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Abstract

Background: Complex human health conditions with etiological heterogeneity like Autism Spectrum Disorder
(ASD) often pose a challenge for traditional genome-wide association study approaches in defining a clear genotype
to phenotype model. Coalitional game theory (CGT) is an exciting method that can consider the combinatorial effect
of groups of variants working in concert to produce a phenotype. CGT has been applied to associate
likely-gene-disrupting variants encoded from whole genome sequence data to ASD; however, this previous approach
cannot take into account for prior biological knowledge. Here we extend CGT to incorporate a priori knowledge from
biological networks through a game theoretic centrality measure based on Shapley value to rank genes by their
relevance–the individual gene’s synergistic influence in a gene-to-gene interaction network. Game theoretic centrality
extends the notion of Shapley value to the evaluation of a gene’s contribution to the overall connectivity of its
corresponding node in a biological network.

Results: We implemented and applied game theoretic centrality to rank genes on whole genomes from 756
multiplex autism families. Top ranking genes with the highest game theoretic centrality in both the weighted and
unweighted approaches were enriched for pathways previously associated with autism, including pathways of the
immune system. Four of the selected genes HLA-A, HLA-B, HLA-G, and HLA-DRB1–have also been implicated in ASD
and further support the link between ASD and the human leukocyte antigen complex.

Conclusions: Game theoretic centrality can prioritize influential, disease-associated genes within biological
networks, and assist in the decoding of polygenic associations to complex disorders like autism.

Keywords: Coalitional game theory, Biological network, Shapley value, Game theoretic centrality, Autism spectrum
disorder
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Background
The advent of next-generation sequencing technologies
has rapidly decreased the cost of sequencing genomes
and increased the throughput exponentially, making it
possible to amass large amounts of data for conducting
genome-wide association studies (GWAS) [1, 2]. Despite
the abundance of high resolution genomic data, tradi-
tional GWAS approaches have faced mathematical and
computational challenges in identifying candidate genes
in diseases with complex genetic etiology.
Coalitional game theory (CGT) has been proposed as

a novel and powerful way to identify candidate genes
and assess their relevance to a given condition [3–5].
CGT studies the interaction of players–in our case genes–
involved in a game by evaluating the coalitions that form
and finding players that marginally contribute the most
on average. More recently, CGT has been applied to fully
sequenced genomes to assess the impact of groups of
variants on phenotype and has previously been used to
implicate likely gene disrupting (LGD) variants in Autism
Spectrum Disorder (ASD) [6, 7]. However, these previ-
ous applications are unable to combine a priori biological
knowledge like pathway information and autism genes of
interest.
Incorporating such biological information between

genes into analyses has improved the accuracy of predic-
tors through pathway-based feature selection and aided
genome-wide prediction of autism risk genes with limited
genetic evidence using a human-brain gene network [8, 9].
Exploring the topological properties of biological net-
works has also been proposed as a way to study the combi-
natorial effects of components in a biological system. For
instance, removing nodes from the protein-protein inter-
action network of integrin activation in human primary
leukocytes and measuring the change of centrality val-
ues successfully predicted the functional and regulatory
relevance of proteins in the network [10].
In this paper, we extend the CGT method imple-

mented in Gupta et. al (2017) by combining it with the
neighborhood-based game theoretic centrality measure
introduced in Cesari et al. (2017), allowing for the incor-
poration of a priori network knowledge [6, 11]. We apply
the method to 1965 children from 756 multiplex families
and find a network of candidate genes harboring variants
that likely interact to increase ASD risk.

Results
Game theoretic centrality genes
Table 1 lists the genes that were selected at the 0.05 thresh-
old for the game theoretic centrality analysis. 13 of the
48 genes in the second analysis overlap with CASh analy-
sis genes, suggesting that combining network information
does affect the relevance of a gene. Not surprisingly, the
first analysis, which mostly relies on the well annotated

Table 1 Table of selected genes

Analysis Genes

First Analysis A2M, NT5C1B, PGM1, ERCC1, H6PD, CCR5,
VNN1, OAS3, FAM187B, FOLH1, COL6A5,
ASB15, GALNT9, CYP2C19, PPIG, RAD52,

IFIH1, WWTR1, DNAH11, FSIP2, PIK3C2G,
GJE1, WDR63, SLC25A43, APOOL, HLA-B,
HLA-G, HLA-A, OPRM1, HLA-DRB1, TLR8, EGF,

PNLIPRP3, GRIA1, GUCY2F, LPL, CYP2D6,
COL4A6, IL12RB1, CYP2C18, GSTT2B, PSG3,
GLRA4, PSG1, GPR119, GPR142, ACYP2,
PPP1R3F

Second Analysis OR2T4, CTB-23I7.1, AP002856.6, SSPO,
OR6C1, BPIFB5P, RP11-573D15.1, SCRN3,
RP11-404K5.2, RP11-104E19.1, AC008703.1,
PEBP4,

CSAG1, LRRIQ1, OR4Q2, ERCC6L2, OR7E5P,
ZNF473, KRTAP13-2, AC007680.2, OR52B4,
AP000289.6, C11orf40, TMEM254-AS1,

AC023115.1, MUC19, NOS2P1, PDE4DIP,
VCX3A, RP11-780M14.1, CLECL1, GAB4,
CCDC7, ST3GAL6-AS1, ZNF586, OR5H8P,
PKD1L2,

OR4L1, MAGEE2, AC007317.1, ATP6AP1,
ATP6V1B1, OR51I2, RP11-613D13.4, GSDMB,
GUCY2F, GUCA1C, PRSS48

CASh A2ML1, AC008703.1, AC093911.1,
ALOX15P2, ATP13A5, BORA, BPIFB5P,
C12orf60, C3orf35, CARD8, CCDC26, CCDC7,
CDH15,

COQ10A, CTC-525D6.1, DUSP16, ERCC6L2,
FAM151A, FAM81B, FLG, GBGT1, HLA-K,
LGALS8, MAGEC3, MYCT1, OR2T4, OR4Q2,

OR6C1, OR8B3, RBAK-RBAKDN,
RP11-104E19.1, RP11-160N1.10,
RP11-404K5.2, RP11-56H2.2, RP11-618I10.2,
RP11-738O11.13,

SLC3A1, SSPO, TCP11, TRBV6-7, TRIM48,
UBXN11, YME1L1, ZNF99, AF196972.4,
AP002856.6, ATP6V1B1, C10ORF68,
CDRT15P1,

CTB-23I7.1, CTD-2130O13.1, CTD-2509G16.2,
GEN1, KRT43P, MDP1, MPRIP, NT5C1B,
OR4P4, OR5M10, OR5M11, OR8I2, PRIM2,

RP11-15E18.4, RP11-283G6.4,
RP11-705C15.2, SSXP3, VWA7

Table of genes that were selected using the three different analyses described in
the section, Game theory analyses

genes with corresponding protein product available in
STRING, does not rank pseudogenes highly.
Incorporating the protein-protein interaction network

led to genes that are biologically relevant to ASD and
have not been previously identified through CASh analy-
sis in Gupta et al. (2017). Mutation in X-linked ATP6AP1
has been shown to lead to immunodeficiency with cog-
nitive impairment [12]. GUCA1C and GUCY2F are both
in the pathway of signaling by GPCR, which has been
implicated in neurodevelopmental disorders including
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ASD and Fragile X syndrome [13]. PDE4DIP has been
identified as a putative target for brain-enriched miRNA,
where PDE4DIP is a homolog of CDK5RAP2, a gene that
has been linked to microcephaly [14].
We also ran commonly used centrality measures (degree

centrality, betweenness centrality, PageRank algorithm)
over the protein-protein interaction network. In order to
make a comparable comparison between other centrality
measures that only uses the connected graph and game
theoretic centrality, we removed all the isolated genes
ranked by game theoretic centrality. The ranking among
degree centrality, betweenness centrality, and PageRank
algorithm share close to 50% of the genes in pairwise
comparisons, but the number of shared genes with game
theoretic centrality is lower at around 10% to 20% as
shown in Fig. 1. Among these shared genes, game theo-
retic centrality selected genes that are not necessarily of
the highest rank in the other three measures. This sug-
gests that the game theoretic centrality method is a novel
centrality concept that incorporates trade-off between
connectivity and weights of nodes, highly ranking genes
that otherwise would not surface at the top. Furthermore,
among the genes uniquely identified by game theoretic
centrality at the highest 10% ranking, ATP6AP1, GUCY2F,
and GUCA1C emerge at the top. These genes are shown
to be previously implicated in ASD when game theoretic
centrality is compared to CASh analysis. The full list of
ranked genes can be found in “Additional File 1” under
“Supplementary information”.

Biological validation
In order to look for possible associations with ASD, we
cross-referenced the top ranking genes from the first and

second analyses with candidate ASD genes highlighted
through previous publications. In particular we compared
the top ranking game theoretic centrality genes with three
different sources of candidate ASD genes–a curated list
of known genes associated with ASD from Simon’s Foun-
dation Autism Research Initiative (SFARI), a set of genes
shown to be differentially expressed in blood and brain
tissues of individuals diagnosed with ASD known as the
Root 66 gene list, and a list of 69 genes harboring rare vari-
ants implicated for increased ASD risk [15–17]. GRIA1
is the only gene shared in both the first analysis and the
69 genes published in Ruzzo et al. (2019). Beyond look-
ing for overlaps between the gene sets, we searched for
protein-protein interactions between the game theoretic
centrality genes and the known high confidence genes
using STRING.
CASh analysis identified 9 genes with protein-protein

interaction with high confidence candidate genes in Gupta
et al. (2017). As shown in Fig. 2, the game theoretic
centrality method identified 6 genes–distinct from CASh
analysis genes–that have protein-protein interaction with
high confidence candidate genes. While game theoretic
centrality identified less genes with protein-protein inter-
action with candidate genes, 3 of the identified genes have
been implicated in ASD or other neurodevelopmental dis-
orders as shown in “Game theoretic centrality genes”. The
first analysis identified 39 genes that are in protein-protein
interaction with high confidence candidate genes.
We also checked for significant pathways in which the

top ranking game theoretic centrality genes were enriched
for using Reactome Pathway Browser (reactome.org), a
database of known pathways and biological processes [18].
Reactome identified 27 significant pathways for the genes

Fig. 1 Common top-ranking genes among the centrality measures. Each element of the matrix represents the number of genes shared at the top
10% (left matrix) and 20% (right matrix) ranking between two centrality measures in comparison. The complete list of genes ranked by the various
centrality measures can be found in “Additional File 1” under “Supplementary information”
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Fig. 2 Graph of protein-protein interactions between game theoretic centrality genes and high confidence ASD genes. Node color: first analysis
(purple), second analysis (green), SFARI (blue), 69 genes from Ruzzo et al. 2019 (yellow), Root 66 (red)

underscored through the first and second analyses of
which the following pathways have been implicated in
ASD in the past: Immune system (FDR = 2.15 × 10−15),
endosomal pathway (FDR = 2.15 × 10−15), cytokine sig-
naling in the immune system (FDR = 2.15 × 10−15),
olfactory signaling pathway (FDR = 4.72 × 10−2), and
insulin receptor recycling (FDR = 7.06 × 10−2) [19–24].
Four of the genes ranked in the first analysis, HLA-A,

HLA-B, HLA-G, and HLA-DRB1 belong in the human
leukoctye antigen (HLA) complex and have been pre-
viously implicated in ASD [25]. HLA class I molecules
have been shown to play a role in neural development
and regulate activity-dependent refinement and plasticity
[26, 27]. HLA-DRB1 has been linked with increased ASD
risk possibly through gastro-intestinal and gut-brain axis
dysregulation [28, 29].
Apart from the genes in the HLA complex, two of

the ranked genes individually have been associated with
ASD or other neurodegenerative diseases. For OPRM1,
a monogenic mouse model experiment has shown that
disrupting the mu-opiod receptor signaling can induce

autistic behaviors in mice [30]. A2M is known to mediate
the clearance of amyloid-beta, a protein product com-
monly elevated in individuals with Alzheimer’s disease
[31]. Examining the postmortem brains of individuals
diagnosed with ASD has shown abnormal accumulation
of the amyloid-beta protein compared in the postmortem
brains of neurotypical individuals [32].

Discussion
We demonstrated that game theoretic centrality can
uncover genes that may play an integral role in the com-
plex regulatory activity of a network of genes in the con-
text of ASD. Game theoretic centrality preferentially ranks
genes that are connected to a large number of genes that
themselves do not have many neighbors. Figure 2 shows
that 39 genes from the first analysis and 6 genes from
the second analysis have direct protein-protein interac-
tions with high confidence ASD genes. This suggests that
harboring variants in the high ranking game theoretic cen-
trality genes may interact with the high confidence ASD
genes through a regulatory framework. Note, however,
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that the approach may rank highly connected genes at
the top that are in turn more likely to interact with the
high confidence ASD genes by chance. Performing path-
way analysis also showed that the top ranking genes are
enriched in pathways of biological functions that have
been previously linked with ASD, further corroborating
the potential effect of these genes.
This study is limited to well-annotated protein-coding

genes where gene to gene interaction networks like co-
expression and protein-protein interaction data are avail-
able to build graphs. With mounting evidence for the
importance of non-coding region in the genetic etiology of
disorders like ASD, it is necessary to incorporate ways to
include non-coding sequences in the analysis, allowing the
exploration of interactions between the coding and non-
coding space. In future works, game theoretic centrality
can also be applied to computable networks representing
various biological systems apart from protein level inter-
actions and expanded to other curated databases. More
functional studies of the top ranked genes are needed to
further evaluate the role of these genes in ASD.

Conclusion
In this study, we extended the analysis performed inGupta
et. al (2017) by applying a game theoretic centrality mea-
sure based on Shapley value to rank genes by their rele-
vance to a condition. While the previous work focuses on
the frequency of co-alteration of LGD mutations, we cre-
ated a framework to integrate known biological networks
independent of the data set to the analysis. Both studies
aim to take into account the combinatorial interactions
between genes beyond the effect of each individual gene
to a given phenotype that classical GWA studies gener-
ally target. We showed that game theoretic centrality and
neighborhood-based relevance index can select candidate
genes that have been associated with ASD suggesting that
highly ranked genes that have not been previously linked
with ASD may also play a critical role.
Game theoretic centrality, characterized by its capac-

ity to capture combinatorial interaction between genes
and integrate a priori knowledge, is a compelling tool for
prioritizing candidate genes. Unconventional and novel
approaches like game theoretic centrality can ultimately
contribute to the development of translational research
and facilitate the discovery of clear biomarkers for com-
plex human health conditions like ASD.

Methods
Coalitional game theory
Coalitional game theory aims to model the interaction of
players in a game and various ways to allocate the payoff
among the players, or to measure their importance. More
formally, a coalitional game is defined as a pair (N , v),
where N is a finite set (of players) and v : 2N → R

represents a characteristic function that maps a positive
real-valued number v(T) ∈ R to each coalition T ⊆ N
(we assume v(∅) = 0 and v(N) = 1). The Shapley value is
a popular solution for such coalitional games, commonly
employed across various disciplines like economics and
political science [33]. The Shapley value φi(v) of a player
i ∈ N in v is defined as its average marginal contribu-
tion across all possible permutations of players, and is
computed as follows:

φi(v) =
∑

T⊆N ,i∈T

(|N | − |T |)! (|T | − 1)!
|N |!

(
v(T) − v(T \ {i}))

(1)

where v(T) − v(T \ {i}) is the marginal contribution of
player i to coalition T, with T ⊆ N and i ∈ T , and
(|N |−|T |)!(|T |−1)!

|N |! is the probability that player i joins coali-
tion T \ {i} according to a mechanism that randomly
selects (with a uniform probability distribution) a permu-
tation of the elements of N.

Microarray game
Let B ∈ {0, 1}n×m be a binary matrix with N =
{g1, g2, ..., gn} genes and S = {s1, s2, ..., sm} samples (with
the convention that Bij = 1 represents the presence of a
feature such as abnormal expression or the presence of a
loss of function mutation for a given gene gi ∈ N and sam-
ple sj ∈ S, whereas Bij = 0 represents the absence of such
feature) [6, 34]. Given a coalition T ⊆ N , consider the
unanimity game (N ,uT ) defined such that

uT (W ) =
{
1, if T ⊆ W
0, otherwise

for any W ⊆ N . Introduced in the paper Bonassi et. al
(2007), a microarray game is a coalitional game (N , v∗)
based on the binary matrix B and a characteristic function
expressed in terms of a linear combination of unanimity
games,

v∗(T) = 1
|S|

∑

j∈S
uMj(T) = |j ∈ S : Mj ⊆ T |

|S| (2)

where Mj ⊆ N is the set of genes with present features
(Bij = 1) for j ∈ S and each column is a unanimity game.
v∗(·) measures the frequency of the genes in coalition T
showing the same properties across experiments or sam-
ples. For example in Fig. 3, the value of coalition g1, g3 is
given by v∗(g1, g3) = 2

3 .
Computing the Shapley value can become computation-

ally intractable as the number of players N increases and
must iterate through all 2N coalitions. The paper Bonassi
et al. (2007) introduces an approach to calculate the Shap-
ley value φ(v∗) for each player i ∈ N in polynomial time,
reducing relations (1) and (2) to
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Fig. 3 Example 4x3 binary matrix. 4 × 3 binary matrix representing 4
genes and 3 samples

φi(v∗) =
∑

j∈S

Rij

|S| (3)

where,

Rij =
{

0, if Bij = 0
1

|Mj| , otherwise

for any gi ∈ N and sj ∈ S. For the microarray game defined
on the boolean matrix of Fig. 3, genes g1, g2, g3, g4 get the
following Shapley values using relation (3),

( 3
9 ,

1
9 ,

4
9 ,

1
9
)
. g2

and g4 have the same pattern and consequently get the
same value.

Game theoretic neighborhood-based relevance index
The graph 〈N ,E〉 is a network where N represents a set of
genes and E a set of edges connecting the genes. An edge
{gk , gl} ∈ E between two nodes describes an interaction
between the two genes gk , gl ∈ N (to avoid cumbersome
notations, later we will denote an edge {gk , gl} as gkgl). The
parameter vector k ∈ RN assigns a weight based on a
priori knowledge for each of the genes i ∈ N . If each ele-
ment of the parameter vector k is set to 1, then each of the
nodes are weighted equally and no a priori knowledge is
incorporated into the graph. The coalitional game corre-
sponding to the graph 〈N ,E〉 is defined by

(
N , vkE

)
where

the characteristic function is defined as,

vkE(T) =
∑

j∈T∪NT (E)

kj (4)

where NT (E) is set of nodes that are adjacent to the nodes
in T ⊆ N . For any coalition T ⊆ N , vkE(T) takes the sum
of all the a priori weights kj for j ∈ T∪NT (E). For example,
in Fig. 4, suppose each node has a weight of ki = 1, for

Fig. 4 Example network. A graph of 14 vertices (genes)
N = {g1, g2, ..., g14} and 11 edges (respective biological interactions)

each i ∈ N , then the value of the coalition T = {12, 13, 14}
is vkE({T}) = 4, as T ∪ NT (E) = {11, 12, 13, 14}.
Similar to computing the Shapley value φ(v∗) for

microarray games, the Shapley value φ
(
vkE

)
becomes

computationally intractable with growing number of play-
ers introduced in the game using the classical Shapley
value formula in relation (1). The paper Cesari et al. (2017)
axiomatically characterizes the Shapley value on the class
of games defined by relation (4) and proves for each player
i ∈ N the Shapley value φ

(
vkE

)
can be computed in

polynomial time using the following equation,

φi
(
vkE

)
=

∑

j∈(Ni(E)∪{i})

kj
degj(E) + 1

(5)

where degj(E) is the degree of node j, i.e the cardinality
of the set of edges E connected to node j, and Ni(E) is
the set of nodes connected to i [11]. For the network
depicted in Fig. 4, the vector of genes’ centrality values
assuming ki = 1 for all i ∈ N and using relation (5) is( 62
60 ,

65
60 ,

90
60 ,

117
60 ,

50
60 ,

45
60 ,

45
60 ,

42
60 ,

42
50 ,

42
60 ,

50
60 ,

80
60 ,

50
60 ,

60
60

)
. Note

that a gene will achieve a higher score if the node is
connected to many nodes that themselves have a small
number of neighboring nodes. For instance, while g1 is
more central in the network, g4 which is connected to
3 nodes that themselves do not have neighbors has a
greater score. Removing the edges incident to g1 from
the network would cause the component containing 1
to split into four components with one isolated com-
ponent, {{g1}, {g3, g6, g7}, {g2, g5}, {g4, g8, g9, g10}}. While
removing the edges incident to g4 would split the same
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component into five components {{g4}, {g8}, {g9}, {g10},
{g1, g2, g3, g5, g6, g7}}, and this would leave four compo-
nents isolated, consequently affecting the regulatory
activity of more genes. More examples can be found in
the paper Moretti et al. (2018) comparing game theoretic
neighborhood-based relevance index to other com-
monly employed centrality measures such as degree and
betweenness centrality.

Game theoretic centrality: a combined approach
Microarray games have been used to rank genes based on
the frequency of specific coalitions across samples given
an observed data of microarray experiments, taking into
account the interaction of genes within coalitions with
equal weight. By incorporating microarray game results
into game theoretic neighborhood-based relevance index
as defined by relation (5) through the parameter vector
k ∈ RN , we can take into account for known biolog-
ical interactions that have been studied extensively and
give more weight to certain coalitional interactions. As a
consequence, outliers that are unlikely due to true gene
interactions, but rather random associations that can be
attributed to chance, can be removed. Consider amicroar-
ray game (N , v∗) corresponding to the binarymatrix B14×5

presented in Fig. 5. Let each row of B represent a gene in
N = {1, 2, ..., 14} and each column represent an individ-
ual. The value B12 = 1 indicates that second individual
has at least one loss of function mutation in gene 1. Com-
puting the Shapley value from the binary matrix using
relation (3) yields the ranking shown in Table A of Fig. 6. It
is possible for a gene with low Shapley value on microar-
ray games to play a critical role in the regulatory activity
of a group of genes with high Shapley values. In addition
to the microarray game from the binary matrix, now con-
sider the game

(
N , vkE

)
corresponding to the graph 〈N ,E〉

shown in Fig. 4. Instead of setting the parameter vector
k to a vector of ones, we assign the microarray Shapley
values (φ1 (v∗) ,φ1 (v∗) , ...,φ14 (v∗)) to k. Computing the
game theoretic centrality using relation (5) results in the
ranking shown in Table B of Fig. 6. Notice that gene 4 and
gene 12 were initially ranked low based on the results from
the microarray game; however, once the Shapley values
are incorporated into game theoretic centrality as node
weights, gene 4 and gene 12 rise towards the top. While
gene 4 and gene 12 have low microarray Shapley values,
they are connected to multiple genes that themselves do
not have neighboring genes as shown in Fig. 4. In contrast,
gene 14 retains the same rank despite being disconnected
from the graph. Gene 14 does not have a direct interac-
tion defined by the network, but the empirical evidence
for synergistic effect captured by the microarray game
maintains a high score and suggests a potential unknown
interaction important in regulating this group of genes.
This example demonstrates the motivation for combining

Fig. 5 Example 14x5 binary matrix. 14 × 5 binary matrix representing
14 genes and 5 samples

the two games and their respective Shapley values in a
single measure that better represents the effective over-
all connectivity of a gene in a network. The combined
approach provides a novel mechanism for balancing the
relevance of a gene to a phenotype from empirical data as
well as known biological models.

Data preprocessing
We applied game theoretic centrality to 30x cover-
age whole genome sequencing data from the Hartwell
Foundation’s Autism Research and Technology Initiative
(iHART). The iHART initiative is a collaborative effort to
amass fully sequenced genomes of multiplex families with
two or more children diagnosed with autism. Specifically,
we analyzed 1,965 genomes–1,616 children diagnosed
with ASD and 349 unaffected children–and removed all
non-Mendelian mutations to exclude de novo mutations
and possible sequencing artifacts, which may lead to spu-
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Fig. 6 Example gene ranking. Table A. (left) shows the gene ranking based on microarray game. Table B. (right) shows the gene ranking based on
game theoretic centrality with microarray Shapley values as weights. The genes are sorted by highest (top) to lowest (bottom) score

rious signals. We further filtered for genes with highest
predicted impact–likely gene disruption (LGD)–and only
included loss-of-function mutations with high haplotype-
aware consequences (CSQ impact). We encoded these
genomes into two binary matrices Bcase and Bcontrol, where
1 represents the presence of at least one homozygous
alternate LGD loss-of-function mutation or a compound
heterozygous variant for a given gene, and 0 for refer-
ence. These preprocessing steps reduced the total num-
ber of genes from 13,853 to 965 genes, leading to final
binary matrices with the dimension of 965 genes by 1,965
genomes. We then generated a protein-protein inter-
action network with the genes included in the binary
matrices using STRING database V11 (string-db.org) [35].
STRING is a comprehensive database of known and pre-
dicted physical and functional protein-protein interac-
tions obtained through multiple data sources including
experimental evidence and text-mining. We filtered for
interactions with confidence score ≥ 0.6, where a con-
fidence score of 0.4 is considered medium confidence
for a true interaction and 0.7 high confidence, producing
a graph 〈N ,E〉 with 965 vertices (genes) and 273 edges
(protein-protein interactions). A slightly lower threshold
of 0.6 was chosen to populate the graph with sufficient
number of edges. The change in confidence score does not
affect the rankings of the gene at the top five percent level
for the game theoretic centrality method.

Game theory analyses
For the first analysis, we apply game theoretic neigh-
borhood-based relevance index without any a priori
knowledge, i.e. k = {1, 1, ..., 1}, to the protein-protein
interaction network of 965 genes using relation (5). We

select the top five percent of genes with highest game
theoretic centrality score.
For the second analysis, we apply game theoretic

centrality with a priori weights as described in the
“Game theoretic centrality: a combined approach” section
using relation (5) and parameter vectors derived from the
case and control binary matrices using relation (3). This
produces two sets of ranking, each for case and control.
For each gene i ∈ N , we consider the absolute difference of
the game theoretic centrality value between the case and
control ranking,

δi = abs
(
φi

(
vcaseE

) − φi
(
vcontrolE

))
(6)

where the parameter case corresponds to the Shap-
ley vector computed according to relation (3) on the
microarray game defined over the case binary matrix, and
control is the Shapley vector computed according to rela-
tion (3) on the microarray game over the control binary
matrix. Figure 7 visualizes the game theoretic centrality
approach applied to the whole genomes. The second anal-
ysis is similar to Comparative Analysis of Shapley Value
(CASh) analysis introduced inMoretti et. al (2008), in that
they both rank the genes based on the absolute differ-
ence of the scores between the case and control group.
More specifically, CASh analysis computes themicroarray
game Shapley value between case and control group and
selects the genes through a bootstrapping based multiple
hypothesis testing procedure, thereby combining Shapley
value with statistical significance. The paper Gupta et. al
(2017) describes how CASh analysis was applied to the
binary matrices of LGD variants described in the “Data
preprocessing” section to select ASD candidate genes.
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Fig. 7 Game theoretic centrality flow diagram. Flow diagram, beginning from the whole genome sequence data to ranking genes using game
theoretic centrality

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-03693-1.

Additional file 1: Full list of genes ranked by game theoretic centrality,
degree centrality, betweenness centrality, and PageRank algorithm.

Abbreviations
GWAS: Genome-wide association study; ASD: Autism spectrum disorder; CGT:
Coalitional game theory; LGD: Likely gene disrupting; CASh: Comparative
analysis of Shapley value; HLA: Human leukocyte antigen

Acknowledgments
Not Applicable.

Authors’ contributions
MWS, SM, DPW designed the concepts and led the writing, JYJ, KP, NS, MV, BC,
PW, DPW participated in the analysis and interpretation of the results, all
authors participated in the editing of the manuscript, DPW provided project
direction. All author(s) read and approved the final manuscript.

Funding
This work was supported in part by funds to DPW from the National Institute
of Health (1R01EB025025-01 and 1R21HD091500-01), the Hartwell Foundation,
Bill and Melinda Gates Foundation, Coulter Foundation, and program grants
from Stanford’s Human Centered Artificial Intelligence Program, Precision
Health and Integrated Diagnostics Center, Beckman Center, Bio-X Center,
Predictives and Diagnostics Accelerator Spectrum, the Wu Tsai Neurosciences
Institute Neuroscience: Translate Program, Stanford Spark, and the Weston
Havens Foundation. Funders played no role in the study design or execution.

Availability of data andmaterials
The datasets generated and/or analyzed during the current study are available
in the Hartwell Autism Research and Technology Initiative (iHART) repository
upon approval by the Data Access Committee. http://www.ihart.org/access

Ethics approval and consent to participate
The University of California Los Angeles and Stanford University Institutional
Review Boards designated this study as “Not human subjects research” and
therefore exempt from review; this was due to the study being limited to
previously-existing coded data and specimens.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biomedical Data Science, Stanford University, Stanford, USA.
2Department of Pediatrics, Stanford University, Stanford, USA. 3LAMSADE,
CNRS, Université Paris-Dauphine, Université PSL, Paris, France. 4Department of
Neuroscience, Stanford University, Stanford, USA. 5Department of Computer
Science, Stanford University, Stanford, USA. 6Department of Bioengineering,
Stanford University, Stanford, USA. 7Department of Psychiatry and Behavioral
Sciences, Stanford University, Stanford, United States.

Received: 6 December 2019 Accepted: 21 July 2020

References
1. Metzker ML. Sequencing technologies - the next generation. Nat Rev

Genet. 2010;11(1):31–46.
2. Tucker T, Marra M, Friedman JM. Massively Parallel Sequencing: The Next

Big Thing in Genetic Medicine. Am J Hum Genet. 2009;85(2):142–54.
3. Moretti S, Patrone F, Bonassi S. The class of microarray games and the

relevance index for genes. Top. 2007;15:256–80.
4. Moretti S, Athanasios VV. An overview of recent applications of Game

Theory to bioinformatics. Inf Sci. 2010;180(22):4312–22.
5. Esteban FJ, Dennis PW. Using game theory to detect genes involved in

Autism Spectrum Disorder. Top. 2011;19.1:121–29.

https://doi.org/10.1186/s12859-020-03693-1
http://www.ihart.org/access


Sun et al. BMC Bioinformatics          (2020) 21:356 Page 10 of 10

6. Gupta A, Sun MW, Paskov KM, Stockham NT, Jung JY, Wall DP.
Coalitional game theory as a promising approach to identify candidate
autism genes. Pac Symp Biocomput. 2018;23:436–47.

7. Sun MW, Gupta A, Varma M, Paskov KM, Jung JY, Stockham NT, et al.
Coalitional Game Theory Facilitates Identification of Non-Coding Variants
Associated With Autism. Biomed Inform Insights. 2019;11:1–6.

8. Sokolov A, Carlin DE, Paull EO, Baertsch R, Stuart JM. Pathway-Based
Genomics Prediction Using Generalized Elastic Net. PLOS Comput Biol.
2016;12(3):e1004790.

9. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, et al.
Genome-Wide Prediction and Functional Characterization of the Genetic
Basis of Autism Spectrum Disorder. Nat Neurosci. 2016;19(11):1454–1462.

10. Scardoni G, Montresor A, Tosadori G, Laudanna C. Node Interference
and Robustness: Performing Virtual Knock-Out Experiments on Biological
Networks: The Case of Leukocyte Integrin Activation Network. PLoS ONE.
2014;9(2):e88938.

11. Cesari G, Algaba E, Moretti S, Nepomuceno JA. A Game Theoretic
Neighbourhood-Based Relevance Index. Stud Comput Intell Complex
Netw Appl. 2017;6:29–40.

12. Jansen EJ, Timal S, Ryan M, Ashikov A, van Scherpenzeel M, Graham LA,
et al. ATP6AP1 Deficiency Causes an Immunodeficiency with
Hepatopathy, Cognitive Impairment and Abnormal Protein Glycosylation.
Nat Commun. 2016;7:1–13.

13. Jong YI, Harmon SK, O’Malley KL. Intracellular GPCRs Play Key Roles in
Synaptic Plasticity. ACS Chem Neurosci. 2018;9(9):2162–72.

14. Sarachana T, Zhou R, Chen G, Manji bHK, Hu VW. Investigation of
Post-Transcriptional Gene Regulatory Networks Associated with Autism
Spectrum Disorders by MicroRNA Expression Profiling of Lymphoblastoid
Cell Lines. Genome Med. 2010;2(4):23.

15. Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss
LA, et al. SFARI Gene 2.0: a Community-Driven Knowledgebase for the
Autism Spectrum Disorders (ASDs). Mol Autism. 2013;4(1):36.

16. Diaz-Beltran L, Esteban FJ, Wall DP. A Common Molecular Signature in
ASD Gene Expression: Following Root 66 to Autism. Transl Psychiatry.
2016;6(1):e705.

17. Ruzzo EK, Perez-Cano L, Jung J, Wang LK, Kashef-Haghighi D, Hart C, et
al. Inherited and De Novo Genetic Risk for Autism Impacts Shared
Networks. Cell. 2019;178(4):850–66.

18. Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V,
et al. Reactome Pathway Analysis: a High-Performance in-Memory
Approach. BMC Bioinformatics. 2017;18(1):142.

19. Bjørklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, et al.
Immune dysfunction and neuroinflammation in autism spectrum
disorder. Acta Neurobiol Exp. 2016;76(4):257–68.

20. Meltzer A, Water JV. The Role of the Immune System in Autism Spectrum
Disorder. Neuropsychopharmacology. 2016;42(1):284–98.

21. Patak J, Zhang-James Y, Faraone SV. Endosomal System Genetics and
Autism Spectrum Disorders: A Literature Review. Neurosci Biobehav Rev.
2016;65:95–112.

22. Goines PE, Ashwood P. Cytokine Dysregulation in Autism Spectrum
Disorders (ASD): Possible Role of the Environment. Neurotoxicol Teratol.
2013;36:67–81.

23. Ashwin C, Chapman E, Howells J, Rhydderch D, Walker I, Baron-Cohen
S. Enhanced Olfactory Sensitivity in Autism Spectrum Conditions. Mol
Autism. 2014;5(1):53.

24. Park HJ, Kim SK, Kang WS, Park JK, Kim YJ, Nam M, et al. Association
between IRS1 Gene Polymorphism and Autism Spectrum Disorder: A
Pilot Case-Control Study in Korean Males. Int J Mol Sci. 2016;17(8):1227.

25. Needleman LA, Mcallister K. The Major Histocompatibility Complex and
Autism Spectrum Disorder. Dev Neurobiol. 2012;72(10):1288–301.

26. Shatz CJ. MHC Class I: An Unexpected Role in Neuronal Plasticity. Neuron.
2009;64(1):40–45.

27. Glynn MW, Elmer BE, Garay PA, Liu X, Needleman LA, El-Sabeawy F, et
al. MHCI Negatively Regulates Synapse Density during the Establishment
of Cortical Connections. Nat Neurosci. 2011;14(4):442–51.

28. Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW, et
al. Strong Association of the Third Hypervariable Region of HLA-DRB1
with Autism. J Neuroimmunol. 1996;67(2):97–102.

29. Bennabi M, Gaman A, Delorme R, Boukouaci W, Manier C, Scheid I, et al.
HLA-class II haplotypes and Autism Spectrum Disorders. Sci Rep.
2018;8(1):7639.

30. Becker JA, Clesse D, Spiegelhalter C, Schwab Y, Le Merrer J, Kieffer BL.
Autistic-Like Syndrome in Mu Opioid Receptor Null Mice Is Relieved by
Facilitated mGluR4 Activity. Neuropsychopharmacology. 2014;39(9):
2049–60.

31. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Rodney CPG, et
al. Alpha-2 Macroglobulin Is Genetically Associated with Alzheimer
Disease. Nat Genet. 1998;19(4):357–60.

32. Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EHJ,
Sigman M, et al. Abnormal Intracellular Accumulation and Extracellular AB
Deposition in Idiopathic and Dup15q11.2-q13 Autism Spectrum
Disorders. PLoS ONE. 2012;7(5):e35414.

33. Shapley LS. A Value for n-Person Games. In: Kuhn HW, Tucker AW,
editors. Contributions to the theory of Games. Volume II. Princeton:
Princeton University Press; 1953. p. 307–17.

34. Moretti S, Leeuwen DV, Gmuender H, Bonassi S, V DJ, Kleinjans J, et al.
Combining Shapley Value and Statistics to the Analysis of Gene
Expression Data in Children Exposed to Air Pollution. BMC Bioinformatics.
2008;9(1):361.

35. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING v11: protein-protein association networks with increased
coverage, supporting functional discovery in genome-wide experimental
datasets. Nucleic Acids Res. 2019;47:D607–D613.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Game theoretic centrality genes
	Biological validation

	Discussion
	Conclusion
	Methods
	Coalitional game theory
	Microarray game
	Game theoretic neighborhood-based relevance index
	Game theoretic centrality: a combined approach
	Data preprocessing
	Game theory analyses

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03693-1.
	Additional file 1

	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

