
HAL Id: hal-03010637
https://hal.science/hal-03010637

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-attenuation of extreme events in Navier–Stokes
turbulence

Dhawal Buaria, Alain Pumir, Eberhard Bodenschatz

To cite this version:
Dhawal Buaria, Alain Pumir, Eberhard Bodenschatz. Self-attenuation of extreme events in Navier–
Stokes turbulence. Nature Communications, 2020, 11 (1), �10.1038/s41467-020-19530-1�. �hal-
03010637�

https://hal.science/hal-03010637
https://hal.archives-ouvertes.fr


Self-attenuation of extreme events in Navier-Stokes turbulence

Dhawal Buaria,1, 2, ∗ Alain Pumir,3, 1 and Eberhard Bodenschatz1, 4

1Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
2Tandon School of Engineering, New York University, New York 11201, USA

3Laboratoire de Physique, Ecole Normale Supérieure de Lyon,
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Turbulent fluid flows are ubiquitous in nature and technology, and are mathematically described
by the incompressible Navier-Stokes equations. A hallmark of turbulence is spontaneous generation
of intense whirls, resulting from amplification of the fluid rotation-rate (vorticity) by its deformation-
rate (strain). This interaction, encoded in the non-linearity of Navier-Stokes equations, is non-local,
i.e., depends on the entire state of the flow, constituting a serious hindrance in turbulence theory and
even establishing regularity of the equations. Here, we unveil a novel aspect of this interaction, by
separating strain into local and non-local contributions utilizing the Biot-Savart integral of vorticity
in a sphere of radius R. Analyzing highly-resolved numerical turbulent solutions to Navier-Stokes
equations, we find that when vorticity becomes very large, the local strain over small R surprisingly
counteracts further amplification. This uncovered self-attenuation mechanism is further shown to
be connected to local Beltramization of the flow, and could provide a direction in establishing the
regularity of Navier-Stokes equations.

INTRODUCTION

A parcel of fluid moving at velocity u(x, t) in a flow,
where x ∈ R3 is the spatial location and t is time, simul-
taneously undergoes rotation and shape deformation, re-
spectively characterized by the vorticity vector ω = ∇×u
and the strain rate tensor Sij = (∂jui + ∂iuj)/2. Its evo-
lution in time can thereby be described by the incom-
pressible Navier-Stokes equations (INSE) written as the
vorticity equation [1]:

Dtωi = ωjSij + ν∇2ωi , (1)

where Dt = ∂t + uj∂j is the material derivative and ν is
the kinematic viscosity of the fluid. This equation simply
expresses that along a parcel trajectory vorticity is non-
linearly stretched by the strain rate, and also subjected
to viscous damping. An essential aspect of this stretching
term is that it causes amplification of vorticity, i.e. gen-
eration of enstrophy Ω = ωiωi, via the production term
PΩ = ωiωjSij , as readily seen by taking the dot-product
of Eq. (1) with ωi [2]. The rate at which enstrophy is
amplified, and whether it can overcome viscous damping
to blow-up in finite time, remains one of the outstanding
unsolved Clay Millennium Prize problems [3, 4].

It is known that for a finite-time blow-up, PΩ must
grow unbounded [5]. In addition, it has also been proven
that this unbounded growth can possibly only occur
when the viscosity ν is sufficiently small [4], which would
correspond to turbulent solutions of the INSE. In fact,
it is well known that Ω is highly intermittent in tur-
bulent flows, attaining values hundreds or thousands

∗ dhawal.buaria@ds.mpg.de

times its mean, becoming even more extreme as the rel-
ative strength of viscosity is decreased [6–12]. However,
these extreme events are typically found to be arranged
in tube-like structures [6–12], with geometrical proper-
ties deterring maximum possible amplification [2, 13–
15]. Nevertheless, the question remains open whether the
non-linear amplification could overcome viscous damping
when the flow is sufficiently turbulent.

A fundamental difficulty in analyzing Eq. (1) arises
from the non-local coupling between vorticity and strain
rate; which implies that strain acting on vorticity at a
point, as in Eq. (1), is in fact coupled to the entire state of
the flow. Specifically, this non-locality can be quantified
by expressing the strain tensor as a Biot-Savart integral
of the vorticity field over the entire 3D spatial domain:

Sij(x) = PV

∫
x′

3

8π
(εiklrj + εjklri)ωl(x

′)
rk
r5

d3x′ , (2)

where r = x−x′ (with r = |r|) and εijk is the alternating
Levi-Civita symbol. Thus, the amplification of vorticity
can be entirely written in terms of vorticity itself, but
the above integral poses a serious mathematical challenge
in understanding the mechanisms encoded in the non-
linearity. In the current work, by evaluating the above
integral numerically, we provide evidence that as vorticity
is amplified to large values, the strain induced locally will
ultimately act to attenuate its further amplification.

In order to extract the local strain induced from vor-
ticity amplification, we consider the following decompo-
sition, by splitting the integration domain into a spheri-
cal neighborhood of radius R and the remaining domain
[16, 17]:

Sij(x) =

∫
r>R

[· · ·] d3x′︸ ︷︷ ︸
=SNL

ij (x,R)

+

∫
r≤R

[· · ·] d3x′︸ ︷︷ ︸
=SL

ij(x,R)

, (3)
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where [· · ·] denotes the integrand in Eq.(2). The first
term SNL

ij is the non-local or background strain acting

on the vorticity to stretch it, whereas SL
ij is the local

strain, induced by the vorticity in its neighborhood in
response to the stretching. Thereafter, the production
term can also be decomposed as as PΩ = PL

Ω + PNL
Ω ,

where PL,NL
Ω = ωiωjS

L,NL
ij . For such a decomposition,

explicit bounds on PNL
Ω can be established in terms of the

total kinetic energy of the flow [18]. Thus, an unbounded
growth of PΩ is only possible through PL

Ω .

However, in this paper, our results will demonstrate,
that when R is small enough, the term PL

Ω remarkably
acts to attenuate extreme vorticity fluctuations. Further
analysis reveals that this attenuation is also connected to
local Beltramization of the flow, i.e., preferential align-
ment of vorticity with velocity, which is expected to de-
plete the growth of non-linearity [19].

RESULTS

Direct numerical simulations: To analyze the
complex interaction between strain and vorticity, we uti-
lize our unique database generated through direct nu-
merical simulations (DNS) of the INSE. The simulations
correspond to canonical setup of forced homogeneous and
isotropic turbulence in a periodic domain [11], and are
performed using the well-known Fourier pseudo-spectral
methods, thus allowing us to obtain any quantity of inter-
est with highest accuracy practicable [20]. It is instruc-
tive to note that that the mathematical results typically
obtained in R3 can be readily generalized to our simula-
tion in the T3 torus. Using the largest grid sizes currently
feasible in turbulence simulations, of up to 122883 points
[21, 22], the Taylor-scale Reynolds number Rλ, which
quantifies the turbulence intensity, is varied from 140 to
1300 in our simulations (corresponding to fully developed
turbulence). Special attention is given to faithfully re-
solve the small-scales and hence the extreme events [12],
keeping the grid spacing smaller than the Kolmogorov
length scale, η = (ν3/〈ε〉)1/4, based on the mean dissi-
pation rate of kinetic energy 〈ε〉, where the average 〈·〉
is taken over the 3D spatial domain and also multiple
realizations. Note that the mean enstrophy 〈Ω〉, is equal
to 〈ε〉/ν, due to underlying homogeneity [1]. Additional
details about our DNS and database are provided in the
Methods section.

Robust determination of the local and non-local
strain: While the vorticity and strain fields can be
easily obtained from DNS, we have devised an efficient
method to compute the local and non-local strain fields,
without directly evaluating the prohibitively expensive
Biot-Savart integral over the entire domain. As shown
in [16], using a Taylor-series expansion of vorticity over
a distance R, the non-local strain SNL(x, R) can be ex-

pressed in terms of the total strain as follows:

SNL
ij (x, R) =

[
1 +

R2

10
∇2 +

R4

280
∇2∇2 + ...

+
3R2n−2

(2n− 2)!(4n2 − 1)
(∇2)n−1 + ...

]
Sij(x) . (4)

Starting from the above expression and transforming it to
Fourier space (where the differential operator ∇2 reduces
to a simple multiplication by −k2), leads to the relation

ŜNL
ij (k, R) = f(kR)Ŝij(k) , (5)

where (̂·) denotes the Fourier transform, k is the
wavenumber vector with k = |k| and f(kR) is an in-
finite series. In practice, truncating f(kR) to a finite
number of terms can at best provide approximate results
[16]. However, as derived in the Supplementary Note 1,
one can show that f(kR) converges to the following ex-
pression:

f(kR) =
3 [sin(kR)− kR cos(kR)]

(kR)3
. (6)

This allows us to evaluate the Biot-Savart integral in
Eq.2 by applying a simple transfer function to the to-

tal strain rate in Fourier space, and thus to obtain SL,NL
ij

(and PL,NL
Ω ) very accurately for any value of R. Interest-

ingly, it is worth noting that f(kR) in Eq. (6) corresponds
to the sinc function in 3D, which also happens to be the
Fourier transform of a box or top-hat filter (of radius R),
commonly utilized in other disciplines, e.g. large-eddy
simulation (LES), signal processing. Thus, evaluating
the non-local strain seemingly amounts to a filtering op-
eration on the total strain.
Visualization of extreme events: Figure 1 illus-

trates our main result, namely that the local contribu-
tion to stretching, PL

Ω , is in fact negative in the neigh-
borhood of extreme vorticity events. The visualizations
shown in Fig. 1 focus on a small domain of size (50η)3

around one of the extreme vorticity events in the flow
(with the most intense vorticity at the center). Figure 1a
and b show isosurfaces of enstrophy, respectively at 100
and 1000 times the mean value corresponding to moder-
ate and intense events, and illustrate the characteristic
vortex-tube structure [10–12]. The cut through the mid-
plane of the domain is shown in Fig. 1c, and demonstrates
the sharp variation of enstrophy across the cross section
of the tubes.

Figure 1d-f show the total production PΩ for the same
field. In Fig. 1d, isosurfaces are shown for levels ±400
(with cyan and red corresponding to positive and neg-
ative values respectively), which approximately corre-
spond to moderate enstrophy (as shown in Fig. 1a).
Whereas in Fig. 1e, isosurfaces are shown for ±1000,
which correspond to intense enstrophy (as shown in
Fig. 1b). In Fig. 1f, the 2D contour field at the mid-plane
is shown. The main observation is that PΩ is overwhelm-
ingly positive, which is anticipated given large enstrophy
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FIG. 1. Prevalence of negative local stretching in regions of intense vorticity. The panels focus on a representative
region of intense vorticity from the numerical simulation at Taylor-scale Reynolds number Rλ = 650 on a 81923 grid or
equivalently (4096η)3, where η is the Kolmogorov length scale. The maximum enstrophy (vorticity-squared) is at the center
of the domain shown, whose edges are 50η in each direction (in each panel successive major ticks are 10η apart). Top row:
Isosurfaces of enstrophy at thresholds of (a) 200, and (b) 1000 (times the mean value). (c) 2D contours of enstrophy at the
mid-plane of the domain, shown in grey in (a) and (b). Middle row: enstrophy production based on total strain, suitably non-
dimensionalized by mean of enstrophy, at thresholds of (d) ±400, and (e) ±1000, which approximately correspond to moderate
and intense enstrophy, shown in (a) and (b) respectively. (f) 2D contours at the mid-plane. The production terms based on
total strain is overwhelmingly positive. Bottom row: enstrophy production based on local strain (for R = 2η), once again
suitably non-dimensionalized by mean enstrophy, at thresholds of (h) ±50, and (g) ±200, and also corresponding to moderate
and intense enstrophy shown in (a) and (b) respectively. (i) 2D contours at the mid-plane, revealing that the production term
based on local strain is strongly negative in the regions of intense vorticity. For each row, the thresholds shown in first two
isosurfaces plots are marked by dashed and solid lines respectively in last 2D-contour field plot.
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in these tubes, and also from dynamical constraints of
turbulence [23].

Finally, Fig. 1g-i shows the contribution PL
Ω from local

strain for R = 2η. In Fig. 1g and h, isosurfaces are shown
for levels ±50 and ±200 respectively, once again corre-
sponding to moderate and intense enstrophy events re-
spectively. Unlike PΩ which is always positive on average
[23], the mean of PL

Ω has no such constraints. For mod-
erate values shown in Fig. 1g, we find that the volumes
occupied by positive and negative values are comparable.
However, for intense value shown in Fig. 1h, negative
stretching rate is more prevalent especially around the
center where vorticity is maximum. This is corroborated
by Fig. 1i, which shows the 2D contour level of PL

Ω at the
mid plane and reveals that both negative and positive
values occur in the outer regions of the tubes where vor-
ticity is not very intense; whereas large negative values
occur inside the tubes, where vorticity is most intense.

Let us briefly mention that the flow structure presented
in Fig. 1 represents one generic scenario of how the re-
gions of intense vorticity look like. Needless to say, we
inspected many such regions, and note that all of them
qualitatively behave in the same manner, and essentially
lead to the same conclusion. We have shown another
such example in the Supplementary Figure 1.

Conditional statistics: To establish the quantita-
tive significance of the observations in Fig. 1, Fig. 2a
shows the average of PL

Ω/Ω conditioned on Ω, for R = η
and 2η, and various Reynolds numbers. Note PL

Ω/Ω =

ω̂iω̂jS
L
ij (where (̂·) is the corresponding unit vector) and

provides the measure of effective strain engendering en-
strophy production, irrespective of the strength of vortic-
ity [2, 13]. The Taylor expansion in Eq. (4) implies that
for small R, SL

ij can be written as

SL
ij(x, R) = −R

2

10
∇2Sij(x) +O(R4) , (7)

which suggests that the local strain is in fact propor-
tional to the Laplacian of the total strain. Hence for
comparison, we have also shown the conditional expec-
tation 〈ω̂iω̂jη2∇2Sij |Ω〉 in Fig. 2a, and PL

Ω is accord-
ingly multiplied by 10η2/R2. The conditional production
term is virtually zero for small to moderate values of Ω
– consistent with strong cancellation between negative
and positive values seen in Fig. 1g. However, as Ω gets
larger, the expectation 〈PL

Ω |Ω〉 becomes negative for all
Reynolds numbers and strongly increases in magnitude
with Ω. We note that the values of PL

Ω are overwhelm-
ingly negative for large Ω, as corroborated by the obser-
vation (not shown in figure) that conditional expectations
of |PL

Ω | and | − PL
Ω | are virtually equal.

In addition, in Fig. 2b, we have show the conditional
root-mean-square (rms) of the fluctuations of the PL

Ω ,
normalized in the same manner as Fig. 2a. Once again,
we have included the corresponding curve for η2∇2Sij
for comparison. Remarkably, we observe the same be-
havior as seen in panel Fig. 2a (except the curves are all
on the positive side, because the rms is always positive
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FIG. 2. Negative contribution of local strain to pro-
duction of enstrophy. (a) Averaged enstrophy produc-
tion due to the local strain, PL

Ω , conditioned on enstrophy
normalized by its mean value. The curves shown corre-
spond for R/η = 1 and 2, at Taylor-scale Reynolds numbers
Rλ = 390 − 1300. For comparison, we also show the con-
tribution based on η2∇2Sij , which is the limiting value of
local strain for small R as noted in Eq. (7). (Accordingly the
curves for R/η = 1 and 2 are also adjusted by a factor of
10η2/R2). (b) The conditional root-mean-square σX|Ω of the

local enstrophy production term (X = ω̂iω̂jS
L
ij), defined as

σ2
X|Ω = 〈X2|Ω〉 − 〈X|Ω〉2. Similar normalization as panel (a)

is used.

by definition). At the same time, we note that the curves
in both Fig. 2a and b, have comparable values, i.e., the
mean and rms are comparable (especially for large Ω).
This reaffirms that PL

Ω is predominantly negative when
conditioned on large values of Ω, and thus consolidates
the observed self-attenuation mechanism. Finally, it is
worth noting that as R/η becomes smaller the curves for
a given Reynolds number expectedly approach the ana-
lytical limit given by Eq. 7. The result for R/η = 0.5 (not
shown), was found to be virtually indistinguishable from
the corresponding curve showing the analytical limit.
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FIG. 3. Preferential alignment of vorticity and velocity
in regions of intense vorticity. Averaged absolute value
of the cosine between velocity and vorticity vectors, condi-
tioned on enstrophy relative to its mean value, at Taylor-scale
Reynolds numbers Rλ = 390− 1300.

The observation from Figs.1 and 2 that extreme vortic-
ity fluctuations are accompanied by negative values of PL

Ω
indicates that the strain induced locally acts to prevent
further growth of enstrophy. It is important to realize
that this mechanism is separate from viscous diffusion or
dissipation of enstrophy [15], but still acts in conjunction
with it. Additionally, this self-attenuating mechanism is
far stronger than a mere reduction (depletion) of non-
linearity [19, 24]. Depletion of non-linearity essentially
refers to weakening of vortex stretching (compared to its
maximum possible amplitude) [25], which is evidently re-
flected in alignment of vorticity with intermediate eigen-
vector of strain tensor and hence the weak curvature of
vortex tubes [13, 26] – as also seen in Fig. 1a-b. How-
ever, the presence of self-attenuation suggests that the
non-linearity itself could be capable of preventing a run-
away blowup, even as viscosity gets small (as suggested
by Fig. 2a, where the increase of PL

Ω is merely shifted
to larger values of Ω as viscosity decreases). A careful
mathematical analysis of this mechanism and determin-
ing mathematical bounds on PL

Ω could possibly reveal a
path in establishing global regularity of INSE.

Connection to helicity: The presence of negative
local stretching accompanying intense vorticity raises ad-
ditional questions about the local flow structure. Given
that intense vorticity is arranged in tubes with weak cur-
vature, additional insight could be obtained by a simple
kinematic analysis of stretching generated by such struc-
tures. To this end, we consider a simple axisymmetric
vortex tube with a radius of curvature Rc [27–29]. Uti-

lizing a curvilinear polar coordinate system: (r̂, θ̂, ŝ),
which respectively correspond to unit vectors in the ra-
dial direction, the azimuthal direction and the direction
tangent along the (curved) axis of the tube, we assume

that the vorticity is of the form ω = ωs(r, s) ŝ+ωθ(r, s) θ̂.
The component ωs corresponds to azimuthal velocity in
the tube similar to a two-dimensional Burgers vortex
[30], whereas the component ωθ comes from axial veloc-
ity along the tube. Thereafter, utilizing Eq. (7), one can
derive (as shown in the Supplementary Note 2):

PL
Ω(R) = −R

2

10

[
F{ωs, ωθ}+ G{ωs, ωθ}

cos θ

Rc

]
+O(R4) ,

(8)
which gives the local stretching induced by the vortex
tube as sum of two terms, involving F and G, which are
functions of ωs and ωθ and their derivatives.

The term with a cos θ/Rc dependence results from the
curvature of the tube and produces a dipolar structure,
with positive and negative contributions depending on
the sign of cos θ [31] – consistent with the structure seen
in Fig. 1g and i. In contrast, the term independent of
cos θ acts as a monopole. Based on the results shown
in Figs. 1 and 2, the sign of F must be positive, and
would result in attenuation of intense vorticity by the lo-
cal strain. Interestingly, F is identically zero if the com-
ponent ωθ vanishes, i.e. there is no axial flow velocity.
This suggests that some local alignment between vortic-
ity and velocity must occur when vorticity is large. In
fact, a similar conclusion can also be reached by realiz-
ing that the non-linear terms in INSE, in Eq. (1), can be
rewritten as ∇×(u×ω) [19]. Thus, local Beltramization,
i.e., alignment of u and ω in regions of large enstrophy
would essentially act to restrict the non-linear amplifica-
tion [19].

The above prediction is consistent with earlier results
at low Rλ [32], as well as with our own results at sig-
nificantly higher Rλ in Fig. 3, which shows the condi-
tional average of the cosine between velocity and vor-
ticity, conditioned on enstrophy. The average is taken
over the absolute value, since the sign of the cosine is im-
material to measure the degree of Beltramization (also
note that the dot product of velocity and vorticity is
not sign-definite). For small values of Ω, the average
stays constant at 0.5, consistent with a uniform distribu-
tion of the cosine. However, the conditional average in-
creases at large Ω, in good correlation with the increase
of the magnitude of PL

Ω seen in Fig. 2a. Thus, in fully
developed turbulence, the intense whirling motions (vor-
tex tubes), emblematic of the small-scale structures, are
innately three-dimensional and helical.

DISCUSSION

We have utilized very well resolved numerical simula-
tions of fully developed turbulence to investigate extreme
fluctuations of vorticity, which can be considered as sig-
natures of potential singularities of INSE. Our results
show that when vorticity is strongly amplified, the non-
linearity in its local neighborhood remarkably counter-
acts further amplification, instead of enhancing it. In ad-
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dition, this effect gets stronger as vorticity gets stronger
and also as Reynolds number increases (or viscosity de-
creases). Thus, our results suggest that the non-linearity,
which is responsible for amplification in the first place,
encodes a mechanism (in conjunction with viscosity),
which can prevent a finite-time singularity from occur-
ring. A deeper understanding of this self-attenuation
mechanism based on a clear physical argument could help
to set stronger mathematical bounds on the amplification
of vorticity [18, 33], and could be an essential ingredient
to prove global regularity of the INSE [3].

Another important observation in this regard is the lo-
cal Beltramization of the flow in regions of large enstro-
phy – highlighting the helical nature of the small-scales
of turbulence (which are structurally arranged in vortex
tubes). While it was anticipated that reduction (deple-
tion) of non-linearity would lead to such helicity [19], the
uncovered self-attenuation mechanism shows that the ef-
fect is in fact much stronger, and directly counteracts vor-
ticity amplification. A promising direction in this regard
could be to extend the ideas based on helical decomposi-
tion to further analyze this local Beltramization [34, 35].
Indeed, a recent work has established global regularity
for a decimated version of INSE which enforces helic-
ity to be sign-definite [36]. A possible extension to full
INSE, in light of the uncovered self-attenuation mecha-
nism, presents an important challenge for future work.

On a related note, it is worth mentioning that our
numerical simulations of stationary isotropic turbulence
do not address specific initial value problems, such as
those involving collisions between two or more vortex
tubes [31, 37–39]. Such special flow configurations are
routinely studied to investigate the development of a pos-
sible finite-time singularity, mostly in the context of in-
viscid flows (ν = 0), i.e., the Euler equations. However,
a robust demonstration of a blowup or lack thereof still
remains elusive [40]. While complicated interactions be-
tween vortex tubes already occur in our simulations, it
remains to be understood how the ideas developed here
would apply to these special configurations.

In conclusion, our analysis of very well-resolved turbu-
lence simulations reveals a novel mechanism encoded in
the non-linearity of Navier-Stokes equations, which con-
trary to expectations, attenuates vorticity amplification
in regions where vorticity is most intense (instead of en-
hancing it). This observation provides important insights
on the nature of extreme events in turbulent flows, and
in the process also suggests a new way to address the
fundamental question whether amplification of vorticity
can develop into finite-time singularities.

METHODS

Description of DNS: The data utilized in the cur-
rent work are generated through direct numerical simu-
lations (DNS) of the incompressible Navier-Stokes equa-

tions (INSE)

∂u/∂t+ u · ∇u = −∇P/ρ+ ν∇2u + f , (9)

where u is the divergence free velocity field (∇ · u = 0),
P is the pressure, ρ is the fluid density, ν is the kine-
matic viscosity, and f corresponds to large scale forcing
used to maintain a statistically stationary state [41]. The
equations are solved using a massively parallelized ver-
sion of the well-known Fourier pseudo-spectral algorithm
of Rogallo (1981) [42]. The aliasing errors resulting from
the convolution sums are controlled by grid shifting and
spherical truncation [43]. Our DNS corresponds to the
canonical setup of homogeneous and isotropic turbulence
with periodic boundary conditions on a cubic domain of
side length L0 = 2π, which is ideal for studying small
scales and hence extreme events at highest Reynolds
numbers possible [11]. The domain is discretized using
N3 grid points, with uniform grid spacing ∆x = L0/N in
each direction. We utilize explicit second-order Runge-
Kutta for time integration, where the time step ∆t is
subject to the Courant number (C) constraint for nu-
merical stability: ∆t = C∆x/||u||∞ (where || · ||∞ is the
L∞ norm).

Rλ N3 kmaxη TE/τK Tsim Ns

140 10243 5.82 16.0 6.5TE 24
240 20483 5.70 30.3 6.0TE 24
390 40963 5.81 48.4 4.0TE 35
650 81923 5.65 74.4 2.0TE 40
1300 122883 2.95 147.4 20τK 18

TABLE I. Simulation parameters for the DNS runs used in
the current work: the Taylor-scale Reynolds number (Rλ), the
number of grid points (N3), spatial resolution (kmaxη), ratio
of large-eddy turnover time (TE) to Kolmogorov time scale
(τK), length of simulation (Tsim) in statistically stationary
state and the number of instantaneous snapshots (Ns) used
for each run to obtain the statistics.

The DNS database used in the current work is summa-
rized in Table I, along with the main simulation param-
eters. An important consideration in studying extreme
events is that of spatial resolution, which is measured
in pseudo-spectral DNS by the parameter kmaxη, where
kmax =

√
2N/3 is the maximum resolved wavenumber on

a N3 grid and η is the Kolmogorov length scale. Equiva-
lently, one can use the ratio ∆x/η which is approximately
equal to 3/kmaxη. The runs with Taylor-scale Reynolds
numbers, Rλ, in the range 140 ≤ Rλ ≤ 650 were also
utilized in our recent work [12] and all have a very high
spatial resolution, kmaxη ≈ 6 (or ∆x/η ≈ 0.5). This reso-
lution should be compared to the one used in comparable
numerical investigations of turbulence at high Reynolds
numbers, which are mostly in the range 1 ≤ kmaxη ≤ 1.5
[11, 44] – which do not resolve the extreme events ade-
quately. In addition to our previous runs, we have per-
formed a new run at significantly higher Rλ of 1300,
on a larger 122883 grid with a small-scale resolution of
kmaxη = 3 (or ∆x/η ≈ 1). This is one of the largest
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DNS reported to date – comparable with [21] which also
reported results from 122883 run at Rλ = 2300, but with
kmaxη ≈ 1 (where the small-scales were not properly re-
solved).

We have also listed the simulation length Tsim used
for generating independent ensembles, in terms of the
large-eddy turnover time (TE) or the Kolmogorov time
scale (τK). The statistical results are obtained by averag-
ing over Ns independent ensembles, which are uniformly
spread out over the simulation length. Note, the range of
time scales is typically given by the ratio TE/τK, which
scales linearly with Rλ [1]. However, the time scale of
extreme events which we consider here is smaller than
τK, getting even smaller as Rλ increases [12].

DATA AVAILABILITY

The data that support the findings of this study are
available from the corresponding author on request.
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SUPPLEMENTARY FIG. 1. Prevalence of negative local stretching in regions of intense vorticity.
In the same spirit as in Fig.1 of the main text, this figure shows a visualization of the flow around another
extreme event. The panels focus on a representative region of intense vorticity from our numerical simulation
at Taylor-scale Reynolds number Rλ = 650 on a 81923 grid or equivalently of size (4096η)3, where η is the
Kolmogorov length scale where viscosity acts. The maximum enstrophy (vorticity-squared) is at the center of
the domain shown, whose edges are 50η in each direction (in each panel successive major ticks are 10η apart).
Left column: Isosurfaces of enstrophy at thresholds of (a) 200, and (b) 1000 (times the mean value). The
structure of the flow turns out to be more complicated than in Fig.1 of the main text, but as the threshold
is increased, panel b reveals a simpler underlying structure of isolated tubes. Middle column: enstrophy
production based on total strain, suitably non-dimensionalized by mean of enstrophy, at thresholds of (c)
±400, and (d) ±1000, which approximately correspond to moderate and intense enstrophy, shown in (a) and
(b) respectively. The production based on total strain is overwhelmingly positive. Right column: enstrophy
production based on local strain (for R = 2η), once again suitably non-dimensionalized by mean enstrophy,
at thresholds of (e) ±50, and (f) ±200, again corresponding to moderate and intense enstrophy shown in
(a) and (b) respectively.
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SUPPLEMENTARY NOTE 1: DETERMINATION OF THE NON-LOCAL STRAIN

We start with Eq. 8 of the main text, which expresses the non-local strain in terms of the total
strain:

SNL
ij (x, R) =

[
1 +

R2

10
∇2 +

R4

280
∇2∇2 + ...+

3R2n−2

(2n− 2)!(4n2 − 1)
(∇2)n−1 + ...

]
Sij(x) . (1)

In order to evaluate the above expression, we apply a Fourier transform to both sides. Denoting
k as the wavenumber vector and k = |k|, the operator ∇2 reduces to a multiplication by −k2 in
Fourier space [1], and the expression becomes:

ŜNL
ij (k, R) = f(kR) Ŝij(k) , (2)

where (̂·) denotes the Fourier transform and f(kR) is an infinite series given as

f(kR) = 1− (kR)2

10
+

(kR)4

280
+ ...+

3(−1)n−1(kR)2n−2

(2n− 2)!(4n2 − 1)
+ ... (3)

It can be readily seen that the radius of convergence of this series is infinite. To show that Eq. (3)
reduces to an analytical expression, we rewrite the series in a compact form by setting kR = x:

f(x) =
∞∑
n=1

3(−1)n−1 x2n−2

(2n− 2)!(4n2 − 1)
. (4)

By factoring 4n2 − 1 = (2n − 1)(2n + 1) and multiplying the numerator and denominator by 2n,
the above expression can be rewritten as

f(x) =
∞∑
n=1

3(−1)n−1 (2n) x2n−2

(2n+ 1)!
. (5)

Now by multiplying both sides by x, we get:

xf(x) =
∞∑
n=1

3(−1)n−1 (2n) x2n−1

(2n+ 1)!
, (6)

and thereafter the factor 2n in the numerator can be absorbed by writing the right-hand side as a
derivative in the following form:

xf(x) =
d

dx

( ∞∑
n=1

3(−1)n−1 x2n

(2n+ 1)!

)
. (7)

In this step, by noting that the expression inside the summation is a constant independent of x for
n = 0, we can simply adjust the limits of summations to start from n = 0 to obtain

xf(x) =
d

dx

( ∞∑
n=0

3(−1)n−1 x2n

(2n+ 1)!

)
. (8)

Finally, we can take out a factor of −3/x from the summation (since it does not depend on n) to
get

xf(x) =
d

dx

(
−3

x

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

)
, (9)
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where the summation term is exactly the power series expansion for sinx, giving

xf(x) =
d

dx

(
−3 sinx

x

)
, (10)

which after simplification gives the desired result

f(x) =
3 [sinx− x cosx]

x3
. (11)

Interestingly, this is the sinc function in 3D, which also happens to be the Fourier transform of
the box or top-hat filter (or the indicator function of the ball of radius R [2]), and shows up in
many other scientific contexts. Thus, obtaining the non-local strain essentially reduces to a filtering
operation on the total strain.
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SUPPLEMENTARY NOTE 2: LOCAL STRETCHING NEAR A VORTEX TUBE

SUPPLEMENTARY FIG. 2. Coordinate system along the vortex tube. γ is the curve along the tube
axis and s is the curvilinear distance measured along the axis. (t̂, n̂, b̂) is the Frenet-Serret frame, and (r,
θ, s) is the curvilinear cylindrical coordinate system (note ŝ = t̂).

In this section we analyze the straining field generated locally in the vicinity of a slender vortex
filament. We determine the stretching term, PL

Ω = ωiωjS
L
ij , and explain, the structure observed

numerically in Fig.1 of the main text.
As shown in Supplementary Fig. 2, consider a vortex tube localized around a curve, γ,

parametrized by arclength, s. It is convenient to introduce a system of curvilinear coordinates [3].
To this end, we begin with the classical Frenet-Serret frame, consisting of t̂, n̂ and b̂, respectively
the unit vectors tangent, normal and binormal to the curve (the unit vector ŝ along the curve is
simply t̂). Close to a point P (s) located on the curve γ, we parametrize a position M in the plane,
normal to the tangent vector t̂, by a polar coordinate system, (r, θ), the angle being measured
from the position of b̂. The set of coordinates (r, θ, s) provides a parametrization of the position
around γ, within a distance of O(Rc) of γ, where Rc is the radius of curvature of γ. Varying
(r, θ, s)→ (r + dr, θ + dθ, s+ ds) leads to the expression for an infinitesimal displacement:

dM = dr r̂ + rdθ θ̂ + hsds ŝ (12)

where

r̂ = cos θ b̂− sin θ n̂ , (13)

θ̂ = − sin θ b̂− cos θ n̂ , (14)

and hs is given as:

hs =
(

1 +
r

Rc
sin θ

)
. (15)

Here, Rc the radius of curvature of the curve γ.
We consider a vorticity field localized close to γ, which we write as:

ω = ωs(r, s) ŝ + ωθ(r, s)θ̂ (16)

In the case of a straight vortex tube (Rc →∞), the component parallel to ŝ is responsible for the
azimuthal component of velocity, whereas the component ωθ is associated with a vertical component
of velocity:

uθ(r, s) =
1

r

∫ r

0
r′ωs(r

′, s)dr′ and uz(r, s) = −
∫ ∞
r

ωθ(r
′, s)dr′ (17)
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The axial vorticity component ωs characterises an axisymmetric Burgers-like vortex [4] with a
purely 2D structure and has been utilized in many contexts in the literature. However, as shown
soon, the component ωθ is also necessary to explain the structure shown in Fig.1 of the main text
(which cannot result from a purely 2D vortex tube).

To estimate the local stretching PL
Ω at a point close to the vortex tube, we use the approximation,

deduced from Eq.(5) of the main text, and reformulated by using the well-known identity ∇×ω =
−∇2u:

SL
ij =

R2

20

[
∂iζj + ∂jζi

]
with ζ = ∇× ω (18)

To compute ∇× ω, we use the general formula for the rotational in any curvilinear system [5]:

∇× ω =
r̂

rhs
[∂θ(hsωs)− ∂s(rωθ)]−

θ̂

hs
∂r(hsωs) +

ŝ

r
∂r(rωθ) (19)

We consider the case of a weakly curved vortex tube, with weak variations along the axis of the
vortex. In this case, 1/Rc = 0, hs → 1 and ∂s → 0, so Eq. (19) reduces to:

∇× ω = −θ̂ ∂rωs + ŝ
1

r
∂r(rωθ) (20)

In the case where both 1/Rc and ∂s are very small compared to the size of the vortex and to the
partial derivative ∂r, we re-organize the expression for ∇×ω, Eq. (19), as a sum of the dominant
term, due to the almost straight vortex tube, Eq. (20), plus a small perturbation generated by the
variations of the quantities along the filament (∂s) and by curvature (1/Rc). Here, we keep only
the lowest order terms in a formal expansion in powers of 1/Rc and ∂s. This leads to the following
expression, in the orthonormal basis (r̂, θ̂, ŝ):

∇× ω =

 0
−∂rωs

1
r∂r(rωθ)

+

 ( cos θ
Rc

ωs − ∂sωθ)
− sin(θ)

Rc
ωs

0

 ≡
 ζr
ζθ
ζs

 (21)

Interpreting ζ as a velocity, Eq. (18) effectively reduces to a rate-of-strain tensor, eαβ, whose
components are [5]:

eθθ =
1

r
∂θζθ +

ζr
r
≈ −1

r
∂sωθ (22)

ess =
1

hs
∂sζs + ζr

sin(θ)

Rc
+ ζθ

cos θ

Rc
≈ 1

r
∂2
sr(rωθ)−

cos θ

Rc
∂rωs (23)

esθ =
r

2hs
∂s(

ζθ
r

) +
hs
2r
∂θ(

ζs
hs

) ≈ −1

2
∂2
srωs −

cos θ

2rRc
∂r(rωθ) (24)

The approximate expressions of e, on the right-hand-side of Eqs. (22-24) were obtained by keeping
only the lowest order terms in a formal expansion, based on the small values of ∂s and 1/Rc.
Thereafter, the expression for PL

Ω can be written as:

PL
Ω ≈

R2

20

[ 1

3r
∂s(ω

3
θ) +

1

r
∂2
sr(rωθ)ω

2
s −

cos θ

3Rc
∂r(ω

3
s)− {∂2

sr(ωs) +
cos θ

rRc
∂r(rωθ)}ωsωθ

]
≈ R2

20

[ 1

3r
∂s(ω

3
θ) +

1

r
∂2
sr(rωθ)ω

2
s − ∂2

sr(ωs)ωsωθ

]
− R2

20

[1

3
∂r(ω

3
s) +

1

r
∂r(rωθ)ωsωθ

]cos θ

Rc
(25)
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The expression Eq. (25) for PL
Ω appears as a sum of two terms with different symmetries, as stated

in Eq.(6) of the main text. In fact, comparing Eq. (25) with Eq.(6) of the main text leads to:

F{ωs, ωθ} = −
[ 1

3r
∂s(ω

2
θ) +

1

r
∂2
sr(rωθ)ω

2
s − ∂2

sr(ωs)ωsωθ

]
(26)

G{ωs, ωθ} =
[1

3
∂r(ω

3
s) +

1

r
∂r(rωθ)ωsωθ

]
(27)

The term proportional to cos θ, with a dipolar symmetry, is proportional to 1/Rc and therefore
induced by the curvature of the vortex only. The presence of this term is clearly visible in Fig.1g
of the main manuscript, and can be explained from an elementary Biot-Savart calculations of the
velocity field from a curved vortex tube [6]. The dipolar term changes sign under the transformation
ωs → −ωs, which corresponds in the Biot-Savart expression to flipping the sign of the circulation.
The monopolar term, independent of θ, is the source of the strong negative PL

Ω contribution, clearly
seen in Fig.1. This term is uniformly 0 when ωθ = 0, which implies that the monopolar contribution
to PL

Ω is entirely due to the axial velocity in the tube.
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