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Abstract In confronting the “Memory Wall”, the design of embedded vision
systems exhibits many challenges regarding design cost, energy consumption,
and performance. This paper considers a variant of the Job Shop Scheduling
Problem with tooling constraints, arising in this context, in which the com-
pletion time (makespan) is to be minimized. This objective corresponds to the
performance of the produced circuit. We discuss different formulations using
integer linear programming and point out their characteristics, namely the
size and the quality of the linear programming relaxation bound. To solve this
scheduling problem with large size, we compare various approaches, includ-
ing a Constraint Programming model, two constructive greedy heuristics, two
models of LocalSolver, a Simulated Annealing algorithm, and a Beam Search
algorithm. Numerical experiments are conducted on 16 benchmark instances
from the literature and 12 real-life non-linear image processing kernels for
validating their efficiency.

Keywords Embedded vision systems · Scheduling · Makespan · Integer
Linear Programming · Constraint Programming · Greedy Algorithms ·
LocalSolver · Simulated Annealing · Beam Search

1 Introduction

Electronic devices are now widespread and more than ever their design requires
efficient optimization algorithms to drastically reduce their cost, increase per-
formance, and improve energy consumption. Among these devices, embedded
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vision systems are one of the most demanding because they process a huge
amount of data acquired by high-resolution imaging sensors. As an example,
it is now common to have electronic devices incorporating neural networks
for video processing. These devices heavily make use of stencil-like processing
and an algorithm called “kernel” is iterated over a nest of loops to produce an
array of data from one or several input arrays. Due to the very high amount of
data, such kernels make things difficult for processors because of the penalty
of memory accesses. Standard data caches are inefficient without optimization
of both the scheduling of processing and the sequence of data accesses. At the
opposite of GPUs, for which the programmer has to accommodate to a generic
memory framework, this work focuses on memory management of hardwired
kernels, for which a specifically tailored memory subsystem can be designed.
Then it is possible to deeply optimize the data management with efficient off-
line algorithms, by exploring different formulations, in relation to a model of
the hardwired computing unit and its memory subsystem.

The optimization of array processing has a long history, from the seminal
work of Feautrier [14] to more recent one [12]. Preserving the code function-
ality, these optimizations are related to compilation techniques and their goal
is to re-organize both the sequence of computations and the cache updates in
a way to improve both the time locality and the spatial locality of memory
references. These methods are called “linear” because they assume that ar-
ray references are linearly related to loop indices through an integer algebraic
relationship, and the scheduling is such that the time point to produce an
output is also linearly related to loop indices. Related scheduling techniques
are efficient but these assumptions exclude many applications such as image
scaling and rotation, homographies, and so on.

Indeed, many real-time video processing uses ”non-linear kernels” whose
access patterns are not linearly related to loop indices. These non-linear ker-
nels are used to correct non-linear optical systems such as fish-eye lenses,
ego-motion estimation, cylindrical or spherical projection of 3D video, convo-
lution kernels, and many others (see [31] and [8]). To optimize the memory
management of non-linear kernels, the proposed technique relies on paving the
space of both loop indices and input data by regular tiles and managing their
movement from a huge external memory and a buffer close to the computing
unit. The goal is to benefit the already loaded data and reduce the amount of
data loaded from external memory. However, due to the non-linear access pat-
tern, the amount of required input data called the “footprint” is not constant
over the tiles. In this setting, the optimization process is to find a sequence of
computations such that computing an output tile may benefit from the data
already loaded for the previous output tiles. Unlike linear methods, the chal-
lenge here is that there is no matrix or linear relationship to benefit from, and
Combinatorial Optimization (CO) methods are required.

The remainder of this paper is structured as follows. In section 2, we give a
brief description of the context of embedded vision systems and a clear expla-
nation about the related optimization problems. In section 3, the optimization
problem under consideration is formally described. Some of its complexity
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analysis results and its main lower bounds, and an example to illustrate the
problem are then given. In section 4, three different integer linear programming
models, as well as some dominance properties to speed up the search for an
optimal solution, are presented. Sections 5—10 are devoted to solution proce-
dures, including Constraint Programming, two greedy heuristics, two models
of LocalSolver, a Simulated Annealing, and a Beam Search. Section 11 gives
a detailed description and analysis of the computational results obtained by
running the proposed approaches on benchmark instances and discusses each
approach’s performance. Finally, the paper concludes with a discussion on
future research directions in Section 12.

2 Background and motivation

To address the challenge previously introduced, one co-designed architectural
solution was proposed by Mancini and Rousseau [25]. Their solution, called
Memory Management Optimization (MMOpt), creates an ad-hoc memory hier-
archy suited for non-linear kernels. MMOpt takes as input a non-linear kernel,
such as the one shown in Fig. 1, analyzes its access patterns, and computes
a schedule of both the computations and the data movement between the ex-
ternal memory and internal buffers. It finally outputs a configuration of the
so-called TPU (Tile Processing Unit), together with the information needed
to orchestrate its operational behavior. The basis of this optimization is to tile
both the iteration space of the kernel and the input and output data structures.

Fig. 1: The disparity of non-linear kernels, namely a polar transform in this
picture, makes standard optimizations inefficient.

As shown in Fig. 2, the TPU is made of a Prefetching Unit that loads data
from external memory to local buffers, and a Processing Engine (PE), that
computes the output data from the input data contained in the buffers. This
architecture allows continuous computations: prefetches being carried out in
parallel with the computations. For this scheme to work, prefetches have to be
determined in advance. In fact, in MMOpt, both prefetches and computations
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are orchestrated according to a fixed schedule generated and integrated into
the TPU.

Fig. 2: Architecture template of the TPU

TPUs produced by MMOpt embed schedules for the prefetches of input
tiles and output tiles computations (see Fig. 3). In this figure, output tile
computing and input tile prefetching are scheduled simultaneously. It is also
possible to have pauses in between computations, to limit the number of neces-
sary buffers. A buffer can store any tile, but only one at a time. The optimized
schedule will impact the three design characteristics of the generated comput-
ing unit in the following way: the number of buffers of the TPU will account
for most of its area; the number of prefetches reflects the main part of the
energy consumption1; and the performance is related to the total completion
time to compute all the tiles of an image.

Fig. 3: Prefetches and computations schedules

1 In the field of computer design, memory transfers are known to be a major part of
energy consumption, up to 80% of the total energy
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Following this optimization challenge, we state it as a concrete multi-
objective optimization problem, called 3-objective Process Scheduling and

Data Prefetching Problem (3-PSDPP) (see [19]) with two objectives being
parameters of the schedules themselves — the number of prefetches and the
total makespan — and one parameter is the number of buffers of the TPU.
They correspond to the energy consumption, respectively performance, and
size/cost of the circuit. Since the use of combinatorial methods for optimiz-
ing the running of the TPU produced by the MMOpt tool is still an emerging
field, we found only one systematic study of the published literature of MMOpt
from 2012, done by Mancini and Rousseau [25]. This study is the only generic
proposition that allows a significant performance improvement and can be
used for all non-linear kernels.

To the best of our knowledge, the 3-PSDPP scheduling problem has not
been studied before in the Operational research (OR) literature. In contrast,
since 2014, this problem presents the basic topic of [19]. This electronic prob-
lem is formalized as a 3-objective scheduling problem with clearly delineated
inputs and outputs in this study. A set of several constructive greedy heuris-
tics, aiming at solving benchmarks from real-life non-linear image processing
kernels, were developed. A more detailed description of the proposed model
together with a list of all these algorithms can be found in [18] and [19].

This paper addresses one of the three natural single-objective sub-problems
of 3-PSDDP, called Minimum Completion Time of 3-PSDDP (MCT-PSDPP),
in which the makespan is to be minimized.

3 Minimum Completion Time of 3-PSDPP: MCT-PSDPP

3.1 Assumptions

Each TPU produced by MMOpt from [25] has to satisfy the following assump-
tions:

1. The input tile sizes are identical, and each input tile fits exactly into one
buffer.

2. There is no distinction between buffers, i.e., any input tile may be prefetched
into any buffer.

3. All input (respectively output) tiles, as well as the subset of input tiles
required to compute each output tile, are known in advance.

4. Only one input (respectively output) tile can be prefetched (respectively
computed) at a time.

5. The prefetch operations and the computation steps may be carried out
simultaneously.

6. Input tile prefetch (respectively output tile computation) times are con-
stant and identical.
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3.2 Problem Description and Notation Definition

Formally, the scheduling problem MCT-PSDPP can be described as follows.
Let Y = {1, . . . , Y } be a set of Y independent non-preemptive output tiles
(also called tasks) to be computed, and let X = {1, . . . , X} be the set of X
input tiles to be prefetched from the external memory to the internal buffers.
For each output tile y ∈ Y, we denote by Ry the subset of input tiles required
for its computation (called prerequisites). These prerequisites tiles have to be
prefetched from the external memory and must be present in the buffers during
the corresponding computation step. Likewise, for each input tile x ∈ X , let
Rx be the subset of output tiles for which x is a prerequisite.

We assume that the number of buffers is unlimited, which means that
each prefetch is performed in a dedicated buffer. Also, the processing time
of a prefetch step and a computation step, respectively α and β, are input
parameters.

The underlying problem is to determine:

(i) the schedule of computations (cj)j∈M,M = {1, . . . , Y }, where for each
computation step j, cj = (sj , uj) encodes the assignment of the output tile
sj to the computation starting time uj .

(ii) a corresponding schedule of prefetches (pi)i∈N ,N = {1, . . . , X}, where pi =
(di, bi, ti) encodes for each prefetch step i which input tile di is prefetched
in which buffer bi and at the prefetch starting time tj .

The objective is to minimize the makespan, denoted by Cmax, which means
the total time it takes for the whole operation of the TPU from the beginning
of the first prefetch to the end of the last computation of one full image.

To analyze the complexity of the MCT-PSDPP, several trivial variants,
which can be solved in polynomial time, can be studied. For example, we first
consider the case when the α > βY , in which the optimal makespan C∗max is
given by the formula αX + β min

x∈X
|Rx|. Similarly, we consider the case when

β > α max
y∈Y
|Ry|, in which the optimal makespan C∗max is given by the formula

α min
y∈Y
|Ry| + βY . In the case when α equals to β and the cardinal of the

set Ry,∀y ∈ Y does not exceed two required input tiles per each output one,
the MCT-PSDPP is a trivial problem that belongs to the class P. However,
we have proved that a particular case of MCT-PSDPP, when β = α = 1, is
NP-Hard, by giving a polynomial reduction from the ”k-weak visit problem
described in [6]. A detailed description of the proof can be found in [24].

In the literature (see Hadj Salem et al. [19]), there exist some lower bounds
on the makespan Cmax for the MCT-PSDPP, which are:

lb1 = α|X ′|+ β (1)

lb2 = α min
y∈Y
|Ry|+ βY (2)

lb3 = α min
y∈Y
|Ry|+ βY ′ (3)
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Note that the X ′ denotes the set of input tiles that are required at least once
for the computation of an output tile. In the same way, note that the Y ′ is the
number of output tiles that are computed immediately after the last prefetch
step in the prefetches/computations schedule. Thus, the makespane Cmax is
lower bounded by the maximum between the three lower bounds lb1, lb2 and
lb3: lbCmax

= max{lb1, lb2, lb3}.

3.3 Formulation as a non-classical scheduling problem

Extending the well-known three fields α|β|γ classification scheme for the schedul-
ing problems, suggested by Graham et al. [17] (see also Lawler et al. [22]),—
where α defines the machine environment, β defines the characteristics of the
jobs, and γ defines the objective function that is to be minimized (max or
min)—the MCT-PSDPP can be considered as an extension of some of the
classical scheduling problems.

Firstly, if there is no shared prerequisites, this particular case of MCT-
PSDPP can be seen as a Flow-shop Scheduling Problem (FSP), denoted as F2|p1j =
α|(Ry)y∈Y |; p2j = β|Cmax (see Garey et al. [15] and Pinedo [27]). In this case,
the problem is solvable in polynomial time by the well-known Johnson’s al-
gorithm (see Garey et al. [15]). A more detailed description of this variant of
the MCT-PSDPP, as well as the adaptation of Johnson’s algorithm to solve
it, can be found in [24].

Secondly, the MCT-PSDPP can also be seen as a single machine scheduling
problem with tool changes “Tool Switching Problem” (ToSP), also called job
Sequencing and tool Switching Problem (SSP), where the objective function is
to minimize the makespan.
The ToSP involves optimally sequencing jobs and assigning tools to a ca-
pacitated magazine to minimize the number of tool switches. It arises from
computer and manufacturing systems, and it has been proved by Crama et
al. [13]) as a NP-complete combinatorial optimization problem. Different ex-
act and heuristic methods have been defined to deal with this problem (see
Tang et Denardo [30]; Bard [7]; Privault et Finke [28]; Laporte et al. [21];
Amaya et al. [5] and Catanzaro et al. [11]). A comprehensive review of the
literature that summaries the current research results on the ToSP is provided
by Calmels in [10].

By comparing our MCTP-PSDPP to the uniform variant of ToSP, we can
state that both input and output tiles (X , Y) are regarded as ToSP data (tools,
jobs). The incidence matrix Tools×Jobs can then be regarded as the require-
ments of input tiles needed to compute all the output tiles (Ry)y∈Y . However,
the number of buffers, which is analogous to the tool magazine’s capacity, is
unlimited.
Besides, MCTP-PSDPP involves determining a computation sequence and its
corresponding prefetch (two independent sequences). Both output tile comput-
ing and input tile prefetching are scheduled simultaneously, and the makespan Cmax
is minimized. Notice that, compared to the ToSP, the MCT-PSDPP does not
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have buffer limits; this changes the problem structure and makes dominance
properties much more useful (we describe these dominance properties in Sub-
section 4.3).

In summary, this analysis can be considered as an interesting theoretical
study to relate our MCT-PSDPP to similar scheduling problems known in the
OR literature. This study led us to easily adapt some methods to solve our
problem and some of its variants.

3.4 Illustrative Example

To illustrate the studied problem, MCT-PSDPP, we present the following ex-
ample. Consider the input data given in (Tang et Denardo [30]) for the case
where:

– Y = 10 output tiles (Y = {a, b, c, d, e, f, g, h, i, j});
– X = 9 input tiles (Y = {0, . . . , X − 1});
– RY =

[
{0, 3, 7, 8}, {0, 2, 4}, {1, 5, 6, 7}, {6}, {5}, {2}, {0, 4, 6, 8}, {2, 4, 7}, {4, 6}, {0, 1, 3}

]
(see Fig.4);

– α = β = 1 unit of time (for the simplicity of the problem).

RXY =



a b c d e f g h i j

0 1 1 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 0 1
2 0 1 0 0 0 1 0 1 0 0
3 1 0 0 0 0 0 0 0 0 1
4 0 1 0 0 0 0 1 1 1 0
5 0 0 1 0 1 0 0 0 0 0
6 0 0 1 1 0 0 1 0 1 0
7 1 0 1 0 0 0 0 1 0 0
8 1 0 0 0 0 0 1 0 0 0


(a) Incidence matrix RXY

0

2
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j

i

h

g

a

b

c

(b) Hypergraph HXY

Fig. 4: An example of an instance of the MCT-PSDPP (Tang et Denardo,
1988) [30]: an incidence matrix RXY and its corresponding Hypergraph HXY

Note that each instance of MCT-PSDPP can be also represented as a
bipartite graph2, denoted BXY , where U = X (set of input tiles) and V = Y
(set of output tiles).

A feasible solution φ for MCT-PSDPP is given in Fig. 5, where Cmax = 14
units of time.

In this schedule, the tile b is computed after prefetching all its required
tiles (0, 2, 4). The tile f is immediately computed because it does not need a

2 Bipartite graph B = (U ,V): consists of a set of vertices U , a disjoint set of vertices
V, and a set of edges E ⊂ U × V.
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Fig. 5: A feasible solution with Cmax = 14 units of time

new input tile (tile 2 is already prefetched). For computing the tile h in the
third step, we prefetch only the tile 7 while reusing tiles 2 and 4, which were
previously prefetched for computing tile b, and so on.

4 Mathematical Programming Models

Mathematical programming formulation is a natural way to tackle scheduling
problems. In this section, three Integer Linear Programming (ILP) models are
provided for solving the proposed problem MCT-PSDPP.

4.1 Position-based ILP model

DenoteM = {1, . . . , Y } as the set of Y positions in the computation sequence
to be determined and let N = {1, . . . , X} be the set of X positions in the
prefetch sequence to be defined. We then define two sets of variables {cyj |y ∈
Y, j ∈M} and {pxi|x ∈ X , i ∈ N} to model the problem under consideration.
cyj is a binary variable equal to 1 if output tile y is computed at position j
and 0 otherwise. pxi is also a binary variable equal to 1 if input tile x is loaded
at prefetch position i and 0 otherwise. Moreover, let uj , j ∈M and ti, i ∈ N
(where uj , ti ∈ N∗) be the start time of the jth computation step and the ith
prefetch step, respectively. We also use variable Cmax to define the makespan,
where Cmax ∈ R. Finally, denote Λ, where Λ = αX + βY as an upper bound
on the makespan Cmax for the MCT-PSDPP (used as a Big-M constraints).

We now present our position-based ILP model, here-after denoted as MCT-1,
as follows:

min Cmax
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Subject to ∑
j∈M

cyj = 1 ∀ y ∈ Y (4)

∑
y∈Y

cyj = 1 ∀ j ∈M (5)

∑
i∈N

pxi = 1 ∀ x ∈ X (6)∑
x∈X

pxi = 1 ∀ i ∈ N (7)

uj − ti ≥ α− Λ(2− cyj − pxi)∀ y ∈ Y, j ∈M, x ∈ Ry, i ∈ N (8)

uj−1 + β ≤ uj ∀ j ∈M\{1} (9)

ti−1 + α ≤ ti ∀ i ∈ N\{1} (10)

Cmax ≥ uY + β (11)

cyj ∈ {0, 1} ∀ y ∈ Y, j ∈M (12)

pxi ∈ {0, 1} ∀ x ∈ X , i ∈ N (13)

uj , ti ≥ 1 ∀ j ∈M, i ∈ N (14)

The objective function represents the makespan Cmax, i.e., the end time
of the last computation step defined by uY +β: inequality (11), which is to be
minimized. Equalities (4)—(7) are a set of assignment constraints, in which (4)
satisfies the requirement that there is a unique output tile be assigned to each
computation step (position j), while (5) ensures that each output tile must
be computed in a unique position. In the same way, constraints (6) satisfy the
requirement that there is a unique input tile be assigned to each prefetch step
(position i), while (7) ensures that each input tile must be loaded in a unique
position. Constraints (8) ensure that each output tile is computed according
to the requirement, which means that if tile x is prefetched at step i (pxi = 1)
and required by the output tile y which is computed at step j (cyj = 1), then
this x must be present in the internal buffer during this computation. This
also means that the start date of this computation uj must be greater than or
equal to the date of existence of the tile x (ti + α). Constraints (9) guarantee
that the computation step j only begins when the computation step j − 1 is
finished. Similarly, constraints (10) ensure that the prefetch step i only begins
when the prefetch step i− 1 is finished. Finally, constraints (12)—(14) set the
variables’ domains.

4.2 Time-based ILP models

The idea of using time-indexed variables is originally proposed here. We then
give two ILP models for tackling the problem. Consider a set T = {1, . . . , T},
where T ∈ N∗, as the time interval needed for performing all prefetch and
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computation steps. In this paper, we fix T = α
∑
y∈Y
|Ry| + βY , which can be

considered as an upper bound on the makespan Cmax. Denote K = {1, . . . , α−
1} as the time interval at which an input tile can be loaded and let S =
{1, . . . , α} be the time interval at which a prefetch step of an input tile was
performed (the prefetch is complete and the input tile is present in the buffer).
Similarly, let L = {1, . . . , β − 1} be the time interval at which an output tile
can be computed.

4.2.1 Process-Date-Indexed ILP Model:

We define three sets of new variables {cyt|y ∈ Y, t ∈ T }, {pxt|x ∈ X , t ∈ T }
and {ext|x ∈ X , t ∈ T }, where:

cyt :

{
1 if output tile y is in computation process at time t, ∀y ∈ Y,∀t ∈ T
0 otherwise

pxt :

{
1 if input tile x is in prefetch process at time t, ∀x ∈ X ,∀t ∈ T
0 otherwise

ext :

{
1 if input tile x exists in buffer at time t, ∀x ∈ X ,∀t ∈ T
0 otherwise

Let Cmax be the makespan, where Cmax ∈ R. The Process-Date-Indexed
ILP model, here-after denoted as MCT-2, can be written as follows:

min Cmax

Subject to ∑
t∈T

cyt = β ∀ y ∈ Y (15)∑
y∈Y

cyt ≤ 1 ∀ t ∈ T (16)

cyt − cyt−1 ≤ cyt+l ∀ y ∈ Y, t ∈ {2, . . . , T − β}, l ∈ L (17)∑
t∈T

pxt = α ∀ x ∈ X (18)∑
x∈X

pxt ≤ 1 ∀ t ∈ T (19)

pxt − pxt−1 ≤ pxt+k ∀ x ∈ X , t ∈ {α, . . . , T − β}, k ∈ K (20)

ext − ext−1 ≤ pxt−s ∀ x ∈ X , t ∈ {α+ 1, . . . , T}, s ∈ S (21)

cyt ≤ ext ∀ y ∈ Y, t ∈ T , x ∈ Ry (22)

ext = 0 ∀ x ∈ X , t ∈ S (23)

Cmax ≥ tcyt ∀ y ∈ Y, t ∈ T (24)

cyt ∈ {0, 1} ∀ y ∈ Y, t ∈ T (25)

pxt, ext ∈ {0, 1} ∀ x ∈ X , t ∈ T (26)

The objective function minimizes the makespan Cmax, where Cmax ≥
tcyt,∀t ∈ T : constraint (24). Constraints (15)—(17) are assignment constraints
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for computation steps. In the same way, constraints (18)—(20) are a set of as-
signment constraints for prefetch steps. Constraints (21) impose that a prefetch
of tile x must be counted whenever x is present at instant t but is not present
at instant t − 1. In other words, ∀x ∈ X , t ∈ {α + 1, . . . , T}, ext = 1 and
ext−1 = 0 imply pxt−s = 1 (the prefetch of the input tile x ends at instant t−1).
Constraints (22) ensure that the computation of the output tile y starts at in-
stant t, when all its required tiles x,∀x ∈ Ry are present in the internal buffer
before instant t. Constraints (23) are initialization constraints. Finally, con-
straints (25)—(26) set the variables’ domains.

Remark 1 The makespan Cmax can be expressed by introducing the following
decision variable:

δt :

1 if the whole treatment (all computation and prefetch steps) is not
yet complete at instant t, ∀t ∈ T

0 otherwise (finished)

In this case, we slightly modify the formulation MCT-2, where the objective

function will be defined by min
∑
t∈T

δt and constraints (24) can be rewritten

using the following two inequalities (27) and (28).

∑
y∈Y

cyt ≤ δt ∀ t ∈ T (27)

δt−1 ≥ δt ∀ t ∈ {2, . . . , T} (28)

4.2.2 End Date-Indexed ILP Model: MCT-3

We now describe a new formulation using two sets of new variables {fyt|y ∈
Y, t ∈ T }, {qxt|x ∈ X , t ∈ T } and both {ext|x ∈ X , t ∈ T } and {δt|t ∈ T }
from the previous formulation MCT-2, in which:

fyt :

{
1 if output tile y finishes to be computed at instant t, ∀y ∈ Y,∀t ∈ T
0 otherwise

qxt :

{
1 if input tile x finishes to be prefetched at instant t, ∀x ∈ X ,∀t ∈ T
0 otherwise

The End Date-Indexed ILP model, here-after denoted as MCT-3, can be
stated as follows:

min
∑
t∈T

δt
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Subject to∑
t∈T

fyt = 1 ∀ y ∈ Y (29)

∑
y∈Y

t∑
s=t−β+1

fys ≤ 1 ∀ t ∈ {β, . . . , T} (30)

∑
t∈T

qxt = 1 ∀ x ∈ X (31)

∑
x∈X

t∑
s=t−α+1

qxs ≤ 1 ∀ t ∈ {β, . . . , T} (32)

ext − ext−1 ≤ qxt−1 ∀ x ∈ X , t ∈ {α+ 1, . . . , T} (33)

fyt ≤ exs ∀ y ∈ Y, t ∈ {β, . . . , T}, x ∈ Ry, s ∈ {t− β + 1, . . . , t}
(34)

ext = 0 ∀ x ∈ X , t ∈ S (35)

fyt = 0 ∀ y ∈ Y, t ∈ {1, . . . , β + α|Ry| − 1} (36)∑
y∈Y

fyt ≤ δt ∀ t ∈ T (37)

δt−1 ≥ δt ∀ t ∈ T \{1} (38)

fyt ∈ {0, 1} ∀ y ∈ Y, t ∈ T (39)

qxt, ext ∈ {0, 1} ∀ x ∈ X , t ∈ T (40)

δt ∈ {0, 1} ∀ t ∈ T (41)

The objective function minimizes the makespan defined by min
∑
t∈T

δt.

Constraints (29) ensure that for each output tile y, there is an instant t in
which this tile is computed, while constraints (30) guarantee that for each in-
stant t, there is at most one prefetch of an input tile that will be finished at this
time. In the same way, constraints (31) ensure that for each input tile x, there
is an instant t in which this tile is loaded, while constraints (32) guarantee
that for each instant t, there is at most one computation of an output tile that
will be finished at this time. Constraints (33)—(35) imply constraints (21)—
(23), respectively. Constraints (36) are initialization constraint for computa-
tion steps. Constraints (37)—(38) imply constraints (27)—(28), respectively.
Finally, constraints (39)—(41) set the variables’ domains.

Remark 2 Constraints (34) can be rewritten as:

β|Ry|fyt ≤
∑
x∈Ry

t∑
s=t−β+1

exs∀ y ∈ Y, t ∈ {β, . . . , T} (42)

This constraint ensures that for each output tile y and each instant t, if the
computation of y ends at t, then there is a time interval of time {t−β+1, . . . , t}
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to which all the prerequisites of y (given by Ry) are prefetched. That is to say,

the sum

t∑
s=t−β+1

exs must be greater than or equal to the time required for a

computation step (β ) multiplied by the number of prerequisites of y.
For example, for any instance with Y = 10 output tiles to compute and

X = 9 input tiles to load, the inequality (34) has 8795 constraints while (42)
has 2174 constraints. We can then say that this inequality reduces the number
of constraints that significantly impact solving performance.

4.3 Dominance Properties

In this subsection, we introduce some dominance properties which should apply
for the MCT-1 as well as for both MCT-2 and MCT-3. These properties can be
stated as “dominance rules” whose aim is to reduce the solution space of a
problem (to reduce the searching scope) by adding new constraints to speed
up the search process. In our case, we used these dominance properties as
a preprocessing step that aims to reduce the search-space of the variables, or
directly in building interesting solutions, or even a subset of solutions in which
it is sufficient to search for optimal solutions.

Property 1 (Tiles computation).
Without loss of generality, we can assume that in an optimal solution Ry1 ⊆
Ry2 ,∀(y1, y2) ∈ Y implies that output tile y1 must precede output tile y2.

The property 1 can be simply described by the following inequalities: ∀y1, y2 ∈
Y and Ry1 ⊆ Ry2 :

ujcy1j ≤ ujcy2j+1 + β (for the MCT-1) (43)

tcy1t ≤ tcy2t + β (for the MCT-2) (44)

tfy1t ≤ tfy2t − β (for the MCT-3) (45)

Proof 1 (Property 1).
Suppose there exists an optimal schedule where Ry1 ⊆ Ry2 and y2 precedes
y1 that contradicts dominance 1. In this case, Cmax = α|Ry2 | + 2β. With-
out breaking the precedence rule, we can exchange y2 and y1 in the schedule
since both their prerequisites are loaded before s1 and s2. Doing so, we get
Cmax = α|Ry1 | + max(α|Ry2 \ Ry1 |, β) + β which is at most α|Ry2 | + 2β.
This contradicts the assumption of the existence of an optimal schedule where
Ry1 ⊆ Ry2 and y2 precedes y1 contradicting dominance rule 1. Thus there
exists no optimal schedule that contradicts dominance 1. Figure. 6 shows an
example when applying the dominance 1 allows getting a smaller Cmax.

ut
Property 2 (Tiles requirement).
If all output tiles require an input tile, ∃x ∈ X/∀y ∈ Y, x ∈ Ry, then this input
tile must be prefetched at the first prefetch step in an optimal schedule.
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Ry1 Ry2 \ Ry1

y2 y1

(a) y2 before y1

Ry1 Ry2 \ Ry1

y1 y2

(b) y1 before y2

Fig. 6: Case where dominance 1 gets a smaller value

Proof 2 (Property 2).
Consider xi the prerequisite which is required by all output tiles. It is a prereq-
uisite of the first loaded input tiles. Since permuting prerequisites of the first
output tiles do not change the completion time, there exists an optimal solution
with the prerequisite required by all output tiles loaded first.

ut

Property 3 (Tiles utilization).
If an output tile y requires all the input tiles, ∃y ∈ Y/Ry = X ; then there
exists an optimal schedule in which this output tile is computed at the last
computation step.

Proof 3 (Property 3).
Consider an output tile y which requires all the input tiles in X . Let Cy be the
completion time of y. The makespan Cmax can be defined as Cy + βk, where
k ∈ {0, . . . , Y −1} is the number of output tiles computed after y. As Cy ≥ αX,
then Cmax ≥ αX +βk. This means that minimizing Cmax implies minimizing
k. So, there exists an optimal schedule, where k = 0, which means that y is
computed at the last computation step.

ut

5 A Constraint Programming Approach

Constraint Programming (CP) is a declarative programming paradigm suit-
able to solve constraint satisfaction problems (CSPs). A CSP consists of a set
of decision variables defined by a corresponding set of values (a finite domain)
and a set of constraints that limit the possible combination of variable-value
assignments. After a model of the problem is created, the solver interleaves
two main steps: constraint propagation, where inconsistent values are removed
from variables domains, and a search procedure. CP has been widely used to
solve scheduling problems.

To present the CP-1 model for the MCT-PSDPP, we use IBM ILOG opti-
mization suite and the docplex python module [1] to program our model. We
first define two set of variables as follows:

– I1: the interval variable for each input tile (prerequisite) x ∈ X ;
– I2: the interval variable for each output tile (task)
y ∈ Y;
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The objective is to minimize the makespan, which is denoted by the fol-
lowing expression:

max{end of(I2[y],∀y ∈ Y) 3 }
subject to the following constraints:

no overlap(I1[x]) 4 ∀ x ∈ X (46)

no overlap(I2[y]) ∀ y ∈ Y (47)

end before start(I1[x], I2[y]) 5 ∀ x ∈ X ,∀ y ∈ Y (48)

– Constraints (46) ensure that each input tile x is loaded at a prefetch instant
only once.

– Constraints (47) ensure that each output tile y is computed at a computa-
tion instant only once.

– Constraints (48) mean that for each each x precedes y, x must finish before
y starts. That is to say that an output tile y can be computed only after
prefetching all its required tiles x.

6 Constructive Greedy Algorithms

The MCT-PSDPP was considered for the first time by Hadj Salem et al. [19].
They have developed a set of two constructive greedy algorithms, called as
follows:

a Earliest Computations for MCT (ECM):
The ECM algorithm’s main idea is to compute the output tiles at the
earliest while satisfying the input tiles requirement constraint. Note that
the prefetches are sequenced in their decreasing order of the number of
occurrences Oc(x),∀x ∈ X .

b Computation Grouping for MCT (CGM):
The CGM algorithm’s main idea is to find a set of groups G to define
the computations sequence. A Group G defines a set of output tiles y ∈ Y
which share the same required input tiles and will be successively computed
after y. More formally, considering an output tile y, a Group G of y is
defined by G(y) = {g : g ∈ Y, g 6= y, and Rg ⊆ Ry}. To determine this
computations sequence, we first construct the set of groups Y ′, associated
to the set output tiles y ∈ Y, while ensuring that each output tile y belongs
to exactly one group G. Then, the computations are sequenced in their
increasing order of |Ry|,∀y ∈ Y ′ and Y ′ ⊆ Y.

For all these algorithms, the number of prefetches N equals its lower bound
lbN = |X ′| and the number of buffers Z equals its number of required input
tiles |X ′|.
The flowchart in Fig. 7 summarizes the basics steps of each of these methods.
However, a more detailed description of these algorithms and an illustrative
example can be found in [19].

3 end of(): End of an interval variable.
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Start

Inputs: X ,Y, (Ry)y∈Y , α, β

1: Find a Prefetches Schedule

(di, ti)i∈N

2: Find a Computations
Schedule “ At Earliest”

(sj , uj)j∈M
, Cmax

1: Find a Computation
Sequence Using Groups G

(sj)j∈M

2: Find Prefetches and
Computations Schedules

(di, ti)i∈N , (uj)j∈M
, Cmax

End

ECM CGM

Fig. 7: Flowchart of ECM and CGM algorithms [19]

7 Split Algorithm

Before going into specific meta-heuristics, we present a Split algorithm for
MCTP-PSDPP. Split algorithms are a way to search in a smaller search space.
A good example of such an application, in the vehicle routing literature, can
be found in [32], in which a split algorithm in O(n) is used to partition a
solution (represented as a giant tour without occurrences of the depot) into
separate routes with minimum cost. In our case, we apply it as follows: given
a permutation on output tasks, there exists an optimal schedule of input tasks
relative to the output permutation. First, it consists of scheduling (prefetch-
ing) all prerequisites (input tasks) of the first scheduled output task, then all
prerequisites of the second scheduled output tasks, and so on until all input
tasks are scheduled (prefetched). One can prove that it leads to an optimal
input task schedule by a permutation argument. We use this routine in one
LocalSolver model, the Beam Search (BS) and the Simulated Annealing (SA).
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8 Solving using LocalSolver

LocalSolver (LS) is a local search-based mathematical programming software.
More information about it can be found in [9].

We propose two LocalSolver models (LS-standard and LS-split). The
first one is a naive approach using a straightforward model reflecting the MCT-1
formulation. It is implemented as the MIP defined in this paper. We take ad-
vantage of the set modeling in LocalSolver 7.5. The second one uses the split
routine defined before. It searches over permutation and defines a custom ob-
jective function that computes the optimal input task schedule, then evaluates
the resulting solution.

9 The Proposed Simulated Annealing

Simulated Annealing (SA) is a well-known meta-heuristic that belongs to the
class of randomized local search algorithms, which are known as threshold
accepting algorithms. Standard SA has been widely used in optimization and
present in most of the textbooks [16]. We use the split method defined before.

Like all others meta-heuristic methods, we need to define the different
parameters as follows:

1. Initial solution: we generate randomly a permutation (sj)j∈Y of |Y| and
compute the permutation (di)i∈N of |X |.

2. Neighborhood: the neighborhood is defined by all the possible swaps of
two elements in the permutation (sj)j∈Y . It consists of O(|Y|2) elements.

3. Evaluation function: we measure the makespan Cmax.
4. Acceptance scheme: We accept a non-improving solution (of difference
∆ between the reference solution at iteration k) if a random number be-
tween 0 and 1 is less than exp( −∆

exp−k/10 )

Algorithm 1 shows the pseudo-code of our proposed Simulated Annealing
algorithm.

10 Iterative beam search algorithm

Beam Search (BS) has been used successfully to solve many scheduling prob-
lems (see [26,29]). Beam Search is a tree search algorithm that uses a beam size
parameter (D). Beam Search behaves like a truncated Breadth First Search
(BFS). It only considers the best D nodes on a given level. The others are fath-
omed. Usually, we use the dual bound of a node to choose the most promising
nodes. In our situation, MCTP-PSDPP is a minimization problem, we use as
a guide the value of the lower bound defined by the following formula:

lbCmax
= idle time on machine M2 + |Y| (49)
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Algorithm 1: Simulated Annealing algorithm
Input : X ,Y,Ry , α, β
Output: permutation of Y : (sj)j∈M
Result: optimal makespan Cmax

1 while not stoppingCriterion do
2 Initialize temperature t0 and s as a random solution for k ∈ {0, . . .K} do
3 Generate neighbour n ∈ N(s) ; // n is a neighbour of s
4 Cmax ← eval(n)− eval(s) ;
5 if Cmax ≤ 0 then // We found a better solution

6 s← n ;
7 else
8 s← n with probability exp(−Cmax/tk) ;
9 end

10 end

11 end

It generalizes both a greedy algorithm (if D = 1) and a BFS (if D =∞). An
iterative scheme was recently proposed to solve various combinatorial opti-
mization problems using a beam search or a variant of it (see [23]). It consists
of successive runs of larger and larger beam search algorithms. This allows to
get rapidly good solutions and, being able to improve them.

Algorithm 2 shows the pseudo-code of our proposed Iterative beam search
algorithm. The algorithm runs multiple beam-searches starting with D = 1
(line 1) and increases the beam size (line 8) geometrically. Each run explores
the tree with the given parameter D. At the end of the time limit, we report
the best solution found so far (line 10). We start with an empty output per-
mutation, then chose the first output task at the first level. Then the second
output task on the second level. And so on.

Algorithm 2: Beam Search algorithm
Input : X ,Y,Ry , α, β
Output: permutation of Y : (sj)j∈M
Result: optimal makespan Cmax

1 D ← 1;
2 while time limit not exceeded do
3 Candidates ← root ; // root is an empty output permutation of Y
4 while Candidates 6= ∅ do
5 Children ← { children(n) | n ∈ Candidates } ; // children is a child

node of the tree a limited set

6 Candidates ← best D of Children;

7 end
8 D ← D × 2;

9 end
10 Report best solution found;
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11 Computational Experiments and Discussion

The experiments’ goal is to evaluate the different proposed methods, includ-
ing exact and meta-heuristics, for solving the MCT-PSDPP given two sets of
benchmarks.

11.1 Parameter settings

All experiments were performed on an Intel Core i5 processor, 2.60 GHz ma-
chine, equipped with 4 GB of RAM and operating system Windows. We per-
form experiments with Gurobi Optimizer v7.5.1 and LocalSolver 7.5 using
Python 3.6. The Constraint programming approach was implemented using
IBM ILOG CP Optimizer. Simulated Annealing, as well as greedy algorithms,
were implemented using Python version 3.6. Beam Search was implemented
in C++. The CPU time limit for each run on each problem instance is 300
seconds. All our tests were carried out for the case where α = β = 1 time unit.
All the solvers are executed in their default settings with one thread unless
specified otherwise.

11.2 Description of data-sets

Experiments were made using two kinds of data-sets possessing different char-
acteristics.

Specifically we first considered a collection of 16 data-sets for the well-
known ToSP, available in the literature (see [7], [20], [4], and [34]) and down-
loadable at [2].
Each data-set contains 5 random instances (i.e., incidence matrices or relations
among input and output tiles) of the MCT-PSDPP (≡ ToSP), characterized
by having the same number of output tiles (≡ jobs), input tiles (≡ tools). For
the sake of simplicity, since instances sharing the same characteristics produce
the same results on considered algorithms, we only present the first one among
each class. As we can see from the Table 1, each data-set is also characterized
by the vector of parameters Y,X,Xmin, Xmax, Z, where:

– Y ∈ {10, . . . , 50}
– X ∈ {9, . . . , 60}
– Xmin = min

y∈Y
|Ry|

– Xmax = max
y∈Y
|Ry|

– Z ∈ {4, . . . , 30}. In our case, the Z is infinite number of buffers.

A specific instance with Y output tiles, X input tiles, and buffers’ number
Z is labeled as: ZζXY .
As described in [7], [20], [4], and [34], a generic instance in a given data-set
is created by generating at random, for each output tile y ∈ Y, the set Ry
(Xmin ≤ |Ry| ≤ Xmax), and with the restriction that no output tile is covered
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by any other output tile in the sense that ∀k, l ∈ Y and k 6= l : Rk * Rl. In
fact, data-sets belonging to the same group (e.g., datAx, datBx, and so on)
differ from one on another by the number of input tiles X and the number of
buffers Z.

Note that all our proposed algorithms perform in the same way for the
different instances from the same group. So, in this paper, we present our
numerical results (given, in the next sections, in both Tables 4 and 5) only on
one of them.

A visualization of these instances can be found in [3]. It is a homemade
web application helping to visualize hypergraphs, play with ToSP instances
and solutions. Each row can be dragged and dropped at another position in
the order by picking its pink square, similarly for columns and green squares.

Data-set Y X Xmin Xmax Z Label

datA1 10 9 2 4 4 4ζ910
datA2 - 10 2 4 4 4ζ1010
datA3 - 15 3 6 6 6ζ1510

datB1 15 12 3 6 6 6ζ1215
datB2 - 20 3 6 6 6ζ2015

datC1 20 15 3 8 8 8ζ1520
datC2 - 16 3 8 8 8ζ1620
datC3 - 20 4 10 10 10ζ2020
datC4 - 30 9 24 24 24ζ3020
datC5 - 36 9 24 24 24ζ3620
datC6 - 40 11 30 30 30ζ4020

datD1 30 25 4 10 10 10ζ2530
datD2 - 40 6 15 15 15ζ4030

datE1 40 30 6 15 15 15ζ3040
datE2 - 60 7 20 20 20ζ6040

datF 50 40 9 20 25 25ζ4050

Table 1: Characteristics of the 16 data-sets of the ToSP

We then considered a set of 12 benchmarks from real-life non-linear image
processing kernels already used by Mancini and Rousseau [25]. Note that the
kernel’s incidence matrices are our input, not the image processed by the
kernel.

As we can see from Table 2, the benchmarks are variations of four kernels
(fisheye, polar, fd resize, and fd haar) for which the input data structure (multi-
resolution (an)isotropic mipmap input data) is modified. In fact, the first four
kernels represent geometric non-linear transformations (see [31] and [8]). The
last one, which represents a kernel of a face detection application based on Haar
features, creates a pyramidal multi-resolution image (see [33]). The number
of the input image tiles varies between 60 and 7000 input tiles. Similarly,
the number of the output tiles varies between 60 and 3400 tiles, where Y0 is
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No Kernel Input data type
Input tiles Output tiles Prerequisites

Dim X Dim Y0 Y Xmin Xmax

1 Test2D image 2D 256 2D 64 64 4 4
2 Test2D PE image 2D 64 2D 256 256 1 1
3 Fisheye image 2D 176 2D 176 158 1 9
4 Fisheye mipmap isotropic 3D 352 2D 176 158 2 13
5 Fisheye mipmap anisotropic 4D 704 2D 176 158 3 21
6 Polar image 2D 169 2D 112 112 2 8
7 Polar mipmap isotropic 3D 845 2D 112 112 2 12
8 Polar mipmap anisotropic 4D 4225 2D 112 112 5 20
9 Fd Resize mipmap isotropic 3D 1280 3D 3520 1186 1 13
10 Fd Haar pyramidal integral image 4D 7040 3D 2112 428 28 96
11 Cameleon image 3D 1200 2D 1350 877 1 9
12 Cameleon Sd image 3D 4800 2D 5400 3353 1 10

Table 2: Characteristics of the 12 benchmarks from real-life non-linear image
processing kernels

the initial number of output tiles, and Y defines the number of tiles to be
computed: Y ≤ Y0.

11.3 Experiments for ILP models

11.3.1 Comparison of the ILPs

We first define by R the average of |Ry|: R = 1
Y

∑
y∈Y
|Ry|. Table 3 gives a

comparison of the proposed ILP models: MCT-1, MCT-2a, MCT-2b, MCT-3a &
MCT-3b, in terms of the number of variables and the number of constraints
as well as the use of the Big-M constraints. These models are based on the
formulations MCT-1, MCT-2 and MCT-3 (described in Section 4), where:

– MCT-1: is the position-based ILP model;
– MCT-2a: is the Process-Date-Indexed ILP model with a classical objective

function of the makespan;
– MCT-2b: is the Process-Date-Indexed ILP model with an objective function

as a decision variable defined by constraints (26) — (27);
– MCT-3a: is the End-Date-Indexed ILP model with the initial version of

constraints (33);
– MCT-3b: is the End-Date-Indexed ILP model with the second version of

constraints (33) defined by constraints (41).

As illustrated in Table 3, it is easy to see that MCT-2a, MCT-2b, MCT-3a &
MCT-3b are equivalent in terms of the number of binary variables. They have
the largest number of variables, but they also have some strong advantages.
They do not contain the Big-M constraints that are known to weaken the linear
relaxation and decrease ILP models’ performance. Besides, using a binary
variable to define the makespan Cmax seems to be more favorable than the
use of the classical ones.
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Models
No. Variables

No. Constraints Big-M
binary integer

MCT-1 X2 + Y 2 X + Y + 1 O(XY 2R) Yes
MCT-2a (2X + Y )T 1 O((α+ β)Y 2R2 + αXY (αR+ β)) No
MCT-2b (2X + Y )T + T 0 O((α+ β)Y 2R2 + αXY (αR+ β)) No
MCT-3a (2X + Y )T + T 0 O(βY 2R(αR+ β) +XY (αR+ β)) No
MCT-3b (2X + Y )T + T 0 O(Y 2(αR+ β) +XY (αR+ β)) No

Table 3: Comparison of the ILP models: MCT-1, MCT-2a, MCT-2b, MCT-3a &
MCT-3b

In contrast, MCT-1 has the smallest number of variables (binary and integer).
The most important disadvantage of MCT-1 is that it uses a large number Λ
in the constraint (8), known as the Big-M constraints. Because we can not
find an efficient way to estimate Λ closely, an exact procedure to separate this
constraint will be useless.
To compare the number of constraints for the different models, we need to
study the size of R. In fact, if R ≤ X

α+β , both MCT-2a and MCT-2b are then

better than MCT-1 in terms of number of constraints. Furthermore, if R ≤ X
αβ ,

MCT-3a has less constraints than MCT-1. Then, MCT-3b is always better.

11.3.2 Computational results

The first set of our computational results provides the gap (expressed in per-
centage) and CPU (expressed in seconds) values for the five ILP models, on the
ToSP data-sets. These experiments were performed with Gurobi Optimizer,
when enabling its proprietary cuts and presolve strategies.

Analysis of the gap: Fig. 8 shows a comparison of both Gurobi gap and
Gap distribution using box-plots 6. The Gurobi gap is defined as the difference
between the best feasible solution and the best lower bound found by Gurobi
at the end of the CPU time limit (300 s). However, the Gap is calculated using
the following formula, where C∗max is obtained by solving the CP model:

(Cmax − C∗max)

C∗max
∗ 100 (50)

Tables 4 and 5 give the detailed numerical results of the different versions
of the ILP models for MCT-PSDPP using ToSP data-sets. For each of the five
models, we give the following parameters:

– lb: the best lower bound found by Gurobi;

6 A box plot (or box-and-whisker plot) shows the distribution of quantitative data in a
way that facilitates comparisons between variables or across levels of a categorical variable.
Specifically, the bottom and the top of each box represent the first and third quartiles; the
band inside the box represents the second quartile (the median); the ends of the whiskers
represent the 9th percentile and the 91 percentile. Outliers are plotted as individual points.
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Fig. 8: Comparison of the gaps of models MCT-1, MCT-2a, MCT-2b, MCT-3a and
MCT-3b

Id C∗max
MCT-1 MCT-2a MCT-2b

lb Cmax GGap CPU Gap lb Cmax GGap CPU Gap lb Cmax GGap CPU Gap

A1 12 12 12 0 0.66 0 12 12 0 1.49 0 12 12 0 0.22 0
A2 13 13 13 0 4.62 0 13 13 0 0.89 0 13 13 0 0.27 0
A3 16 16 16 0 1.28 0 16 16 0 6.19 0 16 16 0 1.97 0

B1 19 19 19 0 5.86 0 19 19 0 12.41 0 19 19 0 1.20 0
B2 22 22 22 0 60.69 0 22 22 0 263.86 0 19 22 13.6 300 0

C1 25 25 25 0 58.54 0 18 25 28 300 0 25 25 0 216.12 0
C2 27 20 27 25.9 300 0 15 27 44.4 300 0 25 27 7.4 300 0
C3 28 20 28 28.6 300 0 16 28 44.8 300 3.57 24 30 20 300 7.14
C4 41 20 41 51.2 300 0 3 42 92.9 300 2.43 28 43 34.9 300 4.87
C5 44 20 45 55.6 300 2.27 1 56 98.2 300 27.27 27 50 46 300 13.63
C6 49 20 51 60.8 300 4.08 2 51 96.1 300 4.08 29 50 42 300 2.04

D1 39 30 40 25 300 2.56 5 41 87.8 300 5.12 34 40 15 300 2.56
D2 50 30 53 43.4 300 6 3 52 94.2 300 4 34 56 39.3 300 12

E1 55 40 57 29.8 300 3.63 3 66 95.5 300 20 44 58 24.1 300 5.45
E2 77 40 84 25.4 300 9.09 1 100 99 300 29.87 41 100 59 300 29.87

F 75 50 80 37.5 300 6.66 2 89 97.8 300 18.66 54 90 40 300 20

Average - - 25.63 - 2.14 - - 54.91 - 7.18 - - 21.33 - 6.09

Table 4: Numerical results of ILP models for MCT-PSDPP: MCT-1, MCT-2a &
MCT-2b

– Cmax: the best feasible solution found by Gurobi Optimizer, when enabling
its proprietary cuts and presolving strategies;

– GGap: the Gurobi Gap expressed in percentage (%);
– CPU(s): the execution time expressed in seconds;
– Gap: the optimal gap, expressed in percentage (%).

In these tables, we highlight the optimally solved instances within the time
limit (less than or equal to one CPU minute) with bold type. This means that
GGap and/or Gap were equal to 0%.
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Id C∗max
MCT-3a MCT-3b

lb Cmax GGap CPU Gap lb Cmax GGap CPU Gap

A1 12 12 12 0 0.13 0 12 12 0 0.22 0
A2 13 13 13 0 0.30 0 13 13 0 0.27 0
A3 16 16 16 0 3.30 0 16 16 0 3.64 0

B1 19 19 19 0 1.43 0 19 19 0 2.92 0
B2 22 19 22 13.6 300 0 21 22 4.5 300 0

C1 25 25 26 3.8 300 4 25 25 0 11.27 0
C2 27 26 27 3.7 300 0 27 27 0 170.29 0
C3 28 25 28 10.7 300 0 25 28 10.7 300 0
C4 41 31 46 32.6 300 12.19 33 42 21.4 300 2.43
C5 44 31 47 34 300 6.81 31 46 32.6 300 4.54
C6 49 34 51 33.3 300 4.08 33 57 42.1 300 16.32

D1 39 35 39 10.3 300 0 35 41 14.6 300 5.12
D2 50 37 54 31.5 300 8 37 58 36.2 300 16

E1 55 46 57 19.3 300 3.63 47 59 20.3 300 7.27
E2 77 44 100 56 300 29.87 49 90 45.6 300 16.88

F 75 59 78 24.4 300 4 59 79 25.3 300 5.33

Average - - 17.07 - 4.53 - - 15.83 - 4.62

Table 5: Numerical results of ILP models for MCT-PSDPP: MCT-3a & MCT-3b

From the results shown in the Fig. 9 and in both Tables 4 and 5, we can
make the following observations: (i) The four smaller instances (instances goes
from size 9×10 to 15×12) are easily solved by each of the proposed ILP models.
In contrast, none of the proposed ILP models is able to solve the nine bigger
instances with up to 20 input/output tiles. The quality difference between
the proposed ILP models is really visible with middle size instances (instance
B2, C1, and C2), which have been solved only by some models. (ii) the best
Gap results are with the MCT-1 model (average Gap: 2.14 %). However, both
MCT-3a and MCT-3b models (average Gap, respectively: 4.53 % and 4.62 %) are
not so far from MCT-1 model. (iii) The number of optimally solved instances is
a good quality indicator for ILP models. The proposed ILP models that solve
the most number of instances are MCT-1 and MCT-3b. (iv) The gurobi gap GGap

provide a value of the solving state. MCT-3b model gives the best GGap value
on our instance sets.

Fig. 9 shows a comparison of the last lower bound provided by Gurobi for
each of the five ILP models in terms of line plots. The results show that MCT-3b
is the tightest formulation for the MCT-PSDPP and that even if MCT-1 model
provides the best average Gap, it gives a weaker lower bounds than the other
three models (MCT-2b, MCT-3a and MCT-3b). The strength of the provided
lower bound is a major factor to prove optimality.

Analysis of the solution times: Fig. 10 shows a comparison of the solution
times of each of the five ILP models in terms of line plots.

As a general trend, we observed that both MCT-1 and MCT-2a are the slowest
to compute the solved instances. Furthermore, the three ones MCT-2b, MCT-3a
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Fig. 9: Comparison of the lower bound of models MCT-1, MCT-2a, MCT-2b,
MCT-3a and MCT-3b on the ToSP data-sets (Y are in either increasing)

Fig. 10: Comparison of the solution times (expressed in seconds) of models ,
MCT-2a, MCT-2b, MCT-3a and MCT-3b on the ToSP data-sets (Y are in either
increasing), where the second plot is a zoom-in of the dotted rectangle
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and MCT-3b have a similar behavior. This could be explained by the constraint
complexity analysis done before.

11.4 Experiments for Heuristics and Meta-heuristic methods

11.4.1 Computational results

The second set of results compares the makespan Cmax obtained by each of
our algorithms (Constraint Programming CP, Greedy algorithms ECM & CGM,
LocalSolver LS-standard & LS-split, Simulated Annealing SA and Beam
Search BS) and for each problem instance (described in section 11.2). The
results are given in Table 7 (on the ToSP data-sets) and Table 8 (on the
MMOpt kernels).

In theses tables, the first column Id refers to data sets, the second column
indicates the lower bound value lb on the makespan Cmax defined by the
maximum of lb1 and lb2 given by the two Equations 1 and 2 and the third
column shows the optimal makespan C∗max obtained by the CP model. We also
noted that both lb and C∗max are the same value in the case of MMOpt kernels
(see Table 5). Besides, they give, for each algorithm, the following parameters:

– C: the makespan Cmax value;
– G(%): the gap, expressed in percentage, calculated using the equality 50.

The last row in both Table 7 and 8 provides the average gains of the G(%)

parameter for all the kernels.
In the same way, Table 6 gives the average solution times (expressed in seconds)
taken by the different algorithms described in previous sections to solve ToSP
instances and MMOpt kernels.

Algorithm/Data-sets ToSP instances MMopt instances

CP 2.33 22.33

ECM �1 ≤1
CGM �1 42.33

LS-standard ≤60 14.91
LS-split 3.62 1.08

SA ≤1 '250

BS �1 ≤1

Table 6: Average CPU(s) of CP, heuristics, and meta-heuristics methods for
both ToSP and MMOpt data-sets

11.4.2 Convergence Analysis

We study the convergence of LocalSolver (for both models LS-standard and
LS-split), Simulated Annealing SA and Beam Search BS, that gives us an
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Id lb C∗max
CP ECM CGM LS-standard LS-split SA BS

C G(%) C G(%) C G(%) C G(%) C G(%) C G(%) C G(%)

A1 12 12 12 0 13 8.33 13 8.33 15 20 12 0 12 0 12 0
A2 12 13 13 0 13 8.33 14 7.69 16 18.75 13 0 13 0 13 0
A3 16 16 16 0 18 12.5 18 12.5 20 20 16 0 16 0 16 0
B1 19 19 19 0 22 15.79 20 5.26 22 13.6 19 0 19 0 19 0
B2 21 22 22 0 25 13.63 27 22.72 26 15.4 22 0 22 0 22 0

C1 23 25 25 0 29 16 29 16 28 10.7 258 0 25 0 25 0
C2 23 27 27 0 30 11.11 30 11.11 31 12.9 27 0 27 0 27 0
C3 24 28 28 0 32 14.2 31 10.71 32 12.5 28 0 28 0 28 0
C4 31 41 41 0 45 9.75 43 4.87 46 10.8 41 0 41 0 41 0
C5 37 44 44 0 48 9.09 48 9.09 49 10.2 44 0 44 0 44 0
C6 41 49 49 0 52 6.12 52 6.12 56 12.5 49 0 49 0 49 0

D1 34 39 39 0 46 19.44 45 15.38 47 17 39 0 40 2.56 39 0
D2 41 50 50 0 56 12 54 8 58 16 50 0 50 0 50 0

E1 46 55 55 0 59 7.27 59 7.27 62 12 55 0 55 0 55 0
E2 61 77 77 0 85 10.38 82 6.49 91 15.3 778 0 79 2.59 77 0

F 59 75 75 0 80 6.66 81 8 84 10.7 75 0 76 1.33 75 0

Average - 1.25 - 10 - 9.97 - 14.27 - 0 - 0.51 - 0

Table 7: Numerical results of CP, heuristics, and meta-heuristics methods using
ToSP data-sets for MCT-PSDPP (300-second runs)

Id Id/C∗max
CP ECM CGM LS-standard LS-split SA BS

C G(%) C G(%) C G(%) C G(%) C G(%) C G(%) C G(%)

1 257 257 0 257 0 257 0 257 0 257 0 257 0 257 0
2 257 257 0 257 0 257 0 257 0 257 0 257 0 257 0

3 177 177 0 179 1.13 187 5.65 191 7.3 177 0 188 6.21 177 0
4 225 225 0 226 0.44 238 5.78 281 19.9 225 0 235 4.44 225 0
5 361 361 0 361 0 364 0.83 388 6.9 361 0 363 0.55 361 0

6 147 147 0 154 4.76 153 4.08 154 4.5 147 0 153 4.08 147 0
7 114 114 0 126 10.53 136 19.30 114 0 115 0.87 125 9.64 114 0
8 245 245 0 252 2.86 263 7.35 256 3.9 245 0 250 1.62 246 0.8

9 1187 1187 0 1235 4.04 1323 11.46 1187 0 1192 0.42 1318 11.03 1187 0
10 2273 2273 0 2273 0 2423 6.6 2275 0 2273 0 2331 2.55 2273 0

11 878 878 0 949 8.09 917 4.44 878 0 890 1.36 1089 24.03 878 0
12 3354 3595 6 3638 8.47 3560 6.14 3354 0 3668 0.76 4394 31.01 3354 0

Average - 0.5 - 3.36 - 5.96 - 3.33 - 0.28 - 7.93 - 0

Table 8: Numerical results of CP, heuristics, and meta-heuristics methods using
MMOpt kernels for MCT-PSDPP (300-second runs)

upper bound, in terms of line plots. Since the Simulated Annealing SA uses
random values, we run it 10 times and get the average time where each Cmax is
reached in figures 11 and 12. Additionally, we observed that the SA reaches the
same quality solutions in approximately the same time (less than 10 seconds).
It is dominated by both the beam search algorithm and the “split LocalSolver
model”. We, therefore, only run it once on all the datasets we consider. We
show the convergence on two instances: instance E2 (from ToSP data-sets:
datE2) and Kernel 12 (from MMOpt kernels: Cameleon Sd), since the results
were similar for all instances.

11.4.3 Discussions

As illustrated in Tables 6 and 7, we can see that the Beam Search BS can solve
optimally all the instances in the ToSP benchmark (instances goes from size
9×10 to 40×60) in a few milliseconds. The second LocalSolver model LS-split
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Fig. 11: Convergence of LS-standard, LS-split, SA, and BS methods for in-
stance E2 (from ToSP data-sets: datE2)
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Fig. 12: Convergence of LS-standard, LS-split, SA, and BS methods for Ker-
nel 12 (from MMOpt kernels: Cameleon Sd)

also obtains very good results. Similarly, the Constraint Programming CP can
find the proof of optimality, except the instance E2 (we get the proof in 465
seconds). We noted that instances with a smaller density (like the instance
E2) take more time than denser ones (like the instance F). The Simulated
Annealing SA gives good results on most instances, with an average gap to the
C∗max of 0.51%. From Table 5, we can also see that the Cmax provided by the
two LocalSolver models (LS-standard, LS-split) is in average closer to the
value of lbCmax than the different values given by each of the other algorithms.
Both ECM and CGM algorithms provide relatively good upper bounds in a very
short computation time.
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In contrast, in the case of bigger instances of MMOpt (greater than 64×64
input/output tiles), we can see in both Table 8 and Table 6 that the Simulated
Annealing SA presents huge gaps (around 40% on some instances). On the other
hand, the Beam Search BS can find the optimal value for 11 instances in a few
milliseconds, except the 8th one (Polar kernel), where it gets stuck very close
to the optimal value (246 instead of 245). The Constraint Programming CP

gives the optimal Cmax for all instances in less than 22 seconds on average,
except the 12th one (Cameleon Sd kernel where we need 8000 seconds to find
the proof of optimality). We remark that the split model of LocalSolver overall
performs better than the standard model. Indeed, it can find the optimal value
on 8 over 12 instances, and for the 4 others, the gap is negligible (respectively
0.87%, 0.42%, 1.36%, and 0.76%). Finally, we obtain gaps of 3.36%, resp. 5.96%
for both ECM and CGM algorithms, they will still be able to provide relatively
good upper bounds even on big instances.

From both Fig. 10 and Fig. 11, we may find that (i) the Beam Search BS

finds optimal solutions in a few milliseconds (or on the only instance it does
not, it provides good solutions). (ii) the Simulated Annealing SA performs well
on small instances, but it is far behind big instances. (iii) the LocalSolver
standard model presents high gaps for most instances (around 20%). The split
version around less than 1.5%.

In summary, these numerical experiments show that the Beam Search
BS and the Constraint Programming CP perform better on both ToSP and
MMOpt benchmarks than all other proposed algorithms for solving the MCT-
PSDPP.

12 Conclusion and Future Work

In this paper, we studied a non-classical scheduling problem MCT-PSDPP
(Minimum Completion Time of 3-PSDPP). This problem is defined as a vari-
ant of the Job Shop Scheduling Problem with tooling constraints, in which
the completion time (makespan) is to be minimized. Diverse solution meth-
ods, including three mathematical programming models and four sets of al-
gorithms (Constraint Programming, LocalSolver, Simulated Annealing, and
Beam Search), have been applied to tackle this optimization problem. Com-
putational results on two sets of benchmarks have been reported and analyzed.
Globally, MIP models fail to find good bounds. In fact, the MCT-3b appears
to be more convenient than the other models. On the other hand, Constraint
Programming seems to be able to handle well this kind of problem. Besides,
the Beam Search algorithm seems to be an interesting choice since it finds
optimal solutions very quickly and can be implemented easily on embedded
vision systems.

Further research may focus on scheduling problems with other objectives
and/or other constraints related to some input parameters (i.e., prefetch time
α, computation time β, number of prefetches N , number of buffers Z, . . . ).
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