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ABSTRACT:   We report herein a visible light-mediated C−H alkylation of pyridine derivatives that 
proceeds by simple combination of a large variety of N-alkoxypyridinium ions with alkanes in the 
presence of 2 mol% of fac–Ir(ppy)3 under blue illumination. The mild reaction conditions together with 
the high group functional tolerance make of this process a useful synthetic platform for the construction 
of structurally strained heterocycles.  Detailed mechanistic investigations, including Density Functional 
Theory (DFT) calculations and quantum yield measurement, allowed to understand factors controlling 
the reactivity and the selectivity of the reaction. 

 

 

 

Alkylated heteroarenes are ubiquitous chemical motifs present in pharmaceuticals, natural products, and 
ligand scaffolds.1,2 While access to such molecules can be achieved with different synthetic methodologies, the 
oxidative cross-coupling between two C−H compounds is evidently one of the most elegant approaches as it 
provides a direct construction of the C−C bond in a step- and atom-economical fashion.3–7 For instance, the 
generation of an alkyl radical through a hydrogen atom transfer (HAT) event and its subsequent addition to a 
heteroarene ring followed by a formal hydrogen atom loss can provide a rapid and direct method for heterocycle 
C−H alkylation. This approach, known as the Minisci reaction,8–11 gained much attention during the last decade 
with the spectacular renaissance of the field of photoredox catalysis that provides very mild conditions for the 
generation of alkyl radicals.12–19 While various elegant photoredox Minisci reactions employing HAT strategy for 
the generation of the alkyl radical have been developed, there is in most cases need to use an external oxidant 
and stoichiometric amounts of Brønsted acids to activate the heteroarene ring towards radical addition.20–27  

Scheme 1. (A) Reported Approaches for C−H Alkylation of Heteroarenes. (B) Current work.  HAT denotes 
Hydrogen Atom Transfer. 



 

 

Based on their abilities to generate strong hydrogen atom abstractors (alkoxy radicals) under visible light 
photo catalytic conditions,28,29 as well as their high electrophilicity, N–alkoxypyridinium ions (NAPs) are unique 
scaffolds to achieve photocatalytic Minisci reaction. This approach has nicely been demonstrated by the Hong 
group in a certain number of examples, including acylation and intramolecular alkylations.30–34 However, the 
direct association of NAPs with alkanes to achieve Minisci reaction has not been reported so far.  Furthermore, it 
is well known that pyridines are less reactive than quinolines and isoquinolines in various Minisci reactions.35–37 
We therefore decided to investigate the reactions of NAPs with alkanes under mild photoredox conditions. 

 

Table 1. Optimization of the Photocatalytic Alkylation Reaction between the N–alkoxypyridinium 1a and 
Cyclohexane 2a.a 

 

entrya photocatalyst 
(PC) 

base solvent 3a, yield 
[%]b 

1 Ru(bpy)3 NaHCO3 MeCN traces 

2 Eosin Y NaHCO3 MeCN traces 

3 Hong’s PC NaHCO3 MeCN 64 

4 fac-Ir(ppy)3 NaHCO3 MeCN 95  

5 fac-Ir(ppy)3 NaHCO3 THF traces 

6 fac-Ir(ppy)3 NaHCO3 DMF traces 

7 fac-Ir(ppy)3 NaHCO3 DCM traces 

8 fac-Ir(ppy)3 NaHCO3 AcOEt traces 

9 fac-Ir(ppy)3 NaHCO3 DMSO traces 

10 fac-Ir(ppy)3 NaHCO3 CHCl3 traces 

11 fac-Ir(ppy)3 Na2CO3 MeCN 30 

12 fac-Ir(ppy)3 K2HPO4 MeCN 55 



 

13 fac-Ir(ppy)3
 K2CO3 MeCN 41 

14 – NaHCO3 MeCN traces 

15 fac-Ir(ppy)3
c NaHCO3 MeCN 0 

16 fac-Ir(ppy)3
 – MeCN 33 

a Reaction conditions: N-methoxy-4-methylpyridinium methyl sulfate 
1a (0.21 mmol, 1 equiv), cyclohexane 2a (1.1 mmol, 5 equiv), solvent 
(4.2 mL), blue LEDs (5W), 1 h. b NMR yields are determined from 1H 
NMR spectroscopy using 1,1,2,2,-tetrachloroethane as internal 
standard. c reaction performed in the dark. 

We initially explored the reaction conditions by investigating the effect of the photocatalyst, solvent, and the 
base through the reaction of the N–methoxypyridinium (1a) with 2a. As shown in Table 1, fac-Ir(ppy)3 gave 
excellent conversion of 3a (Table 1, entry 4, 95%) when 5 equivalents of 2a were mixed with 1a in the presence 
of NaHCO3 as a base in acetonitrile under blue light irradiation. While good conversion was obtained with the 3-
phosphonated quinolinone (entry 3, 64%), known as the Hong photocatalyst, under the same conditions as with 
fac-Ir(ppy)3, only traces of 3a were observed with Ru(bpy)3 and Eosin Y (entries 1 and 2). A solvent screening, 

including THF, DMF, DCM, AcOEt, DMSO, and CH3Cl (entries 5–10) revealed no formation of the desired adduct. 

We next studied the effect of the base on the reaction and found modest conversion (30–55%) with the inorganic 
bases Na2CO3 (entry 11), K2HPO4 (entry 12) and K2CO3 (entry 13). The absence of photocatalyst (entry 14) and 
the visible-light irradiation (entry 15) were detrimental for the C−H alkylation as no product has been observed. 
Finally, 33% of 3a was observed when the base was not employed under the optimized conditions (entry 16). 
The result might be attributed to the pyridinium counterion that played the role of the base in the process. 

Next, we set out to investigate the scope of this visible-light C−H alkylation of heteroarenes with alkanes (Figure 
1). The reaction of cyclohexane (2a) with 4-substituted N-alkoxypyridinium ions proceeded smoothly, giving the 
2-alkylated pyridines (3a–3f) in 50–99% yields. Remarkably, the reaction works well with both electron-
donating or electron-withdrawing groups, tolerating cyano (3c), trifluoromethyl (3d) and carbonyl (3e) groups.  

The reaction works equally well with 2-substituted pyridiniums. Both regioisomers C2- and C4-alkylated 
pyridines (3g–3j) were obtained in equal proportion (1:1 ratio), except in the case of 2-benzylpyridinium ion 
where the C2 adduct was obtained as a major regioisomer (C2:C4 = 4:1). The reaction is not only restricted to 
pyridines as alkylated quinolines (3k–3n), 2,2–quinoline (3o) and phenanthridine (3p) were obtained in good to 
excellent yields (Figure 1). 



 

 

Figure 1. Photocatalytic C−H Alkylation of Heteroarenes.a  
a Reaction conditions: N–alkoxypyridinium methylsulfate 1 (1 equiv), 2a (5 equiv), fac-Ir(ppy)3 (2 mol%), NaHCO3 (1.2 equiv) CH3CN 
(0.05 M), blue LEDs (5W), 1 h. 

 
We further extend the scope of the photocatalytic approach to cycloheptane (2b) and cyclopentane (2c) (Figure 

2). Remarkably, a large variety of heteroarylated–alkanes (3q–3zb) were isolated in yields going from 34 to 99%. 
Here again, the reaction is compatible with quinolines derivatives.  

The reaction mechanism of the visible-light-mediated alkylation of heteroarenes is depicted in Figure 2. It starts 
with the generation of the methoxyl radical through single-electron reduction of the N–alkoxpyridinium ion by 
the excited state of the photocatalyst (PC*). This event is thermodynamically viable and we have previously 
demonstrated the generation of (MeO•) by EPR spectroscopy.38,39,40,41 DFT calculations show plausible HAT 
between the methoxyl radical and cyclohexane (2a) to form the cyclohexyl radical (Int 1). The latter reacts at the 



 

C4 of the pyridinium ion (1) position (G‡ = 14.4 kcal/mol) to form the radical intermediate (Int2). The radical 
addition at the C2 position proceeds with an activation energy of 14.8 kcal/mol. This weak difference between 
both attacks, i.e. at C2 and C4 position, may rationalize the low regioselectivity observed. Next, a fast 
deprotonation of Int2 by a base gives the Int3 that upon N─O bond cleavage forms the final product 3 and release 
the methoxyl radical to start a new reaction cycle. This radical chain pathway explains the high measured 
quantum yield of the reaction Φ = 62.9 (see Supporting Information for details). The calculated mechanism is in 
good agreement with the experimental reaction time. 

 

Figure 2. Free energy profile for the photoinitiated C–C bond formation in the reaction of pyridinium ion 
and cyclohexane. Calculations were performed at the SMD-(ACN)-M06-2X/def2-TZVP//B3LYP/6-31+G(d) level 
of theory. Energies between brackets are reported for the addition at C2-position. See Supporting Information for 
computational details. 

 

 

Although visible-light-mediated alkylation of heteroarenes has widely been reported during the last few years, 
the reaction scope has mainly been restricted to isoquinolines, quinolines. In this study, we showed that 
alkylation of pyridines can also be achieved efficiently by simply combining N-methoxylpyridinium ions with 
alkanes in the presence of low loading (2 mol %) of the readily accessible fac-Ir(ppy)3 under blue light 
illumination.  The broad scope and functional group tolerance are excellent features of this method. The detailed 
experimental and computational mechanistic studies conducted in this study are not only allowed understanding 
factors controlling this photoalkylation reaction but will also help the design of new visible light-induced C−H 
functionalization of heteroarenes.  
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