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ABSTRACT

Context. Uranus is the only planet in the Solar System whose rotation axis and orbital plane are nearly parallel to each other. Uranus
is also the planet with the largest angle between the rotation axis and the direction of its magnetic dipole (roughly 59◦). Consequently,
the shape and structure of its magnetospheric tail is very different to those of all other planets in whichever season one may consider.
The only in situ measurements were obtained in January 1986 during a flyby of the Voyager II spacecraft. At that date, Uranus was near
solstice time, but unfortunately the data collected by the spacecraft were much too sparse to allow for a clear view of the structure and
dynamics of its extended magnetospheric tail. Later numerical simulations revealed that the magnetic tail of Uranus at solstice time is
helically shaped with a characteristic pitch of the order of 1000 planetary radii.
Aims. We aim to propose a magnetohydrodynamic model for the magnetic tail of Uranus at solstice time.
Methods. We constructed our model based on a symmetrised version of the Uranian system by assuming an exact alignment of the
solar wind and the planetary rotation axis and an angle of 90◦ between the planetary magnetic dipole and the rotation axis. We do
also postulate that the impinging solar wind is steady and unmagnetised, which implies that the magnetosphere is quasi-steady in the
rotating planetary frame and that there is no magnetic reconnection at the magnetopause.
Results. One of the main conclusions is that all magnetic field lines forming the extended magnetic tail follow the same qualitative
evolution from the time of their emergence through the planet’s surface and the time of their late evolution after having been stretched
and twisted several times downstream of the planet. In the planetary frame, these field lines move on magnetic surfaces that wind
up to form a tornado-shaped vortex with two foot points on the planet (one in each magnetic hemisphere). The centre of the vortex
(the eye of the tornado) is a simple double helix with a helical pitch (along the symmetry axis z) λ= τ[vz + Bz/(µ0ρ)1/2], where τ is
the rotation period of the planet, µ0 the permeability of vacuum, ρ the mass density, vz the fluid velocity, and Bz the magnetic field
where all quantities have to be evaluated locally at the centre of the vortex. In summary, in the planetary frame, the motion of a typical
magnetic field of the extended Uranian magnetic tail is a vortical motion, which asymptotically converges towards the single double
helix, regardless of the line’s emergence point on the planetary surface.

Key words. planets and satellites: magnetic fields – planet–star interactions – plasmas – magnetohydrodynamics (MHD) –
methods: analytical

1. Introduction

The magnetosphere of Uranus was traversed by the Voyager II
spacecraft on January 1986. Most of the planet’s parameters such
as the rotation period, the internal magnetic dipole strength, and
the orientation of the associated axis were discovered or refined
on that occasion (Ness et al. 1986; Desch et al. 1986; Bagenal
1992, 2013; Richardson & Smith 2003). Since then, we have
also learned that the solar wind impacting the magnetosphere
has a high Mach number and low β (the thermal pressure to
magnetic pressure ratio), with a typical sonic Mach number in
the range of 20–30 and β in the range of 0.1–0.2. These values
imply wind velocities largely in excess of the fast magnetosonic
speed with typical fast Mach numbers in the 6 to 12 range.
Voyager’s measurements also showed that the planet’s internal
magnetic dipole intensity is high enough to counter the solar
wind’s dynamic pressure. Uranus is thus surrounded by a mag-
netopause (the boundary between the solar wind flow and the
regions dominated by the planetary magnetic field) and by a bow
shock located upstream of the magnetopause. In the sub-solar
direction, the magnetopause and the bow shock are located at a

distance of ∼25RU and ∼30RU upstream of the planet’s centre
(RU is the radius of Uranus). Numerical simulations show that
the extended nightside Uranian magnetosphere is a particularly
complex one compared to the other planetary magnetospheres
in the Solar System. Such a complexity is due to both the large
angle of 59◦ between the planet’s rotation axis and a rotation
period fast enough (sidereal period: 17.24 h) to be comparable
to the magnetosphere’s relaxation time. The magnetosphere of
Uranus is thus highly variable on a daily timescale. In addition,
the planet’s rotation axis being nearly parallel with respect to
the orbital plane also makes the magnetosphere highly variable
on a seasonal timescale (with an orbital period of 84 yr). For
comparison, Saturn’s rotation and magnetic axis are aligned (see
e.g. Cowley 2013, Fig. 2), so under constant wind conditions
its magnetosphere is stationary, which is an enormous differ-
ence with respect to Uranus. Unfortunately, in situ measurements
of the Uranian magnetosphere are very sparse. Voyager II, the
only spacecraft having approached Uranus, only explored a small
portion of the planet’s magnetic tail of the order of ∼60 RU,
which is a scale much shorter than the characteristic spatial
oscillations of 103RU observed in the pioneering simulations by
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Tóth et al. (2004). Since that time, only a relatively small num-
ber of simulations have been published. The reasons are likely
the lack of new observational data for the simulations to be
confronted with and the exceptionally large simulation domain
required to capture the oscillations of the magnetic tail. As for
Tóth et al. (2004), all subsequent simulations are also based on
single or multi-fluid equations for equinox configuration (Cao &
Paty 2017; Griton et al. 2018) and solstice configuration (Cao &
Paty 2017; Griton & Pantellini 2020; Lai & Kiang 2020). It is
however worth mentioning that only in Tóth et al. (2004) is the
simulation domain large enough to allow for a fully developed
magnetic tail. This is also the case in the simulations by Griton
et al. (2018) and Griton & Pantellini (2020), where the authors
opted to accelerate the planet’s rotation in order to reduce the
spatial scale of the tail oscillation and thus the size of the simula-
tion domain. Cao & Paty (2017) and Lai & Kiang (2020) focused
on the dayside structure of the magnetosphere, which allows for a
small simulation domain but excludes the possibility to observe
the oscillations in the tail of the simulation, which is a central
aspect of the physical model we present in this study.

The physical model presented here is restricted to the case of
Uranus at solstice. In order to reduce complexity, while keep-
ing all the fundamental ingredients that make the specificity
of Uranus, we symmetrised the solstice configuration. First, we
increased the angle between the magnetic dipole and the rotation
axis from 59 to 90◦. Second, we aligned the planet’s rotation axis
and the solar wind direction, which are in reality separated by 7◦.
Finally, we postulate that the solar wind is not magnetised (as in
the Tóth et al. 2004 simulations) so that no magnetic reconnec-
tion is allowed in the model. Reconnection is be briefly discussed
at the end of this paper. A more in-depth discussion of the subject
can be found in the work by Masters (2014).

The paper is organised as follows. In Sects. 2 and 3, we com-
ment on the symmetries and the physical assumptions of the
model. In Sects. 4 and 5, we discuss the time evolution and the
twisting of a typical magnetic field line in the magnetospheric
tail. In Sect. 6, we give a crude estimate of the pole-to-pole elec-
tric current induced by the planet’s rotation. In Sects. 7 and 8,
we briefly comment on the model’s limits and speculate on the
generic case (with no symmetries). Conclusions are given in
Sect. 9.

2. A simplified configuration of the problem

In order to reduce the complexity of the real system and facilitate
insight, we assume that the planet’s rotation axis points in the
direction opposite to the solar wind direction. We also postulate
that the magnetic dipole of the planet is centred on the planet
and oriented perpendicularly to the rotation axis, as illustrated in
Fig. 1.

In addition to assuming a stationary solar wind, we also
assume that it does not carry any magnetic field. The wind is
therefore rotationally invariant with respect to the z-axis. Also,
in agreement with Voyager’s measurement, the wind is assumed
to be supersonic and the planetary’s internal field strong enough
to support an anti-sunward-oriented magnetopause as shown in
Fig. 1. We add that, during its flyby, Voyager II saw the magnetic
field intensity rise by one order of magnitude at the magne-
topause, providing an observational justification for neglecting
the magnetic field carried by the solar wind (see Ness et al.
1986). As there are no field lines in the wind, the magnetopause
can also be identified as the magnetic surface traced by the
outermost magnetic field lines connected to the planet.

Fig. 1. Symmetrised configuration of Uranus at solstice used in our
physical model. The rotation axis and solar wind flow are both aligned
on the z-axis. Ω is the planet’s angular velocity. The planetary field is
a dipole of strength M located at the centre of the planet and oriented
perpendicularly to the z-axis.

Fig. 2. Example of symmetries of system in Fig. 1. System is viewed
looking to the planet along the z-axis. Two mutually conjugate magnetic
field lines are shown, as well as two conjugate points (represented by the
two large yellow dots).

2.1. Symmetries of the simplified configuration

The system depicted in Fig. 1 has many interesting symmetries.
First, since the wind direction and the planet’s rotation axis are
aligned and since the former is rotationally invariant, the system
can be assumed to be time stationary in the rotating frame, at
least on timescales of the order of the rotation period. Second,
the system is invariant under successive application of the fol-
lowing actions: (1) a specular reflection with respect to a plane
containing the z-axis followed by (2) a specular reflection with
respect to another plane perpendicular to the first one and also
sharing the z-axis, followed by (3) a reversal of all charges in
the system. We note that action (3) corresponds to a symmetry
of the magnetohydrodynamic (MHD) system of equation, which
does not hold at small (kinetic) scales. In practice, the action
of reversing the charges in an MHD system corresponds to the
action of reversing the sign of all currents and magnetic fields in
the system.

2.2. Specificities of the simplified configuration

Figure 2, extracted from a 3D MHD simulation respecting the
symmetries of the configuration of Fig. 1, shows two field lines
that are mutually symmetric with respect to application of the
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three mentioned symmetry actions. For the remainder of the
paper, we call such pairs of field lines “conjugate field lines”,
and the points with reversed x and y coordinates are referred to as
“conjugate points” (large yellow points in the figure). We do not
list all consequences of the system’s symmetries. We do however
note that one important consequence is that only the z compo-
nent of the fluid velocity can be non-zero on the z-axis, which
also implies that magnetic field lines are not allowed to cross the
z-axis. Another consequence is that on conjugate points, the
z components of both the current and the magnetic field are
reversed, while the perpendicular components (with respect to
the z-axis) are equal. The exact contrary holds for the fluid
velocity.

3. Model assumptions

Besides the symmetries mentioned in the previous section, we
have to make some assumptions about the boundaries. These
are the magnetopause and the planetary surface. Concerning the
magnetopause, we assume it to be an impermeable surface. No
plasma from the wind can penetrate through the surface, which
is coherent with the assumption of no magnetic field in the wind.
On the other hand, the planetary surface is the only source or sink
of magnetic flux. As already mentioned, we assumed a dipolar
intrinsic planetary field, which we placed at the planet’s centre,
implying that field lines emerge at the planet’s magnetic equa-
tor. The plasma is governed by the equations of ideal MHD
everywhere except at the planet’s surface, where a finite con-
ductivity is assumed such that the foot points of the magnetic
field lines are allowed to move across the surface. Even though
the detailed structure of the magnetosphere may depend on the
boundary conditions, we assume that the latter are not critical in
shaping the distant tail structure and choose not to specify these
boundaries further. As for most plasmas in the solar system, the
interaction of the solar wind with a planetary magnetosphere can
be treated in the weakly relativistic limit. We therefore assume
that the plasma in our model is governed by the equations of
magnetohydrodynamic limited to first order in v/c, where v is
a characteristic velocity (fluid velocity or phase velocity), and
c the speed of light. Under such circumstances when changing
from one frame of reference to another (e.g., from the plane-
tary rotating frame to the inertial frame), velocities transform
according to the Galilean transformation rules. All other quanti-
ties (density, pressure, and magnetic field) are invariant. Finally,
on Uranus, the escape velocity from the planet’s surface is small
compared to the Alfvén speed. We therefore ignored gravity.

4. Trajectory of a magnetic field line

In a three-dimensional system, magnetic field lines can form
complex and interlaced structures. The difficulty of apprehend-
ing a complex three dimensional magnetic structure is even
greater in a case where the structure is a time-dependent one.
As already mentioned, the model, based on the symmetries of
Fig. 1, can be considered to be time stationary in the rotating
frame. Thus, in the following, unless specified otherwise, we
place ourself in the rotating frame. The downside of choosing
the rotating frame instead of the inertial frame is that in addi-
tion to the standard forces, which are the pressure gradient and
the Lorentz force, we have to take into account the Coriolis and
the centrifugal forces in the momentum equations (see e.g. Tóth
et al. 2004). In order to further facilitate the investigation of a

Fig. 3. Twisted field lines on Uranus at solstice. Points corresponding
to the intersection of two conjugate magnetic field lines with any plane
containing the z-axis are disposed symmetrically on each side of the
axis.

Fig. 4. Planetary (rotating) frame. Magnetic surfaces described by the
time evolution of two conjugate magnetic field lines (red and blue). Only
a portion of the surface described by the future evolution of the two
field lines is shown. We anticipate that the thick grey tubes show the
end positions of the field lines.

complex three-dimensional structure, it is sometimes instructive
to trace the motion of the intersection of the magnetic field lines
with a given plane. Figure 3 illustrates the case of the intersec-
tion of two conjugate field lines with the magnetic equatorial
plane. We note that due to the system’s symmetries, the inter-
section points of the conjugate field lines are always equidistant
from the z-axis, for any arbitrary plane that contains the z-axis.
The description of the time evolution of the intersecting points
of the magnetic field lines with the equatorial plane is one of
the main objectives of the present study (see Sect. 4.1). How-
ever, before proceeding to the formulation of a physical model
of the simplified version of the magnetosphere of Uranus at sol-
stice, it is worth mentioning another of its properties by noting
that field lines successively emerging at a given position on the
planet’s surface do all follow the exact same path. Obviously, all
these field lines together define a magnetic surface. An exam-
ple of a portion of such a magnetic surface described by the time
evolution of two conjugate field lines is shown in Fig. 4. Figure 4
illustrates a central aspect of the system: field lines move towards
an asymptotic position (the grey tubes located inside the mag-
netic surfaces). From the figure, one may already deduce that
the trajectory of the intersecting point of the field line with an
arbitrary plane is a spiral with the asymptotic position at its
centre.
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Fig. 5. Polar view in the rotating frame. Shown are the trajectory of the foot points of selected field lines in the ionosphere (one hemisphere only),
as well as the trajectory of the field lines’ intersection points with the equatorial plane. Blue and red correspond to mutually conjugate lines. The
grey tubes represent the asymptotic position of all field lines.

4.1. Trajectory on the planetary surface and in the (magnetic)
equatorial plane

Having assembled all the basic ingredients, and based on results
from numerical simulations, we are now in a position to propose
a coherent physical model of a Uranus-at-solstice-type magneto-
sphere. We start, in Fig. 5, with the presentation of a qualitative
sketch of the path of the field line crossing point in the equatorial
plane and the path of their foot points on the planetary surface.
We note that, as a consequence of the difference between the
velocity of a fluid parcel and the velocity of a virtual point, such
as the point corresponding to the intersection of a field line with
a plane, the pattern described by the projected fluid velocity can
be very different from the pattern described by the motion of a
virtual point, as in Fig. 5. This is namely the case for the mul-
tiple spiralling trajectories in the equatorial plane that are not
seen when tracing the projection of the fluid velocity. The rea-
son is that in some parts of the equatorial plane, for example
near position 2 in the figure, field lines are oriented nearly par-
allel with respect to the plane, in which case the velocity of the
intersection point and the fluid velocity differ substantially. On
the other hand, the projected fluid velocity and the velocity of the
intersection point coincide when the field line is perpendicular to
the plane. Of course, the path described by a field line depends
on the basic parameters of the problem (rotation period of the
planet, solar-wind dynamic pressure, planetary field strength,
etc.), but also on the position of its point of emergence on the
planetary surface. However, from the topological point of view,
all field lines behave as described in Fig. 5 as long as they do not
go back to the planet, an eventuality not shown on the figure.

We now comment more thoroughly in Fig. 5, where three
successive positions of a typical magnetic field line (in this case
the blue line) are labelled with numbers. At position 1, the foot
point of the line on the planetary surface and the crossing point
of the field line on the equatorial plane have already moved away
from their emerging point at the magnetic equator. Simply as a
consequence of its shape, which makes the emerging field line
parallel to the planetary surface, the foot point of an emerging
dipolar field line moves towards the pole. Obviously, the pole-
ward motion of the foot point does not simply follow a meridian
line as its motion is guided by various forces (pressure gradient,
Lorentz, Coriolis, and centrifugal) and by the properties of the

boundary. We note that a similar, but not symmetric poleward
motion affects the second foot point located below the equato-
rial plane. However, recalling the symmetries of the system (see
Fig. 2), we know that the shape of a given field line in the hidden
hemisphere is equal to the shape of the conjugate field line in the
visible hemisphere. Thus, in Fig. 5, the hidden part of the blue
line can be obtained by applying the transformations x→ −x and
y→ −y to the red line.

In order to keep things as simple as possible, even though
emerged field lines may disappear again through the plane-
tary surface, we only considered the case of field lines not
disappearing through the planet’s surface. The foot point of these
lines must then converge towards some asymptotic position near
the nominal magnetic pole. As all foot points move along spirals
that also represent the trace of the corresponding magnetic sur-
faces (which do not cross by definition), it follows that the field
lines must converge towards a common position represented by
the black square in Fig. 5. Because of the tailward bending of
the field lines, the asymptotic position is expected to be located
tailward of the nominal magnetic pole. Figure 5 suggests that an
asymmetric polar vortex in the ionospheric plasma circulation
has to be expected on Uranus. Distant observations of auroras
using the Hubble Space Telescope are become possible and may
be used as a tool to get access to the magnetic structure near the
magnetic poles Lamy et al. (2012, 2017). Unfortunately, besides
the fact that observed signals are quite faint and not sufficiently
sharp to offer further help, no distant observations have ever been
made at solstice. The next opportunity is in 2028, 42 yr after the
last occurrence in 1986.

We now take inspiration from past MHD simulations (see
e.g. Tóth et al. 2004; Griton et al. 2018) to understand the more
profound reason for the formation of the vortices in Fig. 5.
Indeed, one of the basic outcomes of these simulations is that the
tailward extending magnetic field lines wind helically around the
z-axis. This apparently trivial and intuitive result is an important
constraint for our physical model. Looking at Fig. 5, we note that
the only possible way to make the blue line in position 1 wind
around the z-axis is to stretch the visible part of the line over
both the pole and the z-axis until, guided by the magnetopause,
it crosses the equatorial plane near the point labelled 2. Once the
return point of the field line has disappeared below the equato-
rial plane, the line continues to be stretched and twisted by 180◦
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Fig. 6. Planetary rotating frame. Trajectories of the intersection point
of two conjugate magnetic field lines with a plane perpendicular to the
z-axis located downstream of the planet. Colours distinguish the tra-
jectory of two mutually conjugate lines. The large blue and red dots
indicate the position where the two conjugate lines cross the plane in
the first place.

before emerging at position 3, and so on. One should note that
all these movements are constrained by the prohibition of the
field line to intersect the z-axis. For completeness, the path of
the conjugate line (in red) is also shown in Fig. 5.

As pointed out earlier (see discussion in Fig. 4), the inter-
secting points of a field line with the equatorial plane are seen to
move on a spiral converging towards a final position given by the
intersecting points of the light grey tubes in Fig. 5. Thus, the two
(red and blue) field lines labelled 2 will gradually move towards
the leftmost grey tube in the figure, the upper strand of the blue
line labelled 2 will move towards the central grey tube, and the
blue line labelled 3 will move towards the rightmost grey tube.
We note that the polarity of the field lines converging towards
the position of the central tube (which is connected to the mag-
netic pole below the equatorial plane) is opposite with respect to
the polarity of the field lines converging towards the other visi-
ble portions of the grey tube (this portion being connected to the
visible pole).

4.2. Trajectory in a plane perpendicular to the z-axis

Figure 6 shows the trajectory of two conjugate field lines in a
plane perpendicular to the z-axis approximately positioned at the
z location and corresponding to the centre of a couple of vortices
in Fig. 5. The two points near the origin indicate the position
where the two field lines appear first, that is, at the time when the
field lines’ loop-return points reach the plane. As in the equato-
rial plane, after emergence, the two intersecting points of each
of the two conjugate field lines (the red and the blue line) move
on spiral shaped trajectories towards the asymptotic position at
the centre of the two vortices. Again, it may be worth pointing
out that the polarity (i.e. the z component of the magnetic field) is
opposite in the two vortices. We now make a few more comments
on Fig. 6. First, we note that at the position where the field lines
appear, the magnetic field is necessarily oriented perpendicularly
to the z-axis, so the field line velocity and the plasma velocity in
the z direction must be equal at this particular position. One of
the macroscopic consequences of this is that the whole magnetic
tail structure as seen from an inertial frame is seen to propagate
downstream of the planet at exactly the plasma speed at these

Fig. 7. A double helix in the magnetic tail of Uranus. Time asymptotic
position of a generic magnetic field line is a double helix with helical
pitch λ. Colour-code refers to the sign of Bz.

locations. Second, except in the region of acceleration near the
planet, the structure of Fig. 6 is representative for all positions
along the z-axis modulo a rotation about the z-axis.

5. Wavelength of the magnetic tail

As already mentioned, numerical simulations show that the mag-
netic tail of Uranus at solstice is spatially twisted downstream of
the planet (along the z-axis in our model). As distance from the
planet grows, the twist along the z-axis rapidly converges towards
a sharply defined spatial oscillation scale λ= 2π/k. In simula-
tions, the spatial oscillation may be best made evident by plotting
an “old” field line, meaning a field line that had time to become
twisted several times with respect to the position of its foot points
on the planet. Such a field line is located close to the centre of the
tornado (showing up as vortices in the cuts of Figs. 5 and 6) over
most of its length. An example of such a field line (the same as
the grey line in Fig. 4) is shown in Fig. 7. It is probably illusory
to search for an expression of the wavelength λ as a function of
the global parameters of the problem. On one side, even while
keeping within the strict limits of MHD theory and for the sim-
ple configuration of Fig. 1, the number of parameters required to
fully specify the problem is pretty large as it includes the wind
parameters (at least velocity, density, and pressure) as well as the
planetary parameters (at least the dipole field strength, the rota-
tion speed, and most likely the planetary radius). In addition, λ
may also depend on the conditions at the planetary surface such
as the ionospheric resistivity and the allowed mass flux from
or towards the planet. Expressing λ as a function of the global
parameters of the problem may be difficult or impossible, but
expressing λ as a function of the plasma parameters in the tail or
in some specific parts of is clearly conceivable. In this respect,
we already mentioned in Sect. 4.2 that the z component of the
plasma velocity near the field line turning point is equal to the
phase speed of the whole magnetic structure. Thus, a measure
of the velocity vz of the turning point of a field line allows us
to write λ= τvz where τ = 2π/Ω is the planet’s rotation period.
In the next section, we show that λ can also be expressed as a
function of the Alfvén speed measured near the centres of the
vortices described earlier.

5.1. Equilibrium of forces near the vortices’ centres

We now know that in the frame of our simplified configuration
of the Uranus-at-solstice magnetosphere, all field lines migrate
towards the same asymptotic position reminiscent of the eye of
an atmospheric tornado. In Fig. 8, a portion of the tornado’s eye
is represented as a tube. Since in the rotating frame the system
can be assumed to be in a quasi-steady state, we may write the
momentum equation as follows:

ρv · ∇v =−∇ptot + B · ∇B + 2ρu×Ω + ρDΩ2, (1)
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Fig. 8. Magnetic field line in tail of Uranus at solstice. In the planetary
(rotating) frame, field lines converge towards an asymptotic position
where they become motionless and where the fluid velocity and field
lines are aligned. It turns out that only the four mentioned terms of the
momentum equation (see Eq. (3)) ensure the equilibrium.

where ρ is the plasma mass density, ptot ≡ p + B2/2 the total
(plasma+magnetic) pressure, and D the vector pointing from the
z-axis to the point under consideration. To avoid confusion, we
name all terms in Eq. (1). On the left-hand side, we have the iner-
tial term, while on the right-hand side, we have, successively, the
pressure gradient term, the magnetic tension term, the Coriolis
term, and the centrifugal term. Also, in order to ease readabil-
ity, we set the vacuum permeability to µ0 = 1 in Eq. (1). Unless
specified otherwise, we adhere to this convention for the remain-
der of the paper. Equation (1) can be simplified further near the
vortex centre where the total pressure is expected to have an
extremum (as for the gas pressure in the centre of a cyclone),
so one may neglect the pressure gradient term in Eq. (1). In
addition, as illustrated in Figs. 5 and 6, field lines become static
when approaching the asymptotic positions implying that the
fluid velocity must become more and more aligned on the mag-
netic field. The asymptotic position being characterised by a
wavelength λ= 2π/k in the z direction and an excursion D with
respect to the z-axis we can then write

B⊥
Bz

=
v⊥
vz

= Dk, (2)

where the direction ⊥ has to be considered with respect to the
z-axis. Accordingly, Eq. ( 1) can be simplified and rewritten as

−ρkvzv⊥ =−kBzB⊥ − 2ρv⊥Ω + ρDΩ2, (3)

an equilibrium graphically illustrated in Fig. 8. Equation (3) has
a surprisingly simple general solution:

λ= τ(vz ± Bz/
√
ρ), (4)

where Bz/
√
ρ is the Alfvén speed in the z direction (not along

the field direction).

5.2. An aside on numerical simulations

Expression (4) with the + sign was tested by Tóth et al.
(2004), who found a significant discrepancy between estimate
of the right hand side of Expression (4), giving λ≈ 1300 RU
and the wavelength observed in their simulation λobs ≈ 900 RU.

The authors ascribe the discrepancy to a frictional interaction
between the solar wind plasma and the helical tail. Such an effect
cannot be excluded. However, besides the fact that the tailward
extension of their simulation domain was too small ( = 704 RU)
to contain one full wavelength λ, the other important point we
raise here is that, strictly speaking, Eq. (4) is only valid at two
particular positions in the (x, y) plane, that is, at the centre of the
vortices in Fig. 6. Instead, Tóth et al. (2004) evaluated the right-
hand side of Eq. (4) by taking averages of vz, Bz, and ρ across the
magnetic tail. Now, all simulations, including the ones by Tóth
et al. (2004) show that the plasma parameters vary considerably
in the (x, y) plane, even at large distances from the planet.

6. Order of magnitude estimate of the currents
induced by the rotation

The twisting and stretching of the magnetic field lines in the tail
do generate currents flowing to or from the polar regions in order
to close by flowing over the ionosphere. Taking jz ≈ B⊥/D as an
estimate of the average z component of the current at a posi-
tion, z, down the tail, where the torsion of the field lines by
the rotation is effective (e.g. at the position of the first vortex
in Fig. 5), we find (using (2) as an estimate for the average Bz

field) that jz ≈ kBz. Since all the magnetic field lines crossing
half of the surface delimited by the magnetopause in the (x, y)
plane of Fig. 6 (of order ∼πD2) stem from an area S surround-
ing one of the magnetic poles, it follows that jz ≈ kS Bp/(πD2),
where Bp is the surface field strength given by Bp = 2M/R3

U and
M being the planetary dipole strength (units T m3). The total cur-
rent flowing through a polar region is then Iz ≈ πD2 jz ≈ kS Bp,
where S Bp should be interpreted as the magnetic flux through
the planetary surface due to all field lines from one hemi-
sphere being sufficiently twisted to contribute to the current.
For Uranus, M = 3.9× 1017 Tm3, and simulations indicate that
λ= 2π/k≈ 103RU. The total current at one pole can thus be esti-
mated to be of the order Iz ≈ (S/πR2

U)× 1.9× 107A with a surface
ratio (S/πR2

U), which we may arbitrarily guess to fall within the
range of 10−1 to 10−3.

7. Limits of the model

The (inevitable) formation of magnetic vortices anchored on the
planet is a challenging aspect of the model. Indeed, a continuous
injection of magnetic field lines at the equator and a continu-
ous concentration of field lines at the centre of the vortices is
incompatible with the assumption of time steadiness given that
the field intensity in the vortices increases with time. One may
safely argue that the incoherence of the model is more concep-
tual than practical, at least if the characteristic timescale for the
flux concentration is long compared to the rotation period of the
planet. A steady-state Dungey-type cycle (Dungey 1961), where
magnetic flux emerges from the dayside planetary surface and
disappears through the nightside surface of the planet, could be
invoked. The problem is that the Dungey mechanism requires
reconnection through the magnetopause and may only be a solu-
tion if reconnection impedes the twisting of the magnetic field
lines. Such an eventuality (not allowed in our model, where the
interplanetary plasma does not carry any magnetic field) can-
not definitely be excluded for Uranus, as the duration of the
Dungey cycle is comparable to the rotation period of the planet
(e.g. Bagenal 2013). If, however, as simulations seem to sug-
gest, the twisting of the magnetic field lines is real, even for
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the relatively slowly rotating Uranus, another mechanism must
impede the vortical concentration of magnetic flux. The diffi-
culty stems from the fact that there is no evident way to limit
the vortical concentration of the magnetic flux other than by
stopping the emergence of magnetic flux, in which case the
only theoretically possible system would be a static one. On the
other hand, if one assumes (1) a rigorous steady state; (2) that
magnetic flux emerges through the planetary surface; and (3)
the formation of a twisted magnetic tail, then, a mechanism of
evacuation of the magnetic flux from the vortex centres must
necessarily operate. Such a mechanism implies the topological
reconfiguration of the stretched magnetic field lines approach-
ing the vortex centre to detach them from the planet. However,
a topological reconfiguration of a field line such as the one in
Fig. 7 is not easily imaginable in a globally steady state system.
Even a hypothetical reconfiguration through reconnection with
an outer magnetic field through the magnetopause seems unreal-
istic given that the asymptotic field lines are located deep inside
the volume delimited by the magnetopause (see Figs. 5 and 6).
A reconfiguration through self-reconnection appears unrealistic
for the same reasons, portions of a field line approaching the
asymptotic position with opposite Bz polarity being always sep-
arated by a large distance (in comparison to an ion’s Larmor
radius) either of order 2D in the tail (see Fig. 8) or of order
RU, near the magnetic foot points. Finally, despite appearances,
and the high degree of symmetry, the system is a complex one,
plagued with ill-defined boundaries, for which no stability anal-
ysis has ever been made, even within the restrictive frame of
ideal MHD. In addition, since the magnetic structure is nei-
ther axisymmetric nor periodic, we expect its global stability
properties to differ substantially from the well-documented sta-
bility properties of tokamak plasmas. One may consider that
the system is approximately axisymmetric in the vicinity of the
vortex centre (where magnetic flux slowly concentrates) with
a component of the flow velocity perpendicular to the axis of
the vortex. Under such circumstances, Goedbloed et al. (2004)
showed that the axisymmetric structure turns unstable as soon
as the flow velocity exceeds the slow mode velocity. Whether
or not this “trans-slow” instability plays a role in the reconfig-
uration process of a complex double helix magnetic tail cannot
be established without a more in-depth numerical or theoretical
stability analysis. It should be considered merely as one out of
many other possible ideal (and non-ideal) fluid instabilities that
may affect the system on the long timescale associated with the
concentration of magnetic flux near the asymptotic position.

The conclusion we draw at this point is that the model is
not compatible with a rigorous steady state. Catastrophic recon-
figurations on a yet undetermined timescale must be invoked.
Successive reconfigurations likely occur on a timescale of the
order of the time necessary to substantially increase the vortical
magnetic flux, but other external factors such as variations of the
solar wind dynamic pressure or of the interplanetary magnetic
field orientation (not considered in the model) may also play a
role in triggering the reconfiguration.

8. Speculative extrapolation to the general case

Our model is admittedly an oversimplification for Uranus. With
regard to what we learned about the planet after Voyager’s flyby
in January 1986 (see Ness et al. 1986), the most drastic simpli-
fication is the assumption of a 90◦ angle between the planetary
rotation axis and its magnetic dipole. While the consequences
of having reduced the angle between the rotation axis and the

solar wind direction from 7◦ to 0◦ are certainly minor, the conse-
quences of having increased the angle between the rotation axis
and the planetary magnetic field axis from 59◦ to 90◦ must be
considered. Clearly, the principal difference of the real configu-
ration with respect to the one in Fig. 1 is that with a 59◦ the two
magnetic poles are not equivalent in the real case, where one
magnetic pole is always on the dayside, while the other is always
on the nightside. The system is still time stationary in the rotating
frame, at least on not-too-long timescales, as discussed in Sect. 7,
and as long as no interplanetary field is assumed, but many of the
other symmetries exposed in Sect. 2.1 are lost. The simulations
by Tóth et al. (2004) who used the effective orientations (see
their Fig. 17) do indeed show that the symmetry between the
polarities of the stretched and twisted field lines is broken, espe-
cially in the vicinity of the planet. The main reason is that the
field lines emanating from the nightside pole have direct access
to the volume enclosed by the magnetopause downstream of the
planet, while the field lines emanating from the dayside pole
have to circumvent the planet first and therefore tend to run along
the magnetopause. Interestingly, their simulation also shows that
the asymmetry fades away rapidly downstream (over a distance
much shorter than λ), suggesting that the spiralling movement of
the magnetic field lines observed in our model may not apply
to the field lines emanating from the nightside pole but also
(to some extent) to the field lines emanating from the dayside
pole. Whether the spiralling motion drives the magnetic field
lines towards a curve as in our symmetric model (cf. Fig. 8),
or much more likely towards a surface, is a question that may be
investigated in new dedicated simulations.

The other important simplification of our model is the
unmagnetised wind assumption, which excludes the possibil-
ity of magnetic reconnection at the magnetopause. Magnetic
reconnection has been observed in simulations of a fast-rotating
Uranus-type magnetosphere in the same configuration as the
one of Fig. 1 except for the presence of a magnetised wind
(see Griton et al. 2018, Fig. 1). The consequence of reconnec-
tion in the sketches of Figs. 5 and 6 would be an “erosion” of
the outermost magnetic surfaces located near the magnetopause.
However, a complete reconnection-driven disruption of all mag-
netic surfaces surrounding the asymptotic position is much too
slow a process to be effective over distances of order λ down-
stream of the planet. For example, no significant erosion was
observed in Griton et al. (2018).

9. Conclusions

We present an MHD-based physical model for the magnetic tail
of a Uranus-type planet at solstice time. In order to limit com-
plexity and facilitate understanding, we based our model on a
symmetrised version of the Uranian system at solstice plunged
in a unmagnetised solar wind. Consequently, in our model, the
planet’s rotation axis is parallel with respect to the solar wind
direction, the (centred) planetary magnetic dipole is perpendicu-
lar to the rotation axis, and no magnetic reconnection is possible
at the magnetopause. Given these assumptions, a quasi-steady
state can be reached in the rotating planetary frame. The main
consequences we draw from the model are as follows: (1) mag-
netic field lines emerge near the magnetic equator, and their foot
points move on a spiralling path (see Fig. 5) towards a final
point located nightside of the nominal magnetic poles; (2) in
the planetary (rotating) frame, each spiralling field line describes
tornado-shaped magnetic surfaces (see Fig. 4); (3) the torna-
dos’ eyes are thus surrounded by a “millefeuille” of magnetic
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surfaces, one for each emergence point on the planetary surface;
(4) the two eyes are interlaced curves extending downstream of
the planet with a characteristic wavelength λ given by Eq. (4).
We note that the model implies a continuous accumulation of
magnetic flux in the eyes and is thus incompatible with a rig-
orous steady state. Therefore, in the long-term, the system is
expected to turn unstable and possibly subject to catastrophic
reconfiguration of its magnetic structure, even under constant
wind conditions.
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