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Abstract
1. Individual identification is a crucial step to answer many questions in evolutionary 

biology and is mostly performed by marking animals with tags. Such methods are 
well-established, but often make data collection and analyses time-consuming, or 
limit the contexts in which data can be collected.

2. Recent computational advances, specifically deep learning, can help overcome the 
limitations of collecting large-scale data across contexts. However, one of the bot-
tlenecks preventing the application of deep learning for individual identification 
is the need to collect and identify hundreds to thousands of individually labelled 
pictures to train convolutional neural networks (CNNs).

3. Here we describe procedures for automating the collection of training data, gen-
erating training datasets, and training CNNs to allow identification of individual 
birds. We apply our procedures to three small bird species, the sociable weaver 
Philetairus socius, the great tit Parus major and the zebra finch Taeniopygia guttata, 
representing both wild and captive contexts.

4. We first show how the collection of individually labelled images can be automated, 
allowing the construction of training datasets consisting of hundreds of images per 
individual. Second, we describe how to train a CNN to uniquely re-identify each indi-
vidual in new images. Third, we illustrate the general applicability of CNNs for studies 
in animal biology by showing that trained CNNs can re-identify individual birds in im-
ages collected in contexts that differ from the ones originally used to train the CNNs. 
Finally, we present a potential solution to solve the issues of new incoming individuals.

5. Overall, our work demonstrates the feasibility of applying state-of-the-art deep 
learning tools for individual identification of birds, both in the laboratory and 
in the wild. These techniques are made possible by our approaches that allow 
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1  | INTRODUC TION

In recent years, deep learning techniques, such as convolutional 
neural networks (CNNs), have caught the attention of ecologists. 
Such tools can automatize the analysis of various types of data, 
ranging from species abundance to behaviours, and from different 
sources such as pictures or audio recordings (reviewed in Christin, 
Hervet, & Lecomte, 2019). CNNs are a class of deep neural net-
works that, contrary to other types of artificial intelligence meth-
ods that require hand-crafted feature extraction, automatically 
learn from the data the features that are optimal for solving a 
given classification problem (see Angermueller, Pärnamaa, Parts, 
& Stegle, 2016; Christin et al., 2019; Jordan & Mitchell, 2015; 
LeCun, Bengio, & Hinton, 2015 for a detailed introduction on deep 
learning). CNNs are thus particularly useful when many features 
for classification are needed.

In ecology, deep learning has been successfully and predomi-
nantly applied to identifying and counting animal or plant species 
from pictures. For example, Norouzzadeh et al. (2018) used a long-
term database of more than 3 million labelled pictures to train a CNN 
to automatically recognize 48 African animal species. This CNN can 
replace the need for manual identification in future studies, which is 
highly time-consuming, thus promoting a more efficient data analysis 
pipeline. This, and other examples (e.g. Rzanny, Seeland, Wäldchen, & 
Mäder, 2017; Tabak et al., 2019), highlight the potential for deep learn-
ing to help to increase sample sizes, and therefore help resolve many 
limitations in power for biological studies (e.g. Wang et al., 2018).

Beyond species recognition, one particularly promising appli-
cation of CNNs is individual identification. Individual identification 
is crucial to many studies in ecology, behaviour and conservation 
(Clutton-Brock & Sheldon, 2010). The use of deep learning meth-
ods for individual identification has been the subject of extensive 
research in humans (e.g. Ranjan et al., 2018), where it has been 
extremely successful. More recently, a handful of studies have ap-
plied the similar methods to other animal species, allowing comput-
ers to individually recognize primates (Deb et al., 2018; Schofield 
et al., 2019), pigs (Hansen et al., 2018) and elephants (Körschens, 
Barz, & Denzler, 2018). However, the application of deep learning to 
smaller taxa, and specifically birds, remains unexplored.

In birds, manual examination of pictures or video recordings 
of visually marked populations is well-established. For studies on 
both wild (i.e. free-ranging monitored populations) and captive ani-
mals, researchers often mark individuals with unique combinations 

of colour bands to facilitate observations in the field or, later, in 
recorded images. However, relying on humans for individual 
identification and data collection is extremely time-consuming 
(Weinstein, 2018). In the past decade, many studies have made 
use of automated animal-tracking devices (e.g. GPS) and sensor 
technologies (e.g. RFID; reviewed in Krause et al., 2013). Such 
animal-borne tracking devices, however, often limit researchers 
to study individuals in particular contexts. For many studies, ob-
taining visual records remains critically important. For example, 
studying parental care in birds requires video recordings to visually 
identify which birds are providing care to the chicks and how often 
they do it. Such data can, to some extent, be automated using PIT-
tags and fitting RFID readers to a nest. However, this technology 
cannot record many additional, and important pieces of informa-
tion, such as the type of food that parents are bringing to the chicks 
or distinguishing the purpose of the visit (e.g. to feed the chicks or 
to engage in nest maintenance activities). Thus, a major advance 
over current methods would be to automatically identify individu-
als while keeping the versatility of the data and contexts that can 
be captured using pictures and video recordings.

Several methods for automatic individual identification and 
other data extraction from pictures and videos of animals have been 
developed previously. For instance, Pérez-Escudero, Vicente-Page, 
Hinz, Arganda, and de Polavieja (2014) proposed a multi-tracking al-
gorithm capable of following unmarked fish in captivity from video 
recordings (which was later improved using deep learning; Romero-
Ferrero, Bergomi, Hinz, Heras, & de Polavieja, 2019). Other computer 
vision-based solutions rely on tags or marks to assist with computer 
tracking and individual identification (e.g. Alarcón-Nieto et al., 2018). 
To date, all these methods remain mostly limited to studying animals 
in captivity, either because they require standardized recording con-
ditions (e.g. consistent background light, known number of individu-
als present in the recording) or the marks needed to assist individual 
identification are attached through gluing or using backpacks that 
are not suitable to be fitted to many animals, especially in the wild. 
Deep learning methods have the potential to overcome many of the 
limitations of the current automated methods, as they can identify 
individuals by relying only on the natural variation in appearance 
among individuals, while remaining tolerant to spurious variation 
arising from recording conditions.

A major challenge for the application of individual recognition 
using deep learning methods is the need for collecting extensive 
training data. Acquiring training data typically involves labelling 

efficient collection of training data. The ability to conduct individual recognition of 
birds without requiring external markers that can be visually identified by human 
observers represents a major advance over current methods.
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images with the identity (or an attribute) of each individual. The 
amount of data required to train a CNN is expected to be propor-
tionally dependent on the difficulty of the classification challenge, 
that is, a bear and a bird would be easier to differentiate than two 
bears of the same species. Usually, CNNs that achieve large gener-
alization capability need to be trained over thousands to millions of 
pictures (Marcus, 2018). Such large datasets are required because 
the aim of using a CNN is to generalize recognition from the spe-
cific data that the CNN has been exposed to during training. For 
example, if a CNN was trained to distinguish two bears of the same 
species with only pictures of the individuals lying down, it might be 
unable to identify those same individuals from new pictures taken 
when the animals are standing up. Additionally, if the pictures used 
for training were taken during a short period of time, it might lead 
the CNN to rely on superficial and temporary features for identi-
fication. For example, if pictures for training were taken when one 
of the individuals had a large wound or was going through moulting 
or shedding, it might result in a CNN that relies on those salient 
and temporary features, and thus perform badly when having to 
predict the identity of the individuals a few days later. Therefore, 
effectively making use of deep learning for individual identifica-
tion, especially in the wild, requires new ways to collect training 
data that do not rely on individual manual image annotation.

When working in captivity settings, such large labelled image 
datasets can be easily collected by temporarily isolating the animals in 
enclosures separated from the rest of the group while filming or pho-
tographing them. However, such an approach is clearly not feasible for 
researchers working on wild populations, making collecting training 
data from wild animals much more challenging. For example, in birds, 
relying on human observers and colour rings, to photograph and man-
ually label enough pictures to implement CNN for individual identifi-
cation, would be extremely time-consuming. Furthermore, in longer 
term studies, animals can change their appearance over time (e.g. 
changing from juvenile to adult plumage in birds) or new individuals 
may join the population (e.g. immigrants or recruited offspring). These 
cases require that the process of identifying individuals and labelling 
photos is routinely repeated. Therefore, relying on human observers 
for collecting labelled data in this type of systems might hinder the 
widespread implementation of deep learning techniques for individual 
identification, or restrict its application to short-term projects.

Here we provide an efficient pipeline for collecting training 
data, both in captivity and in the wild, and we train CNNs for in-
dividual re-identification (i.e. machine recognition of a previously 
known set of individuals). We demonstrate the feasibility of our 
approaches using data from two wild populations of birds of two 
different species, the sociable weaver Philetairus socius and the 
great tit Parus major, and a population of captive zebra finches 
Taeniopygia guttata. We then show that CNNs trained on these 
species can successfully re-identify individuals across a range of 
different contexts.

We start by (a) focusing on the problem of efficiently collecting 
large training datasets. We provide simple and automated meth-
ods for collecting a very large number of labelled pictures by using 

low-cost cameras that can be programmed to take labelled pictures 
of birds. In captivity, we achieve this by temporarily isolating target 
individuals, and taking pictures using low-cost cameras. In the wild, 
we describe a solution using low-cost RFIDs and low-cost cameras 
that are programmed to take labelled picture when PIT-tagged birds 
land on an RFID-equipped feeder. We then (b) provide details of the 
steps involved with data pre-processing and the training of an ad-
equate CNN. We further describe approaches for augmenting our 
training datasets using algorithms that add noise and make modifi-
cations to the original images. Next, we (c) evaluate the generaliza-
tion performance of our CNNs to data collected in other contexts 
by evaluating the ability of our models to predict the identity of the 
birds in pictures collected using different cameras and in contexts 
that differ from the ones used for collecting the training datasets. 
Finally, we (d) present a very simple approach to address the prob-
lems arising from the arrival of new and unmarked individuals to the 
population.

2  | MATERIAL S AND METHODS

2.1 | Study populations

We collected pictures from a population of sociable weavers at 
Benfontein Nature Reserve in Kimberley, South Africa, and a pop-
ulation of great tits, from a population in Möggingen, southern 
Germany. For both species, individuals were fitted with PIT-tags as 
nestlings, or when trapped in mist-nets as adults, and were habitu-
ated to artificial feeders that are fitted with RFID antennas, as part 
of the on-going studies in these populations. We also collected data 
from a captive population of zebra finches housed in Möggingen, 
southern Germany. Birds from this population were being kept in 
indoor cages in pairs and small flocks.

2.2 | Collecting training data

In all three species, we collected pictures using Raspberry Pi cam-
eras. The methods to automatically label the pictures differed be-
tween the wild (sociable weavers and great tits) and captive (zebra 
finches) populations. We start by explain the two different data col-
lection pipelines.

2.2.1 | Training data collection in the wild

The collection of labelled pictures in the wild was automated by com-
bining RFID technology (Priority1Design, Australia), single-board 
computers (Raspberry Pi), Pi cameras and artificial feeders. We fitted 
RFID antenna to small perches placed in front of bird feeders filled 
with seeds (Figure 1a–c). The RFID data logger was then directly 
connected to a Raspberry Pi (detailed explanation of the developed 
setup is available at github.com/AndreCFerreira/Bird_individualID) 



     |  1075Methods in Ecology and EvoluonFERREIRA Et Al.

which had a Pi camera (we used Pi camera V1 5mp and V2 8mp). 
When the RFID data logger detected a bird, it sent the individual's 
PIT-tag code to the Raspberry Pi, which was programmed to then 
take a picture. Because birds often spend some time on the feeder, 
we programmed the Raspberry PI to take a picture every 2 s while 
the bird remained present. This interval was introduced in order 
to efficiently collect data while avoid having near-identical frames 
of the same bird as having too many near-identical pictures could 
increase the overfitting of the CNN, that is, the risk of the model 
‘memorizing’ the pictures instead of learning features that are key 
for recognizing the individuals and thus jeopardize the generaliza-
tion capability of the models (see Section 2.3). Each picture file was 
automatically labelled with the bird identity, known from the RFID 
logger and the time of shooting in the filename. Training data col-
lection was therefore automatized by linking the identity of the bird 
perching on the antenna while feeding to its pictures, without any 
need for human manual identification and annotation. When multi-
ple birds perched on the feeder at the same time, it was not possible 
to determine which of the birds activated the RFID system. Pictures 
that contain more than one bird were thus automatically excluded 
(see Section 2.2.3).

For the sociable weaver population, we placed three PI cameras 
and three feeders on the ground about 2 m apart from each other. 
For the great tit population, we used one PI camera fitted to one 
feeder hanging on a tree branch. The cameras were positioned to 
take a picture from top perspective to enable to photograph both 
the back and wing feathers (Figure 1b,c). The birds’ back was chosen 
as the distinctive mark since it is the body part that is most easily ob-
served and recorded in multiple contexts (e.g. when perching at the 
feeders or building at the nest), making it a very versatile mark for 

applying an image classification algorithm in other contexts. For the 
sociable weaver population, we collected images for 15 days during 
November and December 2018. For the great tit population, we col-
lected images over 7 days during the last 2 weeks of August 2019.

2.2.2 | Training data collection in captivity

We temporarily divided cages into equally sized partitions with a net, 
allowing us to take pictures from individual birds without completely 
socially isolating them. We collected data from 10 zebra finches (five 
males and five females). We placed two Raspberry Pi cameras on 
the roof of each partition to photograph (every 2 s) the birds sit-
ting on the wooden perches (Figure 1d). Each bird was recorded for 
4 hr. Since we knew which Raspberry Pi photographed which bird, 
we avoided the need to manually link the identity of the birds to the 
pictures.

2.2.3 | Data pre-processing

To efficiently train a CNN, the regions in the pictures corresponding 
to the birds should be extracted from the background (third step of 
Figure 2). A Mask R-CNN (He, Gkioxari, Dollár, & Girshick, 2017) was 
used to automatically localize and crop the bird in the pictures. For 
the sociable weavers, we used a Mask R-CNN model that had been 
trained on Microsoft COCO (Lin et al., 2014). Microsoft COCO is a 
generalist dataset which includes pictures of birds and therefore is 
able to localize the sociable weavers in the pictures (see github.com/
Andre CFerr eira/Bird_indiv idualID for details). Because the sociable 

F I G U R E  1   Example of the set-up of 
the automated collection of training data 
in the wild and in captivity. (a) Pi camera 
(circled in red) positioned to record the 
back of the birds. (b) Example of a picture 
in the sociable weaver training data. 
(c) Example of a picture in the great tit 
training data. (d) Example of a picture in 
the zebra finch training data

github.com/AndreCFerreira/Bird_individualID
github.com/AndreCFerreira/Bird_individualID
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weaver population was colour-banded, and these were partially 
visible in some of the cropped pictures, we manually removed any 
 visible colour bands from the testing data (see Section 2.4) to ensure 
that colour bands were not used for individual identification by the 
model.

As the Mask R-CNN model performed poorly for the great tits 
and zebra finches, we re-trained the model by adding a new cat-
egory (zebra finch or great tit, making a different model for each 
species) using pictures in which the region corresponding to the 
bird was manually delimited using ‘VGG Image Annotator’ software 
(Dutta & Zisserman, 2019). Since manually labelling the regions of 
interest is time-consuming, we started by training the model for 10 
epochs (i.e. passing the entire dataset through the neural network 
10 times) with 200 manually labelled pictures. If the model was 
found to perform badly, additional pictures were manually labelled 
and added to the training dataset. This process was repeated until 
a satisfactory performance was achieved. For the great tits, we 
needed 500 pictures in the training data and 125 for validation 
(see Section 2.3 below for explanation on training and validation 
datasets). The zebra finch data required 400 pictures for training 
and 100 for validation.

For the sociable weavers and the great tits, if the Mask R-CNN 
identified more than one bird perching simultaneous at the RFID an-
tenna, we automatically excluded that image. We detected a total of 
35 sociable weavers at the RFIDs antennas. Of these, 30 individuals 
with more than 350 pictures were used to train the classifier. In the 
great tit population, 77 birds were photographed, of which 10 had 
more than 350 pictures. These 10 individuals were used to train a 
CNN for each of the species. The remaining five sociable weavers 
and 67 great tits (with <350 pictures) were used to address the issue 
of working in open areas where new individuals can constantly be 
recruited to the study population (see Section 2.5 below). For the 

zebra finches, we used all 10 individuals as our setup resulted in 
more than 2,000 pictures for each bird.

2.3 | Convolutional neural networks

Training a CNN requires both a training and a validation dataset. The 
training dataset is the set of samples that the neural network re-
peatedly uses to learn how to classify the input images into different 
classes (in our case, different individuals). The validation dataset is 
an independent set of samples that is used to compute the accuracy 
and loss (estimation of the error during training) of the model. This 
validation dataset is used to assess the learning progress of the neu-
ral network. As the network never trains on or sees the validation 
data, this validation dataset can indicate if the model is overfitting 
the training data and not learning features that are key for recogniz-
ing the individuals. It is generally difficult to anticipate the minimum 
number of images needed from each individual to obtain high per-
formance for individual recognition. As a compromise between the 
number of birds that we could include in our study and the number 
of images per bird (i.e. to avoid generating an excessively imbalanced 
dataset), we aimed to use 1,000 images per bird—900 images for the 
training dataset and 100 images for the validation dataset. Training 
a deep learning model with an imbalanced training dataset (i.e. when 
the different classes, here the individuals, have different number of 
training pictures) can result in the over-generalization for the classes 
in majority due to its increased prior probability. For instance, a naïve 
classifier for a binary classification task for a dataset in which the 
ratio of the minority class to the majority class is 1:100 will have 
99% accuracy if it simply learns to always output one result—the 
majority class. As a consequence of this, data containing minority 
classes (in our case birds with fewer images) are more likely to be 

F I G U R E  2   Overview of the sequential steps used for collecting data and training a convolutional neural network for individual 
identification
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misclassified than those belonging to the majority classes (Johnson 
& Khoshgoftaar, 2019). One countermeasure against class imbalance 
is oversampling, which consists of creating copies of the training 
data from the less sampled classes.

We applied limited oversampling to our training dataset only. For 
nine sociable weavers and six great tits for which we did not have 
1,000 images, we first selected 100 images for the validation dataset 
and then duplicated (through oversampling) the remaining pictures 
until 900 images were available for the training dataset (Buda, Maki, 
& Mazurowski, 2018). Oversampling was therefore restricted to the 
training dataset and not applied to the validation dataset in order to 
avoid overestimating the model's learning progress. For both spe-
cies, in order to limit overfitting caused by having very similar pic-
tures in the training and validation datasets, we used images from 
different days in our training and validation datasets. In total, we 
constructed a dataset of sociable weavers containing 27,038 unique 
images of 30 individuals, or 901 ± 173 (M ± SD) per bird and a data-
set of great tits containing 7,605 unique images of 10 individuals, 
761 ± 223 (M ± SD) per bird.

Working on the captive zebra finches, we could easily collect 
many images per bird. However, the problem of collecting data of 
animals that are in confined enclosures is that a significant num-
ber of pictures could potentially be near-identical, such as if an in-
dividual stays motionless for long periods of time. In our case, all 
birds were generally active and visited all the places in their cage 
(i.e. all wooden perches, floor, water and food plates). Nevertheless, 
to avoid potential overestimation of the model's accuracy, we used 
the images collected when the birds were in different partitions for 
training and validation datasets. Additionally, to create a diverse set 
of validation pictures, we used a structural similarity index measure 
(SSIM; Wang, Bovik, Sheikh, & Simoncelli, 2004) to create a data-
set with maximized pairwise dissimilarity among images (following 
a similar procedure as Hansen et al., 2018 for a pig dataset). We 
started by randomly selecting an image to include in the validation 
dataset. We then randomly sampled images and computed the SSIM 
between the new image and those already in the validation dataset. 
If the SSIM value was smaller than a threshold, these new pictures 
were included in the validation dataset. This process was repeated 
by sequentially comparing a new picture to all the ones already in the 
validation dataset until we reached 160 images per bird. The thresh-
old value used (0.55) was empirically determined by trying different 
values and looking at the resulting datasets. For the training dataset, 
1,600 images of each zebra finch were randomly selected without 
filtering for near-identical images. All birds had at least 1,600 images, 
except for one that had 1,197 for which oversampling was used by 
creating duplicates of 403 randomly sampled images.

We used the VGG19 CNN architecture (Simonyan & Zisserman,  
2014) and initialized the model with the weights of a network pre-
trained on the ImageNet dataset (a dataset with more than 14 mil-
lion pictures and 20,000 classes, Deng et al., 2009). The main idea 
behind using networks pre-trained on other datasets is that features 
(such as colour or texture) that are important to distinguish multiple 
objects could also be useful to distinguish between individual birds. 

When using transfer learning, the bottom layers of the network can 
be frozen in order to mitigate overfitting, this is especially important 
when the training datasets are small. However, as freezing the layers 
prevent them from update their weights during the training process 
(and therefore could prevent the model from learning key features 
for performing the classification task) and considering the size of our 
training datasets, we decided to train the models without freezing 
any of the layers of the network. The fully connected part of the 
VGG19 CNN network (i.e. the classifier part) was replaced by layers 
with random weights that fit our particular task of interest and the 
corresponding number of classes (i.e. number of different individu-
als; Figure S1).

To further increase our training sample, we then used a data aug-
mentation procedure. This procedure consists of artificially increas-
ing the sample size by applying transformations to an existing set of 
samples. Using the data generator available in Keras (Chollet, 2015), 
we randomly rotated (from 0 to 40°) and zoomed (zoom range of 
0.2) images of all species. We additionally applied horizontal and 
vertical flips to the great tits and zebra finches populations, and as 
contrary to the sociable weavers, these birds could be photographed 
from any orientation (as they perched all around the RFID antenna or 
the cage on which perch their bodies can be facing different direc-
tions). These transformations were applied randomly to every single 
picture in the dataset as the Keras generator does not provide the 
original images directly to the model during training. Instead, only 
augmented images are provided to the model in each epoch, but 
since transformations are performed randomly, both modified im-
ages and close reproductions of the original images (i.e. those with 
almost no augmentation) are provided during training.

One dropout layer was added just before the first dense layer 
(see github.com/Andre CFerr eira/Bird_indiv idualID and Figure S1 
for details on the network architecture). Dropout layers are used 
to limit overfitting by randomly ignoring units of the CNN (i.e. neu-
rons) during the training process (see Srivastava, Hinton, Krizhevsky, 
Sutskever, & Salakhutdinov, 2014 for details on dropout). For the so-
ciable weavers and the zebra finches, the dropout layer had a value 
of 0.5, while for the great tits it was reduced to 0.2 (i.e. less units are 
being ignored in order to facilitate the training process) as the model 
did not improve the accuracy from a random guess for 10 epochs 
when the dropout was at an initial value of 0.5. We used a softmax 
activation function for the classifier and ADAM optimizer (Kingma 
& Ba, 2014) with a learning rate of 1e−5. A batch size of eight (i.e. 
eight pictures are being provided to the model each time) was used 
since it has been shown that small batch sizes improve models’ gen-
eralization capability (Masters & Luschi, 2018). If there was no de-
crease in loss (i.e. measure of the difference between the predicted 
output and the actual output) for more than 10 consecutive epochs, 
we stopped training, and then retrained the model that achieved the 
lowest loss with a SGD optimizer and a learning rate 10 times smaller 
until there was no further decrease in the loss for more than 10 con-
secutive epochs. All pictures were normalized by dividing the arrays 
by 255 (0 to 1 normalization). All analyses were conducted with py-
thon 3.7 using Keras tensorflow 1.9 on an Nvidia RTX 2070 GPU.

github.com/AndreCFerreira/Bird_individualID
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In the case of the sociable weavers (which was the species that 
we used when initially exploring our approaches), even though our 
model achieved c. 90% accuracy with the validation dataset, the ac-
curacy was significantly lower when generalizing to other contexts 
(see Sections 2.4 and 3). We suspected that such differences could 
be due to the lower quality of images collected in those other con-
texts (with different cameras, capture distances and conditions; see 
Section 2.4). To account for this possibility, we trained a model using 
the same setting parameters that yielded the best results, and ap-
plying further transformation. In order to simulate the lower quality 
of the pictures taken in other contexts, we applied Gaussian blur, 
motion blur, Gaussian noise, resizing transformations and a random 
combination of two of these four transformations (see github.com/
Andre CFerr eira/Bird_indiv idualID for details on the transformations 
applied to the images) to each of the images in the dataset used to 
train the models (Figure 3). The idea is that even if the overall quality 
of the pictures in the dataset used for training slightly differs from 
pictures which are of interest for a research question, this training 
dataset can be transformed in order to be more similar to the pic-
tures collected in distinct contexts for which the classifier could be 
applied on. Blur and noise transformations were not used for the 
great tits and zebra finches as there were no differences in the over-
all quality of the pictures used for training and for testing the model 
generalization capability (see Section 2.4).

2.4 | Testing models

To test the efficiency of our models, we collected images of birds in 
different viewing perspectives, using different cameras, and across 

different contexts than the original feeding station setup. The aim 
was to evaluate the ability of our trained CNN to identify individuals 
in different experiments and contexts, and to verify that the models 
were not overfitting the training data.

For the sociable weavers, we used four different setups for test-
ing. We filmed birds feeding in the same plastic RFID feeders but 
recorded using a Sony handycam (rather than Raspberry Pi cam-
era), from two different perspectives: (a) close (c. 30 cm from the 
feeder, 95 images of 26 birds 3.65 ± 0.68 [M ± SD]; Figure 4a) and 
(b) far (c. 100 cm from the feeder, 71 images of 21 birds 3.43 ± 0.58; 
Figure 4b). In addition, a plastic round feeder with seeds was posi-
tioned on the floor to record both from (c) a ground perspective (90 
images of 28 birds 3.21 ± 1.21; Figure 4c) and (d) a top perspective 
(83 images of 25 birds 3.32 ± 1.01; Figure 4d). The birds were man-
ually cropped out from pictures using imageJ (Schneider, Rasband, 
& Eliceiri, 2012) and individually identified using their colour rings. 
The colour rings were then erased directly from the image to guar-
antee that the model did not use them for identification. Videos 
were recorded within the same time window as the training pictures 
were collected and we aimed to extract five non-identical frames 
per bird in which the back was fully visible. Unfortunately, this was 
not always possible for all birds as not all of them were present or re-
corded long enough in these testing videos and therefore the sample 
size for each perspective differs.

For the great tits, we recorded the birds feeding in a table from a 
top perspective with a Raspberry Pi camera (Figure 4e). Since these 
birds had no colour ring or any mark for visual identification, we iden-
tified them using their PIT-tags by placing seeds on top of a RFID 
antenna that was on a feeding platform. Birds were recorded feed-
ing on the table for 3 days, but four out of the 10 birds used in the 

F I G U R E  3   Application of 
transformations to the sociable weaver 
training data to facilitate individual 
identification across different contexts. 
Comparison of the images' quality in  
(a) the testing dataset (see Section 2.4 
below) with (b) the training dataset.  
(c) The same training image after applying 
a transformation to simulate the low 
quality of the testing dataset

github.com/AndreCFerreira/Bird_individualID
github.com/AndreCFerreira/Bird_individualID
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training dataset did not use this new feeding spot. In all, 94 pictures 
were taken but the number of pictures collected at this setup var-
ied greatly between birds (from 2 to 38 pictures, M: 15.70 ± 11.30 
SD). As a result, we did not attempt to make a balanced dataset and, 
therefore, used all the 94 pictures collected at this new feeding setup.

For the zebra finches, we did not have a second setup that dif-
fered from the one used to collect the pictures to train a CNN and 
that could be used for testing the CNN generalization. Instead, we 
ran an additional trial which consisted of recording the birds to-
gether to see how well the model would predict the identity of each 
individual when they are in small groups interacting with each other 
(Figure 4f). Since these birds did not have any visual tags and it was 
not possible to distinguish them when in group, we used one flock of 
three birds and another flock of two birds for each sex. This allows 
us to estimate the model's accuracy by calculating the number of 
times that the CNN wrongly attributed the identity of a bird as being 
an individual that was not actually present in that flock. In order to 
avoid near-identical pictures, the same procedure as for the valida-
tion dataset to select 160 pictures from each trial was used.

2.5 | New birds

In the wild, it is common for new individuals to join a population dur-
ing the course of a study. These new individuals may challenge the 

performance of a CNN, because the model outputs a vector from a 
softmax layer that indicates probabilities of presence for every in-
dividual present during training, with the sum of these probabilities 
being one (see ‘classification’ stage in Figure 2). In order to study this 
potential issue, we used the already trained CNNs from the subset 
of identities, where we had to predict the identity of birds that were 
not included in the training datasets. For the sociable weavers, we 
had a scenario in which a CNN that was trained to identify a rela-
tively large number of individuals (30) was then exposed to a small 
number of new individuals (5). For the great tits, we had the opposite 
scenario in which a CNN that was trained for a small number of indi-
viduals (10) was then exposed to a large number of new individuals 
(67). For the sociable weavers, we selected 50 pictures of each of 
the five birds (a total of 250) that were not in the training dataset 
and 250 random images from the pool of birds that were included 
in the training data. For the great tits, we selected 250 random im-
ages from the pool of 67 individuals that were not in the training 
dataset, and kept a random set of 250 images from the birds in the 
training data. We limited the number of pictures from the same indi-
vidual to a maximum of eight (3.91 ± 1.67 M ± SD) in order to keep a 
large number of different individuals in this dataset (64 out of the 67 
individuals were used). Shannon's entropy (Shannon, 1948) of each 
of the distributions was calculated from the classification (softmax) 
output to empirically determine a confidence threshold to consider 
a bird as part of the training dataset.

F I G U R E  4   Examples of data collected 
across different contexts. For the sociable 
weaver, we collected images at the 
feeders from the RIFD feeder set-up from 
(a) close or (b) far perspectives. We then 
collected data at a feeding plate on the 
floor, which we recorded from (c) a ground 
perspective and (d) a top perspective. For 
the great tits, we (e) recorded from a top 
perspective feeding at a table on which 
we placed an RFID antenna. Finally, for 
zebra finches we (f) collected data from 
social groups
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3  | RESULTS

3.1 | CNN

3.1.1 | Sociable weavers

The model was able to achieve an accuracy of 92.4% (Table 1) after 
training for 21 epochs (c. 360 min of training). When the model was 
used to predict the identity in four other contexts, it appears that the 
accuracy of top perspective's context was lower (67.5% for the plate 
top Table 1). After adding blur and noise to the training images, the 
model achieved a validation accuracy of 90.3%, while successfully 
increasing the accuracy from the top perspective to 91.6% (Table 1).

3.1.2 | Great tits

The model reached 90.0% accuracy after training for 32 epochs  
(c. 105 min). When using the pictures from the top perspective, 
recording the birds on the table the model correctly predicted the 
identity of the birds in 85.1% of the pictures.

3.1.3 | Zebra finches

The model reached 87.0% accuracy after training for 11 epochs  
(c. 150 min), and obtained similar accuracies for males and females 
(85% for males, 88.9% for females). When using the trained model to 
predict the identity of the birds when they were in small groups the 
model correctly predicted the identity of a bird present in that group 
in 93.6% of the time.

3.2 | New birds

The entropy of the softmax outputs (i.e. probabilities) was smaller 
when predicting the identity of birds present in the training dataset, 
compared to when predicting the identity of new birds (Figure 5). 
This is due to the fact that when predicting the identity of a bird 
from the training dataset, there is usually one that stands out with 
very high probability (thus successfully indicating the bird's identity) 
and the remaining probabilities are very low (other birds’ identities). 
In contrast, when predicting the identity of a new bird, the prob-
abilities were usually more equally distributed across all classes, all 
with low values.

For the sociable weavers, 90% of entropies were below 0.75 
when predicting the identity of birds from the training dataset and 
only 17% of them were under this value when predicting the identity 
of new birds. This means that with this 0.75 threshold there is a 17% 
chance that a new bird will be erroneously classified as one of the 
birds of the training dataset. A value of 17% should be acceptable 
if new individuals are not common (both in number of different new 
individuals and in the frequency of appearance). In order to reduce 
the probability of identifying a new sociable weaver as a bird pres-
ent in the training dataset to <5%, a confidence threshold for the 
entropies would have to be set to 0.018. However, this would result 
in discarding 36% of the images of the sociable weavers present in 
the training dataset.

TA B L E  1   Rate of positive identification when testing in 
all contexts for the sociable weavers. Right column gives the 
identification success rate when noise and blurs were artificially 
added to training images to match the quality of testing images 
(see Section 2.4)

Perspective
Positive 
identification

Positive identification  
after adding blur and 
noise

Validation 0.924 0.903

Feeder (close) 0.926 0.926

Feeder (far) 0.958 0.972

Plate (ground) 0.867 0.944

Plate (top) 0.675 0.916

F I G U R E  5   Distribution of the entropies of softmax probabilities when predicting the identity of birds from the training dataset or of new 
birds. Distributions are given for (a) sociable weavers and (b) great tits
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For the great tits scenario, in which the appearance of new birds 
is frequent, defining a simple threshold that differentiates new birds 
from the birds already present in the training dataset would not be 
enough as there is a too much overlap between the birds in the train-
ing and the new birds’ entropy. For example, 90% of the entropies 
are below 0.8 when predicting the identity of birds that are present 
in the training dataset. However 62% of the entropies for the birds 
not present in the training dataset are also below this value. Under 
this scenario, reducing the probability of identifying a new individual 
as a bird present in the training dataset to <5%, would require to set 
a confidence threshold for the entropies of 0.002. Using this thres-
hold would result in discarding 77% of the images of birds present in 
the training dataset.

4  | DISCUSSION

Deep learning has the potential to revolutionize the way in which 
researchers identify individuals. Here we propose a practical way of 
collecting large labelled datasets, which is currently the main bottle-
neck preventing the application of deep learning for individual iden-
tification in animals (Schneider, Taylor, Linquist, & Kremer, 2019). 
We also show the steps required to train a classifier for individual 
re-identification. To our knowledge, this is the first successful at-
tempt of performing such an individual recognition in small birds. 
Using data collected with automatized procedures, CNNs proved to 
be effective for re-identifying known individuals in three different 
bird species, including two species that are among the most com-
monly used models in the field of behavioural ecology (great tits and 
zebra finches). Our results therefore clearly highlight the potential of 
applying CNN to a vast range of research projects. Furthermore, we 
found that our trained CNNs were generalizable, meaning that the 
rate of successful re-identification remained high across different 
recording contexts. This is particularly relevant as researchers are 
often interested in collecting data in contexts that are challenging, 
from parental behaviour at the nest to dominance interactions away 
from artificial feeders. However, we also show that the models’ per-
formance can be reduced when new individuals join the population, 
especially when new individuals are common.

The first critical step when deciding whether to implement a 
deep learning approach for a given study is to guarantee that enough 
training data can be collected to train a model. Our data from two wild 
populations showed that we can rely on RFID technology to gather 
large amounts of automatically labelled data. Since this technology 
is now widely used for research on birds (e.g. Aplin et al., 2015), we 
believe that the proposed method for automatizing data collection 
for deep learning applications could be easily and rapidly imple-
mented in a large number of research programmes. The advantage 
that deep learning would offer is to be able to collect data from much 
more general contexts, away from a feeding context (which is usu-
ally where RFID readers are placed). Furthermore, the method could 
be easily extended to other animals and other identification tech-
niques. The main idea is to develop a framework in which the same 

individuals can be repeatedly encountered, at which time the images 
that are recorded are automatically labelled. For example, GPS (e.g. 
Weerd et al., 2015) or proximity tags technology (e.g. Levin, Zonana, 
Burt, & Safran, 2015) could also be used in combination with camera 
traps to collect training data. Even with non-electronic tags, it should 
be possible to design setups to photograph animals automatically, 
such as by isolating the animals as we showed here with the zebra 
finches. With the popularization of imaging and sensor technologies, 
we believe that efficiently collecting a large amount of data should 
no longer represent a bottleneck preventing the application of deep 
learning methods such as CNN.

The most powerful aspect of CNNs is that they can provide a 
generalized identification solution. However, the capacity for a CNN 
to work effectively across contexts will be affected by variation in 
the recording conditions, for example due to light intensity, shadow 
or characteristics inherent to the recording quality. One solution to 
this is to ensure that the training dataset contains sufficient variation 
to capture the broad range of contexts that the CNN is required for. 
Photographing the animals across different times of the day and in 
different days provides the CNN with a very diverse training dataset 
making the CNN invariant to such variations. Furthermore, we show 
here that if the conditions for training are slightly different from the 
recording conditions in which the CNN is going to be applied, it is 
possible to artificially modify the pictures used for training in order 
to simulate the conditions under which the pictures of the context 
of interest will be taken. Specifically, we used blur and noise trans-
formations in the sociable weaver dataset to improve the general-
ization capability of our model, as the testing images had a lower 
quality than the training images. This confirms that using artificially 
degraded training pictures can be used to improve CNN generaliza-
tion capability (e.g. Vasiljevic, Chakrabarti, & Shakhnarovich, 2016). 
Other transformations could potentially be applied on the training 
dataset. Such transformations should consider the type of images on 
which the model will be used. For example, if illumination conditions 
of the training pictures are different from the context of interest, 
brightness and contrasts transformations could be applied to the 
training data in order to make the CNN light invariant. This general-
ization capability is an important novelty of this study compared to 
previous work on small-animal tracking using computer vision, which 
has been restricted to standardized conditions (e.g. Pérez-Escudero 
et al., 2014) that are not easily satisfied when working with wild an-
imal populations.

Besides the recording conditions, it is also important to con-
sider how tags used for human identification could artificially in-
crease the accuracy of the models. For example, here the sociable 
weavers had three coloured bands and a metal ring in their legs 
(two in each leg) that form a unique colour combo code. The Mask 
R-CNN trained on Microsoft COCO dataset used here to extract 
the birds from the pictures resulted in a dataset with 36% of the 
pictures containing at least one of the three colour bands partially 
visible, whereas the full colour code was almost never visible (fewer 
than 1% of the pictures). Since the majority of the pictures did not 
have any colour band visible, and three colour rings are needed to 
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correctly identify the individuals (there are large overlaps between 
the colour bands, e.g. six birds had an identically positioned black 
band), we are confident that no additional effort would have been 
needed to remove the colour bands from the training or validation 
datasets. We confirmed this by manually removing the colour bands 
from all testing pictures, and finding that the model maintained the 
same accuracy as the validation dataset (c. 90%). However, in sit-
uations in which colour bands might represent a real issue, a Mask 
R-CNN could be specifically trained to extract the bodies of the 
birds without their legs.

Another major challenge to the applicability of CNNs is deal-
ing with temporal changes in the appearance of individuals. For 
research questions that do not need long time windows of data 
collection or that are conducted on species that maintain their ap-
pearance with great consistency, collecting training data within a 
short period of time might be sufficient to develop a robust al-
gorithm for individual identification. However, for longer term 
studies, or when working with species that have the potential to 
change their appearance (e.g. moulting in birds), temporal changes 
in appearance constitutes a potentially serious limitation. The 
problem of long-term application of neural network algorithms has 
been studied in the context of place recognition (e.g. streets rec-
ognitions; Gomez-Ojeda, Lopez-Antequera, Petkov, & Gonzalez-
Jimenez, 2015); however, to our knowledge, there is still no study 
addressing the impact of changes in appearance in animals in deep 
learning-based solutions. Currently, we do not know how CNNs 
would perform over long periods of time. Solutions that could be 
explored include training data collected during long periods of 
time or targeting specific parts (e.g. excluding the wing feathers 
and considering only the top part of the back, or other body parts 
of the birds such as the flank or the bib) of the birds. These could 
make the CNN appearance invariant by learning more conserva-
tive features of the birds that are kept across time (even through 
moulting events). In order to fully address the problem and the po-
tential solutions, images of birds collected over longer periods of 
time and from multiple body parts are needed. At present, such 
datasets are not available. However, the automatization of training 
data collection is an immediate and effective solution, that is, it is 
now feasible to continuously collect training pictures and routinely 
re-train a CNN using updated training data.

The arrival of new individuals to the study population is another 
challenge that needs to be carefully addressed. If these new birds 
are marked with a PIT-tag, the CNN could be updated similarly to 
the problem of changes in appearance discussed above. However, 
in many cases new individuals will not be marked. Such a problem 
fits in the anomaly (Chandola, Banerjee, & Kumar, 2009) and novelty 
(Pimentel, Clifton, Clifton, & Tarassenko, 2014) detection domain. 
Here we explored a simple approach involving investigating the en-
tropy of classification probabilities. Our solution appears useful if 
the CNN was trained on a relatively large number of individuals and 
if immigrants are uncommon in the population, like in the sociable 
weaver example. However, for some studies, such conditions might 
not be met and, as it was the case of the great tit scenario, where 

we had a low number of individuals in the training dataset and ob-
served a large number of new birds. Nevertheless, the identification 
accuracy of a CNN should also be considered from a post-detection 
analysis perspective. While some studies will benefit from maximize 
the number of identifications made, in other studies it may be more 
costly to have misidentified individuals For example, misidentifi-
cations are very costly when constructing social networks (Davis, 
Crofoot, & Farine, 2018), while at the same time social networks 
are very identification hungry (Farine & Strandburg-Peshkin, 2015). 
Thus, exploration of the entropy distribution and other approaches, 
and subsequent trade-offs, should be considered. In addition, the 
error rate might be also reduced through post-processing. For exam-
ple, if the identification is based on a collection of frames (e.g. images 
extracted from a short video recording of the animal) instead of sin-
gle image, then the sequence of detections (and assignment proba-
bilities) can be quantified over subsequent frames, and the detection 
can be kept or discarded depending on the overall confidence in the 
sequence of detected identification.

The field of deep learning progresses rapidly and almost con-
tinuously provides solutions to seemingly challenging problems. 
However, this is facilitated by the existence of large and freely 
availed databases, which are used to try different approaches for 
a wide range of classification problems. For example, the ImageNet 
database (Deng et al., 2009) has been used numerous times to cre-
ate algorithms for object recognition. The Labelled Faces in the 
Wilde (LFW) dataset (Huang, Ramesh, Berg, & Learned-Miller, 2007) 
 contains thousands of pictures of human faces to development algo-
rithms for human face recognition and identification. The nordland 
dataset (Sünderhauf, Neubert, & Protzel, 2013) contains footage of 
more than 700 km of northern Norway railroad recorded in differ-
ent seasons (summer, winter, spring and fall) and has been used to 
address the problem of place recognition under severe environmen-
tal changes. Biologists aiming at taking advantage of the potential 
of deep learning will also benefit from assembling large datasets of 
labelled pictures containing many individuals, taken across differ-
ent contexts and across different life stages. By making our dataset 
freely available, we provide the foundations for continued develop-
ment of more reliable algorithms that are able to cope with the chal-
lenges presented here, among others.

Having large datasets will allow optimizing performance of CNNs 
as well as identifying the relative performance of alternative solu-
tions. Other network architectures (e.g. ResNet; He, Zhang, Ren, & 
Sun, 2016) and different hyper-parameters settings (e.g. learning 
rate) than the ones used here can yield different, and potentially 
improved, results. Other deep learning methods approaches could 
also be explored and applied not only to closed-set identification 
problems (as we did here) but also to verification and open-set iden-
tification. For example Siamese neural networks (Varior, Haloi, & 
Wang, 2016) and triplet loss-based methods (Schroff, Kalenichenko, 
& Philbin, 2015) are able to make pairwise comparison of two dif-
ferent images and output if the different images belong to the same 
individual or not, which could help solve the issue of the introduc-
tion of new individuals to the population and obtain higher overall 
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performance. There are also other pre-processing steps that can 
greatly improve the model training and reduce the number of im-
ages needed. For example, image alignment (e.g. Deb et al., 2018; 
Lopes, de Aguiar, De Souza, & Oliveira-Santos, 2017) can be used 
to decrease variation in the birds’ pose. Training an algorithm for in-
dividual recognition not only encompasses a great deal of trial and 
error, and different systems will present different challenges, but 
also opens up many new opportunities. Comparison of the perfor-
mance of different methods for individual recognition in birds should 
therefore be the scope of intense research once sufficient individu-
ally labelled dataset becomes available.

We hope that our work will motivate other researchers to start 
exploring the possibility of using deep learning for individual identi-
fication in their model species. More work is needed to address the 
constraints of working with birds both in the wild and in captivity 
(namely moulting and introduction of new individuals). However, 
the ability to move beyond visual marks and manual video coding 
will revolutionize our approach to addressing biological questions. 
Importantly, it will allow researchers to expand their sample sizes, 
thereby providing more power to test hypotheses. Finally, it will 
open up opportunities to address questions that previously were 
not tractable.
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