Data-driven order reduction and velocity field reconstruction using neural networks: The case of a turbulent boundary layer - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physics of Fluids Année : 2020

Data-driven order reduction and velocity field reconstruction using neural networks: The case of a turbulent boundary layer

Résumé

We present a data-driven methodology to achieve identification of coherent structures dynamics and system order reduction of an experimental turbulent boundary layer (TBL) flow. The flow is characterized using time-resolved Optical Flow Particle Image Velocimetry, leading to dense velocity fields that can be used both to monitor the overall dynamics of the flow and to define as many local visual sensors as needed. A Proper Orthogonal Decomposition (POD) is first applied to define a reduced-order system. A non-linear mapping between the local upstream sensors (inputssensors) and the full-field dynamics (POD coefficients) as outputs is sought using an optimal Focused Time-Delay (FTD) Artificial Neural Network (ANN). The choices of sensors, ANN architecture and training parameters are shown to play a critical role. It is verified that a shallow ANN, with the proper sensor memory size, can lead to a satisfying full-field dynamics identification, coherent structure reconstruction, and system order reduction of this turbulent flow.
Fichier principal
Vignette du fichier
manuscriptfinalPOF.pdf (3.16 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03006985 , version 1 (09-12-2020)

Identifiants

Citer

Antonios Giannopoulos, Jean-Luc Aider. Data-driven order reduction and velocity field reconstruction using neural networks: The case of a turbulent boundary layer. Physics of Fluids, 2020, 32 (9), pp.095117. ⟨10.1063/5.0015870⟩. ⟨hal-03006985⟩
39 Consultations
108 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More