P. S. Stevens, Aeschylus. The Oresteia. Trans. R. Fagles. (Penguin classics.) Harmondsworth: Penguin Books. 1977. Pp. 335. £1.00., The Journal of Hellenic Studies, vol.100, pp.216-216, 1980.

I. Adler, A History of the Study of Phyllotaxis, Annals of Botany, vol.80, issue.3, pp.231-244, 1997.

C. W. Wardlaw, Phyllotaxis and Organogenesis in Ferns, Nature, vol.164, issue.4161, pp.167-169, 1949.

C. Kuhlemeier, Phyllotaxis, Current Biology, vol.27, issue.17, pp.R882-R887, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02948291

F. Besnard, Quand les plantes font des maths, Pour La Science, 2018.

E. M. Gola and A. Banasiak, Diversity of phyllotaxis in land plants in reference to the shoot apical meristem structure, Acta Societatis Botanicorum Poloniae, vol.85, issue.4, pp.1-21, 2016.

C. J. Harrison, M. Rezvani, and J. A. Langdale, Growth from two transient apical initials in the meristem of Selaginella kraussiana, Development, vol.134, issue.5, pp.881-889, 2007.

H. L. Sanders, P. R. Darrah, and J. A. Langdale, Sector analysis and predictive modelling reveal iterative shoot-like development in fern fronds, Development, vol.138, issue.14, pp.2925-2934, 2011.

C. J. Harrison, A. H. Roeder, E. M. Meyerowitz, and J. A. Langdale, Local Cues and Asymmetric Cell Divisions Underpin Body Plan Transitions in the Moss Physcomitrella patens, Current Biology, vol.19, issue.6, pp.461-471, 2009.

A. M. Tomescu, Megaphylls, microphylls and the evolution of leaf development, Trends in Plant Science, vol.14, issue.1, pp.5-12, 2009.

S. A. Rensing, B. Goffinet, R. Meyberg, S. Wu, and M. Bezanilla, The Moss Physcomitrium (Physcomitrella) patens: A Model Organism for Non-Seed Plants, The Plant Cell, vol.32, issue.5, pp.1361-1376, 2020.

R. Medina, M. G. Johnson, Y. Liu, N. J. Wickett, A. J. Shaw et al., Phylogenomic delineation of Physcomitrium (Bryophyta: Funariaceae) based on targeted sequencing of nuclear exons and their flanking regions rejects the retention of Physcomitrella , Physcomitridium and Aphanorrhegma, Journal of Systematics and Evolution, vol.57, issue.4, pp.404-417, 2019.

B. Zagórska?marek, K. Soko?owska, and M. Turza?ska, Chiral events in developing gametophores of Physcomitrella patens and other moss species are driven by an unknown, universal direction?sensing mechanism, American Journal of Botany, vol.105, issue.12, pp.1986-1994, 2018.

H. A. Crum, Structural Diversity of Bryophytes, 2001.

R. V. Wijk, Distichous and Pseudodistichous Mosses, Acta Botanica Neerlandica, vol.6, pp.386-392, 1957.

T. Aoyama, Y. Hiwatashi, M. Shigyo, R. Kofuji, M. Kubo et al., AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens, Development, vol.139, issue.17, pp.3120-3129, 2012.

Y. Coudert, S. Harris, and B. Charrier, Design Principles of Branching Morphogenesis in Filamentous Organisms, Current Biology, vol.29, issue.21, pp.R1149-R1162, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02352988

L. A. Moody, S. Kelly, E. Rabbinowitsch, and J. A. Langdale, Genetic Regulation of the 2D to 3D Growth Transition in the Moss Physcomitrella patens, Current Biology, vol.28, issue.3, pp.473-478.e5, 2018.

D. C. Bergmann, Taking Development to Three Dimensions, Developmental Cell, vol.47, issue.6, pp.678-679, 2018.

H. Tang, K. Duijts, M. Bezanilla, B. Scheres, J. E. Vermeer et al., Geometric cues forecast the switch from two? to three?dimensional growth in Physcomitrella patens, New Phytologist, vol.225, issue.5, pp.1945-1955, 2019.

B. Menand, G. Calder, and L. Dolan, Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens, Journal of Experimental Botany, vol.58, issue.7, pp.1843-1849, 2007.

M. H. Frank and M. J. Scanlon, Cell-specific transcriptomic analyses of three-dimensional shoot development in the mossPhyscomitrella patens, The Plant Journal, vol.83, issue.4, pp.743-751, 2015.

C. A. Goss, D. J. Brockmann, J. T. Bushoven, and A. W. Roberts, A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens, Planta, vol.235, issue.6, pp.1355-1367, 2012.

A. Sampathkumar, A. Peaucelle, M. Fujita, C. Schuster, S. Persson et al., Primary wall cellulose synthase regulates shoot apical meristem mechanics and growth, Development, vol.146, issue.10, p.dev179036, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02627296

W. Yang, C. Schuster, C. T. Beahan, V. Charoensawan, A. Peaucelle et al., Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis, Current Biology, vol.26, issue.11, pp.1404-1415, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01531680

A. Peaucelle, R. Louvet, J. N. Johansen, H. Höfte, P. Laufs et al., Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins, Current Biology, vol.18, issue.24, pp.1943-1948, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663627

A. Peaucelle, S. A. Braybrook, L. Le guillou, E. Bron, C. Kuhlemeier et al., Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis, Current Biology, vol.21, issue.20, pp.1720-1726, 2011.

F. Zhao, W. Chen, J. Sechet, M. Martin, S. Bovio et al., Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis, Plant Physiology, vol.181, issue.3, pp.1191-1206, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02351790