numbers: once initial
approximations of the roots are known with a su�ciently large precision, the roots can be re�ned
in softly linear time by means of fast multi-point evaluations and Newton iterations. This implies
that the ultimate complexity is softly linear, even if a rather slow algorithm is used to compute the
initial approximations.

In sections 2 and 3, we recall basic results about ball arithmetic [13] and straight-line programs [6].
Section 4 is devoted to the new ultimate complexity model . In section 5 we illustrate the ultimate
complexity model with modular composition. Modular composition consists in computing the com-
position of two univariate polynomials modulo a third one. For polynomials with coe�cients in a
�nite �eld, Kedlaya and Umans proved in 2008 that the theoretical complexity for performing this
task could be made arbitrarily close to linear [21, 22]. Unfortunately, beyond its major theoretical



DEFINE SHORT AUTHOR HEADER USING n authorhead

impact, this result has not led to practically faster implementations yet; see [17]. In this paper, we
explore the particular case when the ground �eld is the �eld of computable complex numbers and
improve previously known results in this special case.

2 Ball arithmetic

2.1 Bit complexity

In the bit complexity model , the running time of an algorithm is analyzed in terms of the number
of bit operations that need to be performed. In this paper, we always assume that this is done on
a Turing machine with a �nite and su�ciently large number of tapes [28].

Multiplication is a central operation in both models. We write I(p) for a function that bounds
the bit-cost of an algorithm which multiplies two integers of bit sizes at most p, for the usual
binary representation. The best known bound [11] for I(p) is O(p log p) = ~O(p). Here, the soft-Oh
notation f(p) = ~O(g(p)) means that f(p) = g(p)(log g(p))O(1); we refer the reader to [9, Chapter 25,
Section 7] for technical details. We make the customary assumption that I(p)=p is non-decreasing.
Notice that this assumption implies the super-additivity of I, namely I(p1) + I(p2) 6 I(p1 + p2) for
all p1 > 0 and p2 > 0.

2.2 Fixed point numbers

Let a be a real number, we write bac for the largest integer less or equal to a and bae := ba+ 1=2c
for the closest integer to a.

Given a precision p 2 N, we denote by Dp = Z2�p the set of �xed point numbers with p binary
digits after the dot. This set Dp is clearly stable under addition and subtraction. We can also de�ne
approximate multiplication �p on Dp using x �p y = b2pxye2�p, so jx �p y � xyj 6 2�p�1 for all
x; y 2 Dp.

For any �xed constant K > 0 and x; y 2 Dp \ [�K;K], we notice that x + y and x� y can be
computed in time O(p), whereas x �p y can be computed in time I(p) + O(p). Similarly, one may
de�ne an approximate inversion �p on D

6=
p := Dp nf0g by �p(x) = b2px�1e2�p. For any �xed constant

K > 0 and x 2 D 6=p \ [�K;K], we may compute �p(x) in time O (I(p)).

Remark 1 In numerical algorithms, 
oating point arithmetic is often preferred with respect to
�xed point arithmetic. From our perspective of ultimate complexity, it is interesting to notice
that both formalisms are actually equivalent, except at zero. Indeed, it su�ces to take the bit
precision large enough so that it exceeds the absolute value of the exponent of any 
oating point
number involved in the computation. For technical reasons, it is more convenient to use �xed point
arithmetic in this paper.

2.3 Fixed point ball arithmetic

Ball arithmetic is used for providing reliable error bounds for approximate computations. A ball
is a set B(c; r) = fz 2 R : jz � cj 6 rg with c 2 R and r 2 R>. From the computational point
of view, we represent such balls by their centers c and radii r. We denote by Bp the set of balls
with centers in Dp and radii in D>p . Given vectors x = (x1; : : : ; xn) 2 Rn and x = (x1; : : : ;xn) =
(B(c1; r1); : : : ;B(cn; rn)) 2 Bnp we write x 2 x to mean x1 2 x1 ^ � � � ^ xn 2 xn, and we also set
rad(x) := max (r1; : : : ; rn).



DEFINE SHORT TITLE USING n titlehead DEFINE TYPE OF PAPER USING n articlehead

Let D be an open subset of Rn. We say that Dp � Bnp is a domain lift at precision p if x � D
for all x 2 Dp. The maximal such lift is given by Dp = fx 2 Bnp : x � Dg. Given a function
f : D ! Rm, a ball lift of f at precision p is a function f p : Dp ! Bmp , where Dp = domf p is a
domain lift of D at precision p, that satis�es the inclusion property : for any x = (x1; : : : ;xn) 2Dn

p

and x = (x1; : : : ; xn) 2 Rn, we have

x 2 x =) f(x) 2 f p(x):

A ball lift f of f is a computable sequence (f p)p2N of ball lifts at every precision such that for any
sequence (xp)p2N with xp 2 domf p, we have

lim
p!1

rad(xp) = 0 ^
\
p2N

xp 6= ; =) lim
p!1

rad(f p(xp)) = 0:

This condition implies the following:

lim
p!1

rad(xp) = 0 ^
\
p2N

xp = fxg =)
\
p2N

f p(xp) = ff(x)g:

We say that f is maximal if domf p is the maximal domain lift for each p. Notice that a function f
must be continuous in order to admit a maximal ball lift.

The following formulas de�ne maximal ball lifts �p, 	p and 
p at precision p for the ring
operations +, � and �:

B(a; r)�p B(b; s) := B(a+ b; r + s)

B(a; r)	p B(b; s) := B(a� b; r + s)

B(a; r)
p B(b; s) := B(a�p b; (jaj+ r)�p s+ jbj �p r + 21�p):

The extra 21�p in the formula for multiplication is needed in order to counter the e�ect of rounding
errors that might occur in the three multiplications a�p b, (jaj+r)�ps and jbj�ps. For B(a; r) 2 Bp
with r < jaj, the following formula also de�nes a maximal ball lift �p at precision p for the inversion:

�p(B(a; r)) := B(�p(a); �p(jaj � r)� �p(jaj) + 21�p):

For any �xed constant K > 0 and a; r; b; s 2 Dp \ [�K;K], we notice that B(a; r) �p B(b; s),
B(a; r)	p B(b; s), B(a; r)
p B(b; s) and �p(B(a; r)) can be computed in time O (I(p)).

Let f be the ball lift of a function f : D ! Rm with D � Rn. Consider a second ball lift g of
a function g : E ! Rl with f(D) � E � Rm. Then we may de�ne a ball lift g�f of the composition
g � f : D ! Rl as follows. For each precision p, we take (g � f)p = gp � (f p)jDp

, where (f p)jDP
is

the restriction of f p to the set Dp = fx 2 domf p : f p(x) 2 dom gpg.
We shall use ball arithmetic for the computation of complex functions Cn ! Cm simply through

the consideration of real and imaginary parts. This point of view is su�cient for the asymptotic
complexity analyses of the present paper. Of course, it would be more e�cient to directly compute
with complex balls (i.e. balls with a complex center and a real radius), but this would involve
approximate square roots and ensuing technicalities.



DEFINE SHORT AUTHOR HEADER USING n authorhead

2.4 The Lipschitz property

Assume that we are given the ball lift f of a function f : D ! Rm with D � Rn. Given a subset
U � D and constants � > 0; � > 0, we say that the ball lift f is (�; �)-Lipschitz on U if

9p0 2 N; 9% > 0; 8p > p0; 8x 2 Bnp ;
x � U ^ rad(x) 6 % =) x 2 domf p ^ rad(f p(x)) 6 � rad(x) + �2�p:

For instance, the ball lifts � and 	 of addition and subtraction are (2; 0)-Lipschitz on R2. Similarly,
the ball lift 
 of multiplication is (3�; 3)-Lipschitz on U = f(x; y) 2 R2 : jxj 6 �; jyj 6 �g (by taking
% = �), whereas the ball lift � of � is (�; 3)-Lipschitz on U = fx 2 R : ��1=2 6 jxjg.

Given f and � > 0; � > 0 as above, we say that f is locally (�; �)-Lipschitz on U if f is (�; �)-
Lipschitz on each compact subset of U . We de�ne f to be �-Lipschitz (resp. locally �-Lipschitz)
on U if there exists a constant � > 0 for which f is (�; �)-Lipschitz (resp. locally (�; �)-Lipschitz).
If f is locally �-Lipschitz on U , then it is not hard to see that f is necessarily locally Lipschitz on
U , with Lipschitz constant �. That is,

8x 2 U; 9� > 0; 8a; b 2 B(x; �) \ U; kf(b)� f(a)k1 6 �kb� ak1:

In fact, the requirement that a computable ball lift f is �-Lipschitz implies that we have a way to
compute high quality error bounds. We �nally de�ne f to be Lipschitz (resp. locally Lipschitz) on
U if there exists a constant � > 0 for which f is �-Lipschitz (resp. locally �-Lipschitz).

Lemma 1 Let f be a locally (�; �)-Lipschitz ball lift of f : D ! Rm on an open set U . Let g be
a locally (�0; �0)-Lipschitz ball lift of g : E ! Rl on an open set V . If f(D) � E and f(U) � V ,
then g � f is a locally (��0; ��0 + �0)-Lipschitz ball lift of g � f on U .

Proof Consider a compact subset C � U . Since this implies f(C) to be a compact subset of
f(U) � V , it follows that there exists an " > 0 such that f(C) + B(0; ") � V . Let p0 2 N,
0 < % < ("� �2�p)=� and 0 < %0 be such that for any p > p0, x 2 Bnp and y 2 Bmp , we have

x � C ^ rad(x) 6 % =) x 2 domf p ^ rad(f p(x)) 6 � rad(x) + �2�p < "

(y � f(C) + B(0; ")) ^ rad(y) 6 %0 =) y 2 dom gp ^ rad(gp(y)) 6 �0 rad(y) + �02�p:

Given x 2 Bnp with x � C and rad(x) 6 %, it follows that y := f p(x) satis�es rad(y) < ", whence
y � f(C) + B(0; "). If we also assume that rad(x) 6 (%0 � �2�p)=�, then it also follows that
rad(y) 6 %0, whence y 2 dom gp and rad(gp(y)) 6 �0(� rad(x) + �2�p) + �02�p = ��0 rad(x) +
(��0+�0)2�p. In other words, if x � C and rad(x) 6 min(%; (%0��2�p)=�), then x 2 dom(gp �f p)
and rad((gp � f p)(x)) 6 ��0 rad(x) + (��0 + �0)2�p. 2

3 Straight-line programs

Informally speaking, a straight-line program is a sequence of programing instructions that does not
contain any loop or branching. Each instruction applies a single elementary operation to constants
and values stored in variables. The result of the instruction is then stored into a variable. A detailed
presentation of straight-line programs can be found in the book [6]. From the mathematical point



DEFINE SHORT TITLE USING n titlehead DEFINE TYPE OF PAPER USING n articlehead

of view, a straight-line program can be regarded as a data structure that encodes of a composition
of elementary operations.

For straight-line programs over rings (and �elds), elementary operations are usually the arith-
metic ones: addition, subtraction, products (and inversions). Our application to modular com-
position in section 5 only requires these operations. However in the present numerical context, it
is relevant to allow us for wider sets of elementary operations such as exponentials, logarithms,
trigonometric functions, etc. The following paragraphs thus formalize straight-line programs for a
wide class of numerical algorithms. We take care of de�nition domains and allow for changes of
evaluation domains.

A signature is a �nite or countable set of function symbols F together with an arity rf 2 N for
each f 2 F . A model for F is a set K together with a function fK : Uf ! K with Uf � Krf for
each k 2 F . If K is a topological space, then Uf is required to be an open subset of Krf . Let V be
a countable and ordered set of variable symbols.

A straight-line program (SLP) � with signature F is a sequence �1; : : : ;�` of instructions of the
form

�k � Xk := fk

�
Yk;1; : : : ; Yk;rfk

�
;

where fk 2 F and Xk; Yk;1; : : : ; Yk;rfk 2 V , together with a subset O� � fX1; : : : ; X`g of output
variables . Variables that appear for the �rst time in the sequence in the right-hand side of an
instruction are called input variables . We denote by I� the set of input variables. The number ` is
called the length of �.

There exist unique sequences I1 < � � � < In and O1 < � � � < Om with I� = fI1; : : : ; Ing and
O� = fO1; : : : ; Omg. Given a model K of F we can run � for inputs in K, provided that the
arguments Yk;1; : : : ; Yk;rfk are always in the domain of fk when executing the instruction �k. Let
D�;K be the set of tuples I = (I1; : : : ; In) 2 Kn on which � can be run. Given I 2 Kn, let
�K(I) 2 Km denote the value of (O1; : : : ; Om) at the end of the program. Hence � gives rise to a
function �K : D�;K ! Km.

Now assume that (R; (fR)f2F) is a model for F and that we are given a ball lift f of fR for each
f 2 F . Then Bp is also a model for F at each precision p, by taking fBp = f p for each f 2 F .
Consequently, any SLP � as above gives rise to both a function �R : D�;R ! Rm and a ball lift
�Bp : D�;Bp ! Bmp at each precision p. The sequence (�Bp)p thus provides us with a ball lift � for
�R.

Proposition 1 If the ball lift f of fR is Lipschitz for each f 2 F , then � is again Lipschitz.

Proof For each model K of F , for each variable v 2 V and each input I = (I1; : : : ; In) 2 D�;K ,
let vK;k(I) denote the value of v after step k. We may regard vK;k as a function from D�;K to K.
In particular, we obtain a computable sequence of functions vBp;k that give rise to a ball lift v(k)

of vR;k. Let us show by induction over k that v(k) is Lipschitz for every v 2 V . This is clear for
k = 0, so let k > 0. If v 6= Xk, then we have v(k) = v(k�1); otherwise, we have

v(k) = fk

�
Y

(k�1)
k;1 ; : : : ;Y

(k�1)
k;rfk

�
:

In both cases, it follows from Lemma 1 that v(k) is again a Lipschitz ball lift. We conclude by
noticing that � = (O

(`)
1 ; : : : ;O(`)

n ). 2



DEFINE SHORT AUTHOR HEADER USING n authorhead

4 Computable numbers and ultimate complexity

A real number x 2 R is said to be computable if there exists an approximation algorithm �x that
takes p 2 N on input and produces �x(p) 2 Dp on output with jx� �x(p)j 6 2�p (we say that �x(p) is
a 2�p-approximation of x). We denote by Rcom the �eld of computable real numbers.

Let T (p) be a nondecreasing function. We say that a computable real number x 2 Rcom has
ultimate complexity T (p) if it admits an approximation algorithm �x that computes �x(p) in time
T (p + �) for some �xed constant � 2 N. The fact that we allow �x(p) to be computed in time
T (p + �) and not T (p) is justi�ed by the observation that the position of the \binary dot" is
somewhat arbitrary in the approximation process of a computable number.

The notion of approximation algorithm generalizes to vectors with real coe�cients: given v 2
(Rcom)n, an approximation algorithm for v as a whole is an algorithm �v that takes p 2 N on
input and returns �v(p) 2 Dr

p on output with j�v(p)i � vij 6 2�p for i = 1; : : : ; n. This de�nition
naturally extends to any other mathematical objects that can be encoded by vectors of real numbers:
complex numbers (by their real and complex parts), polynomials and matrices (by their vectors of
coe�cients), etc. The notion of ultimate complexity also extends to any of these objects.

A ball lift f is said to be computable if there exists an algorithm for computing f p for all
p 2 N. A computable ball lift f of a function f : D ! Rm with D � Rn allows us to compute the
restriction of f to D \ (Rcom)n: given x 2 D \ (Rcom)n with approximation algorithm �x, by taking
xp = B(�x(p); 2�p) 2 Bnp , we have

T
p2N xp = fxg, Tp2N f p(xp) = ff(x)g, and limp!1 rad(f p(xp)) =

0.
Let F be a nondecreasing function and assume that D is open. We say that f has ultimate

complexity F (p) if for every compact set C � D, there exist constants p0 2 N, % > 0 and � 2 N
such that for any p > p0 and xp 2 domf p with xp � C and rad(xp) 6 %, we can compute f p(xp)
in time F (p + �). For instance, � and 	 have ultimate complexity O(p), whereas 
 and � have
ultimate complexity O (I(p)).

Proposition 2 Assume that f is locally Lipschitz. If f has ultimate complexity F (p) and x 2
D \ (Rcom)n has ultimate complexity T (p), then f(x) has ultimate complexity T (p) + F (p).

Proof Let �x be an approximation algorithm for x of complexity T (p+�), where � 2 N. There exist
p0 2 N and a compact ball C around x with C � dom f and such that xp = B(�x(p); 2�p) 2 Bnp is
included in C for all p > p0. There also exists a constant �

0 2 N such that f p(xp) can be computed
in time F (p+�0) for all p > p0. Since f is locally Lipschitz, there exists yet another constant �00 2 N
such that rad(f p(xp)) 6 2�

00�p for p > p0. For q = p � �00 > max(p0 � �00; 0) and �000 = max(�; �0),
this shows that we may compute a 2�q-approximation of f(x) in time T (q + �000) + F (q + �000). 2

Proposition 3 Assume that f and g are two locally Lipschitz ball lifts of f and g that can be
composed. If f and g have respective ultimate complexities F (p) and G(p), then g � f has ultimate
complexity F (p) +G(p).

Proof In a similar way as in the proof of Lemma 1, the evaluation of (g �f)p(xp) for xp 2 domf p

with xp � C and rad(xp) 6 % boils down to the evaluation of f p at xp and the evaluation of gp
at yp := f p(xp) � C 0 := f(C) +B(0; ") with rad(yp) 6 %0. Modulo a further lowering of % and %0 if
necessary, these evaluations can be done in time F (p + �) and G(p + �0) for suitable �; �0 2 N and
su�ciently large p. 2



DEFINE SHORT TITLE USING n titlehead DEFINE TYPE OF PAPER USING n articlehead

Theorem 1 Assume that R is a model for the function symbols F , and that we are given a com-
putable ball lift f of fR for each f 2 F . For each f 2 F , assume in addition that f is locally
Lipschitz, and let Ff be a nondecreasing function such that f has ultimate complexity Ff (p). Let
� = �1; : : : ;�` be an SLP over F whose k-th instruction �k writes Xk := fk(Yk;1; : : : ; Yk;rf ). Then,
the ball lift � of �R has ultimate complexity

F�(p) := Ff1(p) + � � �+ Ff`(p):

Proof This is a direct consequence of Proposition 3. 2

Corollary 1 Let � be an SLP of length ` over F = f0; 1;+;�;�; �g (where 0 and 1 are naturally
seen as constant functions of arity zero). Then, there exists a ball lift � of �R with ultimate
complexity O (I(p)`).

Proof We use the ball lifts of section 2 for each f 2 f+;�;�; �g: they are locally Lipschitz
and computable with ultimate complexity O (I(p)). We may thus apply the Theorem 1 to obtain
F�(p) = O (I(p)`). 2

5 Application to modular composition

Let K be an e�ective �eld, and let f; g; h be polynomials in K[x]. The problem of modular compo-
sition is to compute g � f modulo h. Modular composition is an important problem in complexity
theory because of its applications to polynomial factorization [21, 22, 20]. It also occurs very natu-
rally whenever one wishes to perform polynomial computations over K inside an algebraic extension
of K. In addition, given two di�erent representations K[x]=(h(x)) �= K[~x]=(~h(~x)) of an algebraic
extension of K, the implementation of an explicit isomorphism actually boils down to modular
composition.

5.1 Algebraic complexity

Besides the bit complexity model from section 2.1, we will also need the algebraic complexity model ,
in which running times are analyzed in terms of the number of operations in some abstract ground
ring or �eld [6, Chapter 4].

We write M : N! R> for a cost function such that for any e�ective �eld K and any two polyno-
mials of degree < n in K[x], we can compute their product using at mostM(n) arithmetic operations
in K. The fastest currently known algorithm [8] allows us to take M(n) = O(n log n log log n) =
~O(n). As in the case of integer multiplication, we assume that M(n)=n is non-decreasing; this again
implies that M is super-additive.

Given two polynomials g; h 2 K[x], we de�ne g quoh and g remh to be the quotient and the
remainder of the Euclidean division of g by h. Both the quotient and the remainder can be computed
using O (M(n)) operations in K, if g and h have degrees 6 n. We recall that the gcd of two
polynomials of degrees at most n over K can be computed using O (M(n) log n) operations in K [9,
Algorithm 11.4]. Given polynomials f and g1; : : : ; gl over K with deg f = n and deg g1+� � �+deg gl =
O(n), all the remainders f rem gi may be computed simultaneously in cost O (M(n) log l) using a
subproduct tree [9, Chapter 10]. The inverse problem, called Chinese remaindering , can be solved
with a similar cost O (M(n) log l), assuming that the gi are pairwise coprime. The fastest known
algorithms for these tasks can be found in [3, 1, 14].



DEFINE SHORT AUTHOR HEADER USING n authorhead

5.2 Related work

Let f; g and h be polynomials in K[x] of respective degrees < n, < n and n. The naive modular
composition algorithm takes O (nM(n)) operations in K. In 1978, Brent and Kung [4] gave an
algorithm with cost O (

p
nM(n) + n2). It uses the baby-step giant-step technique due to Paterson

and Stockmeyer [29], and even yields a sub-quadratic cost O (n$ +
p
nMK(n)) when using fast

linear algebra; see [19, p. 185]. The constant $ > 1:5 is such that a
p
n �p

n matrix over K can
be multiplied with another

p
n � n rectangular matrix in time O(n$). The best current bound

$ < 1:667 is due to Huang and Pan [18, Theorem 10.1].
A major breakthrough has been achieved by Kedlaya and Umans [21, 22] in the case when K is

the �nite �eld Fq. For any positive " > 0, they showed that the composition g � f modulo h could
be computed with bit complexity O((n log q)1+"). Unfortunately, it remains a major open problem
to turn this theoretical complexity bound into practically useful implementations.

Quite surprisingly, the existing literature on modular composition does not exploit the simple
observation that composition modulo a separable polynomial h 2 K[x] that splits over K can be
reduced to the well known problems of multi-point evaluation and interpolation [9, Chapter 10].
More precisely, assume that h = (x� �1) � � � (x� �n) is separable, which means that gcd(h; h0) = 1.
If f; g 2 K[x] are of degree < n, then g � f modh can be computed by evaluating f at �1; : : : ; �n,
by evaluating g at f(�1); : : : ; f(�n), and by interpolating the evaluations (g � f)(�1); : : : ; (g � f)(�n)
to yield g � f modh.

Whenever K is algebraically closed and a factorization of h is known, the latter observation
leads to a softly-optimal algorithm for composition modulo h. More generally, if the computation
of a factorization of h has a negligible or acceptable cost, then this approach leads to an e�cient
method for modular composition. In this paper, we prove a precise complexity result in the case
when K is the �eld of computable complex numbers. In a separate paper [16], we also consider
the case when K is a �nite �eld and h has composite degree; in that case, h can be factored over
suitable �eld extensions, and similar ideas lead to improved complexity bounds.

In the special case of power series composition (i.e. composition modulo h = xn), our approach is
similar in spirit to the analytic algorithm designed by Ritzmann [30]; see also [12]. In order to keep
the exposition as simple as possible in this paper, we only study composition modulo separable
polynomials. By handling multiplicities with Ritzmann's algorithm, we expect our algorithm to
extend to the general case.

5.3 Abstract modular composition in the separable case

For any �eld K and n 2 N, we denote

K[x]<n := fP 2 K[x] : degP < ng:

In this section, K represents an abstract algebraically closed �eld of constants. Let h = xn +
hn�1x

n�1 + � � �+ h0 2 K[x] be a separable monic polynomial, so h admits n pairwise distinct roots
�1; : : : ; �n in K. Then we may use the following algorithm for composition modulo h:



DEFINE SHORT TITLE USING n titlehead DEFINE TYPE OF PAPER USING n articlehead

Algorithm 1

Input Polynomials f; g 2 K[x]<n and pairwise distinct �1; : : : ; �n 2 K.
Output g � f remh, where h = (x� �1) � � � (x� �n).

1. Compute v1 = f(�1); : : : ; vn = f(�n) using fast multi-point evaluation.

2. Compute w1 = g(v1); : : : ; wn = g(vn) using fast multi-point evaluation.

3. Retrieve % 2 K[x]<n with %(�1) = v1; : : : ; %(�n) = vn using fast interpolation.

4. Return %.

Theorem 2 Algorithm 1 is correct and requires O (M(n) log n) operations in K.

Proof By construction, %(�i) = (g � f)(�i) = (g � f remh)(�i) for i = 1; : : : ; n. Since deg % < n
and the �i are pairwise distinct, it follows that % = g � f remh. This proves the correctness of the
algorithm. The complexity bound follows from the fact that steps 1, 2 and 3 take O (M(n) log n)
operations in K. 2

We wish to apply the theorem in the case when K = C. Of course, on a Turing machine, we
can only approximate complex numbers with arbitrarily high precision, and likewise for the �eld
operations in C. For given numbers x and y, approximations at precision p for x+y, x�y, x�y and
x=y (whenever y 6= 0) can all be computed in time O (I(p)). In view of Theorem 2, it is therefore
natural to ask whether p-bit approximations of the coe�cients of g � f remh may be computed in
time O (I(p)M(n) log n).

In the remainder of this paper we give a positive answer to a carefully formulated version of this
question. First we will prove a complexity bound for modular composition that holds for a �xed
modulus h with known roots �1; : : : ; �n and for su�ciently large working precisions p. Then we will
show that the assumption that the roots �1; : : : ; �n of h are known is actually quite harmless for
ultimate complexity for the following reason: as soon as approximations for �1; : : : ; �n are known
at a su�ciently high precision, the computation of even better approximations can be done fast
using Newton's method combined with multi-point evaluation. Since we are only interested in the
complexity for \su�ciently large working precisions", the computation of the initial approximations
of �1; : : : ; �n can therefore be regarded as a precomputation of negligible cost.

5.4 Ultimate modular composition for separable moduli

Lemma 2 There exists a constant � > 0 such that the following assertion holds. Let f; g 2
Ccom[x]<n, let �1; : : : ; �n be pairwise distinct elements of Ccom, and let h = (x � �1) � � � (x � �n).
Assume that (f0; : : : ; fn�1; g0; : : : ; gn�1; �1; : : : ; �n) has ultimate complexity T (n; p). Then % = g �
f remh has ultimate complexity T (n; p) + �I(p)M(n) log n.

Proof The algorithm for fast multi-point evaluation of a polynomial P =
Pn�1

i=0 Pix
i 2 K[x]<n

at �1; : : : ; �n 2 K can be regarded as an SLP over F = f0; 1;+;�;�; �g of length O (M(n) log n)
that takes (P0; : : : ; Pn�1; �1; : : : ; �n) 2 K2n on input and that produces (P (�1); : : : ; P (�n)) 2 Kn on
output. Similarly, the algorithm for interpolation can be regarded as an SLP over F of length
O (M(n) log n) that takes (�1; : : : ; �n; v1; : : : ; vn) 2 K2n on input and that produces (P0; : : : ; Pn�1) 2
Kn on output with v1 = P (�1); : : : ; vn = P (�n). Altogether, we may regard the entire Algorithm 1 as
an SLP � over F of length O (M(n) log n) that takes (f0; : : : ; fn�1; g0; : : : ; gn�1; �0; : : : ; �n�1) 2 K3n



DEFINE SHORT AUTHOR HEADER USING n authorhead

on input and that produces (%0; : : : ; %n�1) 2 Kn on output with � = g � f remh =
Pn�1

i=0 �ix
i 2

K[x]<n. It follows from Corollary 1 that �R admits a ball lift � of ultimate complexity

O (I(p)M(n) log n) :

The conclusion now follows from Proposition 2. 2

According to the above lemma, we notice that the time complexity for computing % = g � f remh
is T (n; p+ �) + �I(p+ �)M(n) log n for some constant � that depends on n, f; g, and the �i.

Lemma 3 There exists a constant � > 0 such that the following assertion holds. Let h 2 Ccom[x]
be separable and monic of degree n, and denote the roots of h by � = (�1; : : : ; �n). If h has ultimate
complexity T (n; p), then � has ultimate complexity T (n; p) + �I(p)M(n) log n.

Proof There are many algorithms for the certi�ed computation of the roots of a separable complex
polynomial. We may use any of these algorithms as a \fall back" algorithm in the case that we only
need a 2�p-approximation of � at a low precision p determined by h only.

For general precisions p, we use the following strategy in order to compute a ball � 2 Bnp with
� 2 � and rad(�) 6 2��p for some �xed threshold 1=2 < � < 1. For some suitable p0 2 N and
p 6 p0, we use the fall back algorithm. For p > p0 and for a second �xed constant 1=2 < � < 1, we
�rst compute a ball enclosure � 2 Bnq at the lower precision q = d�pe using a recursive application
of the method. We next compute � using a ball version of the Newton iteration, as explained below.
If this yields a ball � with acceptable radius rad(�) 6 2��p, then we are done. Otherwise, we resort
to our fall-back method. Such calls of the fall-back method only occur if the default threshold
precision p0 was chosen too low. Nevertheless, we will show that there exists a threshold p1 such
that the computed � by the Newton iteration always satis�es rad(�) 6 2��p for p > p1.

Let us detail how we perform our ball version of the Newton iteration. Recall that � 2 Bnq
with � 2 � and rad(� ) 6 2���p is given. We also assume that we computed once and for all
a 2�p-approximation of h, in the form of a ball polynomial hp 2 Bp[i][x] of radius 2�p that contains h.
Now we evaluate hp and h

0
p at each of the points �1; : : : ;�n using fast multi-point evaluation. Let

us denote the results by v = hp(�) and w = h0p(�). Let � , v and w denote the balls with radius
zero and whose centers are the same as for � , v and w. Using vector notation, the Newton iteration
now becomes:

� = (� 	p �p(w)
p v)�p (1	p �p(w)
p w)
p (� 	p �):

If � 2 � , then it is well-known [23, 31] that � 2 �. Since rad(� ) 6 2���p, the fact that multi-point
ball evaluation (used for hp and h

0
p) is locally Lipschitz implies the existence of a constant � > 0

with rad(�) 6 2����p and rad(w) 6 2����p. Since h0(�i) 6= 0 for i = 1; : : : ; n, there also exists
a constant �0 > 0 with 1 � �p(w)w � B(0; 2�0���p). Altogether, this means that there exists a
constant �00 > 0 with rad(�) 6 2�

00�2��p. Let p1 = d�00=(�(2� � 1))e. Then for any p > p1, the
Newton iteration provides us with a � with rad(�) 6 2��p.

Let us now analyze the ultimate complexity C(n; p) of our algorithm. For large p > p1, the
algorithm essentially performs two multi-point evaluations of ultimate cost �0I(p)M(n) log n for
some constant �0 that does not depend on p, and a recursive call. Consequently,

C(n; p) 6 �0I(p)M(n) log n+ C(n; d�pe):



DEFINE SHORT TITLE USING n titlehead DEFINE TYPE OF PAPER USING n articlehead

We �nally obtain an other constant � > �0 such that

C(n; p) 6 �I(p)M(n) log n;

by summing up the geometric progression and using the fact that I(p)=p is nondecreasing. The
conclusion now follows from Lemma 2. 2

Remark 2 A remarkable feature of the above proof is that the precision p1 at which the Newton
iteration can safely be used does not need to be known in advance. In particular, the proof does
not require any a priori knowledge about the Lipschitz constants.

Theorem 3 There exists a constant � > 0 such that the following assertion holds. Let f; g 2
Ccom[x]<n and let h 2 Ccom[x] be separable and monic of degree n. Assume that (f; g; h) has ultimate
complexity T (n; p). Then % = g � f remh has ultimate complexity T (n; p) + �I(p)M(n) log n.

Proof This is an immediate consequence of the combination of the two above lemmas. 2

One disadvantage of ultimate complexity is that it does not provide us with any information
about the precision from which the ultimate complexity is reached. In practical applications, the
input polynomials f; g and h often admit integer or rational coe�cients. In these cases, the required
bit precision is expected to be of order n(l + n) in the worst case, where n = deg h and l is the
largest bit size of the coe�cients: in fact, this precision allows to compute all the complex roots of
h e�ciently using algorithms from [26, 27, 32]. This precision should also be su�cient to perform
the multi-point polynomial evaluations of g and f by asymptotically fast algorithms.

6 Conclusion and �nal remarks

With some more work, we expect that all above bounds of the form O (I(p)M(n) log n) can be lowered
to O (I(np) log n). Notice that I(np) log n = O (I(p)n log n) for p > n, when taking I(p) = �(n log n).
In order to prove this stronger bound using our framework, one might add an auxiliary operation�[n]

for the product of two polynomials of degrees < n to the set of signatures F . Polynomial products of
this kind can be implemented for coe�cients in Dp[i] with p > n using Kronecker substitution. For
bounded coe�cients, this technique allows for the computation of one such product in timeO (I(np)).
By using Theorem 1, a standard complexity analysis should show that multi-point evaluation and
interpolation have ultimate complexity O (I(np) log n).

By Theorem 3, the actual bit complexity of modular composition is of the form T (n; p+ �) +
�I(p+ �)M(n) log n for some value of � that depends on f; g; h (hence on n). An interesting problem
is to get a better grip on this value �, which mainly depends on the geometric proximity of the roots
of h.

If f; g; h belong to Q[x], then T (n; p) = O (nI(p)) and we may wish to bound � as a function
of n and the maximum bit size l of the coe�cients of f , g and h. This would involve bit complexity
results for root isolation [26, 27, 32], for multi-point evaluation, and for interpolation. The overall
complexity should then be compared with the maximal size of the output, namely g�f remh, which
is in general much larger than the input size. Here, the ultimate complexity model therefore o�ers
a convenient trade-o� between a �ne asymptotic complexity bound and a long technical complexity
analysis.



DEFINE SHORT AUTHOR HEADER USING n authorhead

References

[1] D. Bernstein. Scaled remainder trees. Available from https://cr.yp.to/arith/

scaledmod-20040820.pdf, 2004.

[2] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-Verlag
New York, 1998.

[3] A. Bostan, G. Lecerf, and �E. Schost. Tellegen's principle into practice. In Proceedings of
the 2003 International Symposium on Symbolic and Algebraic Computation, ISSAC '03, pages
37{44, New York, NY, USA, 2003. ACM.

[4] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM,
25(4):581{595, 1978.

[5] R. P. Brent and P. Zimmermann. Modern computer arithmetic, volume 18 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University Press, 2010.

[6] P. B�urgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1997.

[7] P. B�urgisser and F. Cucker. Condition. The Geometry of Numerical Algorithms, volume 349
of Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 2013.

[8] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Infor., 28(7):693{701, 1991.

[9] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
New York, NY, USA, 3rd edition, 2013.

[10] D. Harvey and J. van der Hoeven. On the complexity of integer matrix multiplication. J. Sym-
bolic Comput., 89:1{8, 2018.

[11] D. Harvey and J. van der Hoeven. Integer multiplication in time O(n log n). Technical report,
HAL, 2019. http://hal.archives-ouvertes.fr/hal-02070778.

[12] J. van der Hoeven. Fast composition of numeric power series. Technical Report 2008-09,
Universit�e Paris-Sud, Orsay, France, 2008.

[13] J. van der Hoeven. Ball arithmetic. Technical report, CNRS & �Ecole polytechnique, 2011.
https://hal.archives-ouvertes.fr/hal-00432152/.

[14] J. van der Hoeven. Faster Chinese remaindering. Technical report, CNRS & �Ecole polytech-
nique, 2016. http://hal.archives-ouvertes.fr/hal-01403810.

[15] J. van der Hoeven et al. GNU TeXmacs. http://www.texmacs.org, 1998.

[16] J. van der Hoeven and G. Lecerf. Modular composition via factorization. J. Complexity,
48:36{68, 2018.



DEFINE SHORT TITLE USING n titlehead DEFINE TYPE OF PAPER USING n articlehead

[17] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point evaluation revisited. J. Com-
plexity, 56:101405, 2020.

[18] Xiaohan Huang and V. Y. Pan. Fast rectangular matrix multiplication and applications.
J. Complexity, 14(2):257{299, 1998.

[19] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions of
�nite �elds. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, ISSAC '97, pages 184{188, New York, NY, USA, 1997. ACM.

[20] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over �nite �elds. Math.
Comp., 67(223):1179{1197, 1998.

[21] K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In FOCS'08:
IEEE Conference on Foundations of Computer Science, pages 146{155, Washington, DC, USA,
2008. IEEE Computer Society.

[22] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM
J. Comput., 40(6):1767{1802, 2011.

[23] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-schranken.
Computing, 4:187{201, 1969.

[24] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pages 296{303,
New York, NY, USA, 2014. ACM.

[25] J.-M. Muller, N. Brunie, F. De Dinechin, C.-P. Jeannerod, M. Joldes, V. Lef�evre, G. Melquiond,
N. Revol, and S. Torres. Handbook of 
oating-point arithmetic. Birkh�auser Basel, 2nd edition,
2018.

[26] C. A. Ne� and J. H. Reif. An e�cient algorithm for the complex roots problem. J. Complexity,
12(2):81{115, 1996.

[27] V. Y. Pan. Univariate polynomials: nearly optimal algorithms for numerical factorization and
root-�nding. J. Symbolic Comput., 33(5):701{733, 2002.

[28] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[29] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary
to evaluate polynomials. SIAM J.Comput., 2(1):60{66, 1973.

[30] P. Ritzmann. A fast numerical algorithm for the composition of power series with complex
coe�cients. Theoret. Comput. Sci., 44:1{16, 1986.

[31] S. M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universit�at Karlsruhe,
1980.

[32] A. Sch�onhage. The fundamental theorem of algebra in terms of computational complexity.
Technical report, Preliminary Report of Mathematisches Institut der Universit�at T�ubingen,
Germany, 1982.


