The Tight Game: Implicit Force Intervention in Inter-personal Physical Interactions on Playing Tug of War
Azumi Maekawa, Shunichi Kasahara, Hiroto Saito, Daisuke Uriu, Gowrishankar Ganesh, Masahiko Inami

To cite this version:

HAL Id: hal-03009636
https://hal.archives-ouvertes.fr/hal-03009636
Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The Tight Game: Implicit Force Intervention in Inter-personal Physical Interactions on Playing Tug of War

Azumi Maekawa†‡
azumi@star.rcast.u-tokyo.ac.jp

Shunichi Kasahara†‡
kasahara@star.rcast.u-tokyo.ac.jp

Hiroto Saito†
hiroto.saito@star.rcast.u-tokyo.ac.jp

Daisuke Uriu†
uriu@star.rcast.u-tokyo.ac.jp

Ganesh Gowrishankar§
gans_gs@hotmail.com

Masahiko Inami†
inami@star.rcast.u-tokyo.ac.jp

1 INTRODUCTION

Tight games, especially performed on sports, excite both players and audiences. Yet, boring games caused by huge differences of physical abilities between players never attract them. This research investigates how technology (artificially) dramatizes tight games, and empirically survey how both players enjoy the put-up games.

As references on our developments, realtime physically assisting technologies make ones succeed to play with physical motions [1, 2]. While the physical assistance enables to fill the gap of ability between players, however, the obvious ‘explicit’ interventions squeeze senses of being in control—the sense of agency—out of the players. Without the sense of agency, players will be discouraged to engage with a game, since they obviously noticed that the game is put-up by something (one). Applying previous knowledge, we challenge to artificially make a physical tight game or sport played by multiple people, carefully managing players’ sense of agencies.

We propose an implicit physical intervention system called The Tight Game for the ‘tug of war’ as an one-dimensional physical game. Our system includes four force sensors in the tug and two hidden high torque motors to provide realtime physical assistance. We designed the implicit physical assistance by leveraging human recognition of the external force in physical actions. In The Tight Game, one pair of players pulls the tug each other, and they believe that they are playing a well balanced tight game. But the system or even another person enables to mediate the game while the players will not recognize the physical interventions.
players pulls the tug and believe that they are having a tight game. But, the system or even another person enables to mediate the game while the players will not recognize the physical interventions.

2 THE TIGHT GAME SYSTEM
A unit of our system consists of 1) two pairs of force sensors on the handle (Fig. 2-3) connected with the rope, and 2) a high torque motor (Fig. 2-3) at the end of the rope, which are implemented in two sides of players. We adopt a large-diameter brushless DC (BLDC) motor with a low reduction ratio, because of its backdrivability and the high torque output. Those are connected to a main computer which controls the torque outputs according to the force sensor signals and the assistance rate for each player, mentioned later. We set the two motor units hidden from the players not to be aware of the presence of the physical assistance. In addition to the hardware units, the remote user interface (Fig. 1-2) is also provided for a mediator who allows to control and intervene in the game without being noticed by the players.

3 IMPLICIT FORCE ASSISTANCE DESIGN
Providing interventions not noticed by the players, we designed the realtime force assistance by leveraging forces fitting to humans’ recognition. Each motor output force Fm_i are described as:

$$Fm_i = Р_i f(F_s1 + F_s2) + Fc(i = 1, 2)$$

Here, $f(F_s1 + F_s2)$ defines the reactive force assistance depending on the pulling force between both sides, which is a non-linear processing. This induces the sense of force assistance for the players, because the processing keeps force assistance in the range of force by humans based on the Weber–Fechner law in the output force and the perceived force in muscle activity (e.g., [3]) Fc is the constant force to prevent a slack of the rope.

With this reactive force assistance, the system or/and the mediator can control the balance of the force assistance between two players by changing R_1 and R_2 (Here, $R_1 + R_2 = 1.0$). From our preliminary experiment, we found that naive (sudden) control of the assistance rate also resulted in clear discrimination of the existence of external force, since the weight of tug changes asynchronously with the players’ actions. Therefore, we also set players’ actions triggering to control the assistance rate. As depicted in Fig 3, the system detects the players’ impulse pulling with the difference within the pair of force sensor values. The actually applying assistance rates (R_1 and R_2) are gradually following the mediator’s input. Only when the player who will be assisted gives a big pull, the assistance rate will quickly update according to the mediator’s input.

4 EXPERIENCE AT SIGGRAPH 2020
A set of equipment is set at our booth. The attendees can choose to perform as a player (Fig. 1-1) or a mediator (Fig. 1-2, 3). The motor units (Fig. 2-3) will be hidden for the players who may not recognize if any intervention given or not. Even if just observing the game, the attendees can also enjoy seeing how a put-up tight game goes on. Our demonstration totally illustrates how the implicit force intervention works for a physical game: tug of war in this case.

ACKNOWLEDGMENTS
This work is supported by JST ERATO Grant Number JPMJER1701, Japan.

REFERENCES