Glucose-based spiro-oxathiazoles as in vivo anti-hyperglycemic agents through glycogen phosphorylase inhibition

David Goyard, Bálint Kónya, Katalin Czifrák, Paolo Larini, Fanny Demontrond, Jérémy Leroy, Sophie Balzarín, Michel Tournier, Didier Tousch, Pierre Petit, et al.

To cite this version:

HAL Id: hal-03006700
https://hal.archives-ouvertes.fr/hal-03006700
Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Glucose-based spiro-oxathiazoles as in vivo anti-hyperglycemic agents through glycogen phosphorylase inhibition

David Goyard, Bálint Kónya, Katalin Czifrák, Paolo Larini, Fanny Demontrond, Jérémy Leroy, Sophie Balzarini, Michel Tournier, Didier Tousch, Pierre Petit, Cédric Duret, Patrick Maurel, Tibor Docsa, Pál Gergely, László Somsák, Jean-Pierre Praly, Jacqueline Azay-Milhau, and Sébastien Vidal

The design of glycogen phosphorylase (GP) inhibitors targeting the catalytic site of the enzyme is a promising strategy for a better control of hyperglycaemia in the context of type 2 diabetes. Glucopyranosylidene-spiro-heterocycles have been demonstrated as potent GP inhibitors, and more specifically spiro-oxathiazoles. A new synthetic route has now been elaborated through 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks’ protocols, although with a revisited outcome and also rationalised with DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole Sh, identified as one of the most potent GP inhibitors (K = 160 nM against RMGPb) could be produced on the gram-scale from this strategy. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound Sh is a druggable anti-hyperglycaemic compound performing slightly better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound Sh since it lowered blood glucose levels by ~36% at 30 mg/kg and ~43% at 60 mg/kg. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates.

Introduction

Diabetes mellitus is one of the most severe global health problems of the 21st century. According to the International Diabetes Federation (IDF) 425 million people, ~9% of the adult population suffer from this disease, many of them may even remain undiagnosed. The number of diabetic patients is predicted to reach close to 700 million by 2045 with the most significant increase in low and middle income territories of Asia, Africa and South-America. In 2017 USD ~727 billion was spent for diabetes treatments representing more than 12% of the global health expenditures. Most of the diabetic patients (>90%) belong to the so-called type 2 diabetes mellitus (T2DM) when the organism does not produce insulin in sufficient quantities and/or the peripheral cells are more or less resistant to the insulin action to promote uptake of blood glucose. Due to the constantly high levels of glycaemia, short and especially long term complications are developed being frequent causes of death, thereby diabetes is one of the main contributors to global mortality. At present no causal therapy is known, treatment regimens aim at maintaining blood sugar levels around the normoglycemic value of ~6.1 mM by applying various medications.1, 2

Hepatic glucose output is elevated in T2DM patients. This glucose production consists of glycogenolytic and gluconeogenic components and the latter is known to be cycled through the glycogen pool.3, 4 Therefore, liver glycogen phosphorylase, the rate limiting enzyme of glycogen degradation has become a validated target to find potential new therapeutical possibilities against T2DM.4, 5 A broad variety of synthetic compounds and natural products have been tested as inhibitors of glycogen phosphorylase (GP)6-12 mainly with the most easily available rabbit muscle GPb (RMGPb).13 Many of these compounds’ complexes with the GP enzyme were also studied by X-ray crystallography. From the so discovered seven GP binding sites the most investigated one is the catalytic (or active) site which can accommodate D-glucose (the physiological inhibitor of the enzyme) and a large array of glucose derivatives.14, 15 The most efficient glucose derived inhibitors belong to three main compound categories: glucopyranosylidene-spiro-heterocycles,14, 17 N-acyl-β-D-glucopyranosyl ureas,14, 15 and C-β-D-glucopyranosyl...
heterocycles.18-26 In each category several inhibitors have submicromolar and even low nanomolar inhibitor constants. Some of these glucose analog GP inhibitors (GPIs) were subjected to various physiological investigations to show significant blood sugar diminishing effects in streptozotocin-induced diabetic rats,77 restoration of whole body insulin sensitivity,28 triggering of mitochondrial oxidation and mTORC2 (mammalian target of rapamycin complex 2) signaling,29 and improvement of pancreatic β-cell function.30

Among the anomeric spirocycles the most efficient inhibitors are the glucopyranosylidine-spiro-isoxazolines31, 32 (Ki = 0.63 μM against RMGBP for a 2-naphthyl derivative) and the glucopyranosylidine-spiro-oxathiazoles13 (Ki = 0.16 μM against RMGBP for a 2-naphthyl derivative) while their xylopyranosylidine counterparts remained inactive.34 The glucose derived isoxazolines were shown to have significant inhibitory effects in rat and human hepatocytes, and also diminished hepatic glucose production in Zucker fa/fa rats by single dose oral administration.35 In this paper a new synthesis of the glucopyranosylidine-spiro-oxathiazoles, their in vitro enzymatic evaluation, as well as cellular and in vivo evaluations of the best inhibitor as an antihyperglycaemic agent are described.

Synthesis

Our previously explored strategy36 was developed for the synthesis of glycosylidine-spiro-oxathiazoles. The key step was the oxidative spirocyclization of O-peracetylated glycosyl hydroximothioates37 (e.g., 2) to glycosylidine-spiro-oxathiazoles 3 and 4 (Scheme 1), a transformation achieved readily upon treatment with NBS in refluxing halogenated solvents (CCl4, CHCl3). When the hydroximothioate moiety displayed an aryl substituent, our earlier study showed that the cyclization proceeded well whatever the configuration of the pyranose ring (β-glucosyl, β-galactosyl) or that of the anomeric centre (α/β). Moreover, the cyclization was stereoselective, yielding preferentially 1S-spiro-oxathiazoles in the D-glucose, D-galactose series. Later on, this methodology was applied for preparing D-glucosyl hydroximothioates precursors 2j-I obtained in variable yields (Table 1), their spirocyclization proceeded as generally observed, yielding preferentially the 1S-configured spirocycles 3j-I. The anomeric configurations for compounds 3j-I were deduced from NMR spectroscopy which revealed significantly different chemical shifts for the H3 and H5 protons of the C1 sugar.33, 34, 36, 38 As noted earlier for 1S-configured analogs, these signals were respectively close to 5.65, 4.45, and 122.5 ppm. The protected 1S-spirocycles were deacetylated in high yield under Zemplén conditions.

Enzyme kinetic studies (IC50 and/or Ki measurements) were then performed to evaluate whether the prepared spirocycles were GP inhibitors. Then, the most potent candidates were further evaluated through in vitro and in vivo biological assays to demonstrate their pharmacological interest. Therefore, substantial quantities of material were needed, typically gram-to-multiplegram-scale. This called for the design and development of an unprecedented route to D-glucose based spiro-oxathiazoles, with the hope that a stereoselectivity higher than that of the NBS-mediated cyclization could be achieved.
A new route to spiro-oxathiazoles by 1,3-dipolar cycloaddition of nitrile oxides to gluconothionolactone

The design of a new access to spiro-oxathiazoles was inspired by our reported synthesis of glycosylidene-spiro-isoxazolines based on 1,3-dipolar cycloaddition of nitrile oxides to exomethylene glycols (pyranoid exo-glycals).31, 32, 35 Concerted reactions are advantageous as regard to atom economy, experimental conditions and yield, so they are of particular interest in carbohydrate chemistry. We and others could demonstrate that such cycloadditions occurred with a high stereocore, the dipole attacking the exomethylene carbonyl from the α-face of the α-glucopyranosylidene ring,40 while for steric and electronic reasons, regioselectivity was equally high, favouring attack of the anomeric carbon by the oxygen atom of nitrile oxides in all cases studied. The more complex cycloaddition of nitrones (E and/or Z configurations, endo and/or exo transition states) to pyranoid exo-glycals led to mixtures of cis/trans and α/β products, but the α-face approach usually predominated, or was even exclusive in some cases.41, 42

Based on this 1,3-dipolar cycloaddition analogy, the known α-glucono-δ-thionolactone 12 appeared as the required precursor towards spiro-oxathiazoles. Moreover, benzylated α-glucono-δ-thionolactone 12 appeared to be a readily accessible substrate, based on the one-pot two-step synthetic route by the group of Fairbanks.46, 47 1-Thiosugars reacting with tert-butyl-sulfinyl chloride in the presence of triethylamine were converted into glycosyl \textit{S-}tert-butyl thiosulfimates (within 10 min at room temperature), which upon thermolysis (10-20 min in refluxing toluene) yielded various glycono-thionolactones, and in particular α-glucono-δ-thionolactone 12 in a notable 85% yield.42 Glycono-δ-thionolactones have been shown to react with dienes, diazoalkanes, and carbenoids,48 and the thermolysis of the obtained dihydro-1,2,3-, and -1,3,4-thiadiazoles has been investigated.40

We developed this new route for synthesizing compound \textbf{5h} on the multi-gram scale considering its remarkable inhibitory properties. The direct synthesis of diithiocarbamate 8 from the commercially available hemiacetal 6 using tosyl chloride and potassium O-ethyl dithiocarbonate under phase-transfer conditions50 gave in our hands poor results. However, the two-step protocol in one-pot reported by Vasella51 (treatment of hemiacetal 6 with \textit{CCl\textsubscript{4}} and HMPT, then with potassium O-ethyl dithiocarbonate at -40°C, for which basic conditions dictate the choice of base-stable protective groups) afforded the desired dithiocarbamate 8 via the intermediate chloride \textbf{7} (Scheme 2). Subsequent methanolyisis delivered the 2,3,4,6-tetra-O-benzyl-1-thio-δ-glucopyranosyl 9 in an 85% overall yield. Thiol \textbf{9} was reacted with tert-butyl-sulfinyl chloride47 to afford the δ-configured thiosulfinate \textbf{10} in 90% yield as a ~1:1 \textit{S(S),S(R)} diastereoisomeric mixture. While mass spectrometry displayed a main peak as expected (\textit{m/z} = 661 [M+H]+), the formed diastereoisomers \textbf{10} were visible as two close spots on TLC plates. They were purified by column chromatography but could not be fully separated in pure form. The \textit{1H} NMR spectra of this mixture displayed two singlets for the diastereotopic tert-buty1 groups resonating at 1.40 and 1.58 ppm, respectively.

![Scheme 2. New access to 1-glucopyranosylidene-spiro-oxathiazole by nitro oxide thionolactone 1,3-dipolar cycloaddition](image)

Following Fairbanks’ procedure, thermal elimination was carried out in refluxing toluene with either the crude thiosulfinate \textbf{10} (two-step one-pot process) or the purified diastereoisomeric mixture, but disappointingly, the yields recorded for the thionolactone \textbf{12} were around 45%, significantly lower than the 85% yield reported.47 As a byproduct, the glycono-δ-lactone \textbf{11} was identified and actually

Table 1: Stereoselective cyclization of β-D-glucosyl thioxyimines 2 to glucose-based spiro-oxathiazoles 3-4 and their deacetylation to 5.23, 34, 36, 38, 39

<table>
<thead>
<tr>
<th>Ar</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2027</td>
<td>4624</td>
<td>11</td>
<td>9026</td>
</tr>
<tr>
<td>b</td>
<td>6027</td>
<td>33+</td>
<td>16+</td>
<td>71</td>
</tr>
<tr>
<td>c</td>
<td>48</td>
<td>15+</td>
<td>7+</td>
<td>84</td>
</tr>
<tr>
<td>d</td>
<td>6527</td>
<td>30+</td>
<td>16+</td>
<td>79</td>
</tr>
<tr>
<td>e</td>
<td>7127</td>
<td>69+</td>
<td>17+</td>
<td>79</td>
</tr>
<tr>
<td>f</td>
<td>85</td>
<td>unselective reaction</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>40</td>
<td>61+</td>
<td>18+</td>
<td>97</td>
</tr>
<tr>
<td>h</td>
<td>78</td>
<td>36+</td>
<td>16+</td>
<td>94</td>
</tr>
<tr>
<td>i</td>
<td>78</td>
<td>0</td>
<td>30+</td>
<td>-</td>
</tr>
<tr>
<td>j</td>
<td>53</td>
<td>50</td>
<td>-</td>
<td>73</td>
</tr>
<tr>
<td>k</td>
<td>35</td>
<td>36</td>
<td>-</td>
<td>88</td>
</tr>
<tr>
<td>l</td>
<td>86</td>
<td>49</td>
<td>-</td>
<td>>95%</td>
</tr>
</tbody>
</table>

Yields were calculated based on the isolated yields and on the amount of product present in the 1RS-mixtures (ratio measured by \textit{1H} NMR unresolved by column chromatography.
isolated in an equal amount when the reaction time was increased thus allowing for the complete conversion of both thiosulfinate diastereoisomers 10. Formation of an undesired analogous δ-lactone was observed by Fairbanks (~20% yield) during the thermal elimation at 120°C of a rhamno-configurred thiosulfinate. Presence of di-tert-butylthiosulfinate as a byproduct (vide infra, text and Fig. 3, Fig. 4) has been noted as another limitation of the method.47 These disappointing and intriguing observations led to repeated trials for enhancing the yield of thiolactone 12, but without success. TLC monitoring of the reaction revealed that the more mobile thiosulfinate diastereoisomer 10 was converted faster than the other one, and while its spot decreased visually on TLC plates, that of the thionolactone 12 increased. Seemingly, after complete conversion of the more reactive thiosulfinate, there was no increase in the amount of δ-glucono-δ-thionolactone 12 from the qualitative analysis of TLC, and disappointingly, the isolated yields never exceeded 45%. Analysis of MS data collected for the fractions recovered from column chromatography confirmed the formation of δ-gluconolactone 11 (m/z [M+Na]+ = 561), and showed the presence of an unidentified product (m/z = 607 M+H+) (vide infra, text and Fig. 1). After inquiring about these discrepancies, Prof. A.J. Fairbanks kindly provided us with the investigator’s original report. It appeared that the 85% yield reported47 for the thionolactone 12 was overestimated as, from the report, it corresponded to a crude product « contaminated with tert-butyl species, possibly di-tert-butyl thiosulfinate. Yields projected to approximately 54-56% ». Presence of byproducts, allegedly mixed disulfides or disproportionation products, was also supposed, but not proven. A note clearly stated that the yield estimated by 1H NMR for the thionolactone 12 were 54 and 56% (close to the 43-53% yields observed in the δ-galacto series),47 so that these data corroborated ours, suggesting the occurrence of at least one unwanted reaction detrimental to the yield of the desired glycono-thionolactone.

D-Glycono-thionolactones are subject to epimerization47 at C-2 or 2,3-elimination43 under basic conditions. Therefore, D-glucono-δ-thionolactone 12 was often used without further purification for the 1,3-dipolar cycloaddition. With the crude thionolactone 12, this step proceeded smoothly in the presence of 2-naphthyl hydroxymim chloride to afford the spiro-oxathiazole 13 in high yield (~95%) and stereoelectivity (9:1 S/R mixture). The diastereoisomeric mixture could be resolved by silica gel column chromatography to afford the desired spiro-oxathiazole 13 with a S-configuration at the spiro-anomeric center (85% isolated yield) and the minor R-epimer (<10% yield).

Not surprisingly, the final debenzylation step proved to be problematic, and standard hydrogenolysis in the presence of palladium did not proceed at all, while Et,SiH/I252 resulted in partial deprotection only. Treatments with bromine or NBS and water under various free radical conditions (NBS, CCl4, hv, with or without CaCO3; NaBrO3/Na2S2O4) resulted in complex mixtures, due to partial debenzylations,53, 54 and/or formation of oxidized products as evidenced by mass spectrometry: in addition to the expected fragments corresponding to the partial or total debenzylation, fragments corresponding to M+14 indicated the oxidation of benzyls to benzoates, while others (M+16 and M+32) suggested oxidation to sulfoxides and sulfones. Fortunately, debenzylation could be achieved by treatment with BCl3 at –60°C55 with careful TLC monitoring to quench the reaction immediately after disappearance of the starting material to avoid further unwanted reactions. Purification by column chromatography delivered the desired final O-unprotected spiro-oxathiazole 5h (815 mg, 65% yield).

In conclusion, the designed 1,3-dipolar cycloaddition approach between 2-naphthyl nitrile oxide and perbenzylated δ-glucono-thionolactone 12 was most efficient for synthesizing the corresponding δ-glucose-based 15-3-(2-naphthyl)-spiro-1,4,2-oxathiazole 13. Both regio- and stereo-selectivities were excellent. In contrast to literature reports, the limiting step of this approach was the synthesis of tetra-β-phenyl δ-glucono-δ-thionolactone 12 by thermolysis of glucopyranosyl tert-butyl sulfinate precursors 10. The discrepancies between our results and those of Fairbanks as reported and detailed in an internal document prompted the investigation of the thermolysis mechanism by DFT calculations to better understand the possible path to the desired thionolactone.

Proposed mechanisms for the thermal elimination of thiosulfinates 10 to thionolactone 12

Various possible modes of reaction were envisaged (Scheme 3) since tert-butyl thiosulfinates may undergo thermal elimination by hydrogen atom abstraction through five-membered cyclic transition states (TS). Glycono-thionolactones being reportedly obtained sometimes in excellent yields,46, 47 elimination involving the anomeric proton (path a) was privileged (anomeric effect), thus delivering the desired thionolactone 12 and tert-butyl sulfenic acid. However, elimination might also involve one of the nine equivalent hydrogen atoms of the tert-butyl moiety (path b), which would afford isobutene and the 3-D-glucopyranosyl-thiosulfonic acid 1456 (other name: 3-D-glucopyranosyl-1-oxa-trisulfane). Considering early56 and recent57, 58 reports on the thermolysis of di-tert-butylthiosulfinate (also termed di-tert-butyldisulfane-S-oxide, tBuS(O)S tBu),57 these speculations were reasonable, but the total weight of lactones 11 and 12 (ca 90%, 1:1 ratio) measured after full conversion of both thiosulfinates indicated that path b was only a marginal process.
The puzzling formation of a-gluconolactone 11 might be due to hydrolysis by water present in trace amount or to adventitious reactions, as discussed recently, but since 11 was detected on TLC plates even at the initial stage of the reaction, and as use of a purified mixture of diastereomeric thiosulfonates 10 led to similar lactone distribution, this hypothesis was uncertain. As the glucopyranosyl tert-butyl thiosulfonates 10 must achieve a favourable 5-membered cyclic TS for the thermal elimination to proceed, and because of probable steric clashes between the tert-butyl group and the O-benzyl group for the S()-diastereoisomer, most probably the S()- and S()-tert-butyl thiosulfonates underwent elimination at different rates, the (R()-diastereoisomer reacting faster to deliver thiolonolactone 12 through path a. Still, another hypothesis was needed to explain the presence of glyconolactone 11. The thermal rearrangement of a-configured glycopyranosyl xanthates to a-glycosyl dithiocarbonates has been reported to proceed without inversion of configuration at moderate temperatures (50-65°C). This reported example of the Freudenberg-Schönberg rearrangement was supposed to occur by an intramolecular 1,3-shift through a 4-membered cyclic TS. An analogous thermal rearrangement could occur with the less reactive S()-thiosulfinate (path c), and the rearranged product with a O()-glycosidic bond [OS(S) moiety] would be susceptible to afford by thermal elimination the lactone 11 and tert-butyl-thiosulfonic acid (tBuSSH). Interestingly, the relative enthalpies for thiosulfonic acid isomers [HS(O)SH, and HS(S)OH] estimated by theoretical studies at 298 K in the gas phase were found to be almost the same, suggesting that isomers 10 and 10’ might have similar energies. While the rearrangement of xanthates to dithiocarbonates is stability driven, the proposed pathway to gluconolactone 11 might benefit from the activation of the anomeric center (rearrangement favoured) and, in lactone 11, the stabilization of C=O bond (162 kcal.mol⁻¹) by ca. 50 kcal.mol⁻¹ compared to the C=S thiacarbonyl bond (115 kcal.mol⁻¹) in thiolactone 12. Eventually, calculations were carried out to identify the reaction pathway leading to the gluconolactone byproduct (hydrolysis versus thermal rearrangement followed by elimination).

DFT Calculations

As a representative model, the tetra-O-methyl analog of 10 was chosen (See supporting information for further details) to have reasonable computational time. The numbering of molecules applied is the same for both O-benzyl- (synthetic work) and O()-methyl-protected (computational approach) analogues, but using italicized types in the last case. Our calculations addressed first the three reaction pathways mentioned above (Scheme 3), namely the two possible direct internal eliminations (Ei) (path a, path b), then path c, in which an internal O,S-rearrangement by 1,3-shift was supposed to occur prior to the Ei elimination. The stereochemistry at the sulfur atom did not influence the calculations and the results are presented here for a single diastereoisomer at the sulfur atom.

Starting from 10, the two divergent internal eliminations (Ei) discussed above were envisaged (Fig. 1). Deprotonation of the anomic position (path a) was found to be easy (TS-a, ΔG° = 21.2 kcal.mol⁻¹), leading to the D-glucono-()-thiolactone 12 and formation of tert-butyl sulfenic acid. In the case of path b, which involves one of the nine hydrogen atoms of the tert-butyl groups, and leads to product 14 and isobutene, a higher activation barrier of ΔG° = 24.9 kcal.mol⁻¹ (TS-b) was calculated. This is in agreement with the synthetic work, as the thermal Ei elimination delivered the thiolonactone 12 in moderate yield while the benzyl-protected product 14 was not observed.

As a possibility for the puzzling formation of 11 from 10, path c was envisioned (Fig. 2). For this two-step pathway, a 1,3 shift of the tert-butyl thiosulfinate group led first to 10’ (TS-c, ΔG° = 36.3 kcal.mol⁻¹), which subsequently could react through an Ei elimination (TS-d, ΔG° = 10.9 kcal.mol⁻¹) leading to 11 and tert-butyl thiosulfonic acid. Due to the high activation energy of TS-c, this pathway can thus be excluded.
At this point, since the formation of the experimentally observed \(\beta \)-gluconolactone 11 cannot be explained through path c, we wondered whether lactone 11 could be formed due to hydrolysis of \(\beta \)-glucono-thionolactone 12. In this event, since the reaction was conducted under anhydrous conditions, water had to be formed as the reaction proceeded. Interestingly, Block et al.\(^5, \)\(^7\) reported the dismutation of tert-butyl sulfenic acid, giving rise to tert-butyl-2-methyl-propane-2-sulfinothiate (or thiosulfinate) and water (0.5 eq. each, Fig. 3). The computed thermodynamics for the dismutation (\(\Delta G = -4.4 \text{ kcal \text{mol}^{-1}} \)) were in agreement with the experimental observations of Block.\(^5, \)\(^7\) Subsequently, water, assisted by the coordination of the thiosulfinate, can trigger the hydrolysis of compound 12 through TS-e (\(\Delta G^e = 30.6 \text{ kcal \text{mol}^{-1}} \)), providing gluconolactone 11 and hydrogen sulfide (0.5 eq. each). This proposed mechanism is in agreement with the experimental formation of lactones 11 and 12 in a 1:1 ratio.

To further confirm that lactone 11 came from the hydrolysis of thionolactone 12 (Fig. 4), we computed the attack of di-tert-butyl thiosulfinate on substrate 12 (Fig. 4). TS-f (\(\Delta G^f = 41.5 \text{ kcal \text{mol}^{-1}} \)) could lead indeed to the formation of 11 and tert-butyl-2-methylpropane-2-sulfinothioate (or dithiosulfinate) without the assistance of a water molecule. Since the \(\Delta \Delta G^f \) between TS-e and TS-f was 10.9 kcal.mol\(^{-1}\) in favor of the former, water hydrolysis pathway was confirmed to be the most energetically reasonable route.

In summary, these calculations showed a good agreement with the synthetic results, as they indicated that the thermal elimination via 5-membered transition states preferentially involved the anomic proton rather than one of the nine tert-butyl hydrogen atoms, thus yielding the target gluconothionolactone. Simultaneous formation of gluconolactone through a 1,3-shift of the thiosulfinate moiety, followed by EI can be ruled out. Based on the reported dismutation of tert-butyl sulfenic acid which yielded di-tert-butyl thiosulfinate and water (0.5 eq. each), the calculations predicted that 12 could be hydrolysed into 11 (0.5 eq.). Thus, in order to optimize the yield of the target gluconothionolactone 12, water, formed while the thermal elimination proceeds, has to be trapped by efficient means, for example by adding activated molecular sieves to the reaction medium.\(^46, \)\(^47\)

Enzyme kinetics

Previous structure-activity relationship studies\(^15, \)\(^33, \)\(^38\) revealed that phenyl oxathiazole 5a was a moderate inhibitor of GP (\(K_i = 26 \mu M \)). Other para-substituted phenyl analogues (R = phenyl, NO\(_2\), CN) exhibited lower inhibitory properties with IC\(_{50}\) values in the high micromolar range for 5b,c,g. The para-fluoro and para-methoxy analogues 5d and 5e had similar and slightly better inhibitory potential than 5a (\(K_i = 28 \) and 8 \(\mu M \), respectively). As observed for several other classes of glucose-based GP inhibitors,\(^14, \)\(^15, \)\(^32, \)\(^35, \)\(^68\) the 2-naphthyl oxathiazole derivative 5h was the best inhibitor among the series of compounds studied, and one of the best among glucose-based GP inhibitors. Substitution by a para-carboxy group on the phenyl (5j) resulted in a good inhibitory potency (\(K_i = 238 \mu M \)), while the 2-quinolinyl analogue 5k was more potent (\(K_i = 26 \mu M \)), although much less potent than the 2-naphthyl analogue 5h. In spite of the size of the 9-phenanthryl residue, compound 5i displayed moderate inhibitory properties.
In vitro pharmacological evaluations

Guided by the kinetic results and for an in-depth evaluation of his inhibitory property, the glucose-based GP inhibitor 5h with the best \(K_i \) value was assayed in vitro with rat and human hepatocytes in primary culture (see Table S1). The potent in vitro GP inhibitor 1,4-dideoxy-1,4-imino-\(\beta \)-arabinotol (DAB, \(K_i = 400 \text{ nM} \)) was selected as the reference compound for its established in vivo activity in a GP-dependent glycaemia study. An evaluation of glucose release after glucagon stimulation in primary rat hepatocytes was performed. Further evaluation in human hepatocytes for the candidate 5h was accomplished by measuring both glucose release and intracellular glycogen for an assessment of species specificity.

Table 2: Kinetic data measured for spiro-oxathiazoles 5a-e.g.h.jl for the inhibition of RMGPb

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>(IC_{50}) or (K_i) values ((\mu \text{M}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td></td>
<td>(K_i = 26 \pm 2.1)</td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td>(IC_{50} = 250)</td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td>(IC_{50} = 700)</td>
</tr>
<tr>
<td>5d</td>
<td></td>
<td>(K_i = 28 \pm 2.8)</td>
</tr>
<tr>
<td>5e</td>
<td></td>
<td>(K_i = 8 \pm 0.9)</td>
</tr>
<tr>
<td>5g</td>
<td></td>
<td>(IC_{50} = 250)</td>
</tr>
<tr>
<td>5h</td>
<td></td>
<td>(K_i = 0.16 \pm 0.04)</td>
</tr>
<tr>
<td>5j</td>
<td></td>
<td>(K_i = 238.5)</td>
</tr>
<tr>
<td>5k</td>
<td></td>
<td>(K_i = 26)</td>
</tr>
<tr>
<td>5l</td>
<td></td>
<td>(IC_{50} = 32.4 \pm 1)</td>
</tr>
</tbody>
</table>

Table 3: In vitro IC\(_{50} \) for compound 5h based on glucose release and intracellular glycogen content after glucagon stimulation in rat and human primary hepatocytes in primary cultures

<table>
<thead>
<tr>
<th>Compound</th>
<th>Glucose release (IC_{50} (\mu \text{M}))</th>
<th>Intracellular glycogen (IC_{50} (\mu \text{M}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rats</td>
<td>Humans</td>
<td></td>
</tr>
<tr>
<td>5h</td>
<td>6.7 ± 1.51</td>
<td>4.88 ± 1.20</td>
</tr>
<tr>
<td>DAB</td>
<td>8 ± 1.30</td>
<td>1.10 ± 1.11</td>
</tr>
</tbody>
</table>

\(a IC_{50} \) values are average of three to five measurements (see supporting information).

Figure 5: Glucose release from rat and human hepatocytes after glucagon stimulation in vitro measured in the presence of compound 5h versus DAB as the reference compound.

Top: Rat hepatocytes, bottom: human hepatocytes.
In vivo pharmacological evaluations

The glucagon challenge test in the Zucker fa/fa rat model was performed to measure the glucose-lowering effect *in vivo* with for compound 5h. This animal model, displaying hyperphagia and insulin resistance with hyperinsulinemia, was chosen due to its high hepatic glycogen content. We used glucagon (200 µg/kg, in a single subcutaneous “SC” administration) as hyperglycemic agent. A dose-dependent effect was clearly observed when compound 5h was introduced orally in a single administration (Figure 7). Liver glucose output kinetics (Fig. 7A) and their areas under the curves (AUC) for 45 min (Fig. 7B) pointed to a dose-dependent decrease in liver glucose production ranging from 7.5 to 60 mg/kg (Fig. 7B). The rate of endogenous glucose production being elevated in type 2 diabetes renders this effect on liver output relevant for therapeutic applications.71

Compound 5h was then selected for a subchronic oral administration with a dose corresponding to the first significantly effective in the acute *in vivo* glucagon challenge test (30 mg/kg). In a glucagon challenge test performed after 4 days of treatment, a nearly 33% reduction of hepatic glucose production (*p<0.05*) was observed (Fig. 8A-B). It is worth pointing out that the activity of glycogen phosphorylase was preserved, in spite of the subchronic treatment, since hepatic glucose production was not further reduced.

As a summary, the *in vitro* and *in vivo* pharmacological effects of glucose-based spiro-oxathiazole 5h were analyzed and they validated its potent GP inhibition both *in vitro*, in cell assays and in a diabetic rat model (*in vivo*). In rat and human hepatocytes, compound 5h reduced glucagon-stimulated glucose output through glycogenolysis inhibition (Table 3, Fig. 5). No species...
specificity could be observed since the potency of compound 5h for inhibition of glucose output were comparable between rat and human cells (Table 3) as previously reported.72, 73 Compound 5h was efficient in vivo in the Zucker fa/fa rat model of insulin resistance and a dose-dependent decrease of hepatic glucose output to a maximal 43% was observed (Fig. 7). This glucose lowering effect allows for the design of therapeutic applications due to a high rate of endogenous glucose production in type 2 diabetes.73 Indeed, hepatic glucose production tends to match the values usually obtained in Wistar normal rat.

The complete suppression of glucagon-induced glucose output in the presence of DAB appears in sharp contrast with the moderate level of inhibition of GP.76 The incomplete inhibition of GP by compound 5h is advantageous for limiting potential side effects. In addition, the absence tissue-specificity between liver and muscle GP isofoms could impair exercise-mediated metabolism of muscle glycogen. Preserving a minimum level of activity will limit this risk, although the selection of a liver-specific inhibitor preferred for long-term therapy remains a valuable research challenge.74 Even though hypoglycaemia could be a detrimental consequence of GP inhibition, hepatic glucose production was not further reduced after repeated administrations of compound 5h, indicating a residual activity of GP thus limiting the risk of hypoglycaemia (Fig. 7).

Conclusion

Type 2 diabetes is a major public health problem and design of glycogen phosphorylase inhibitors targeting the catalytic site of the enzyme appears as a promising strategy for a better control of hyperglycaemia. An especially potent group of GP inhibitors is represented by some glucopyranosylidene-spiro-heterocycles, among them spiro-oxathiazoles. A new synthesis has now been elaborated for this valuable class of compounds by the 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks’ protocols, although with a revisited outcome and also based on DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h has recently been identified as one of the most potent GP inhibitors with a \(K_d \) of 160 nM against RMGPs. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h was promising as a potential anti-hyperglycaemic druggable compound as it performed better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by \(\sim 36\% \) at 30 mg/kg and \(\sim 43\% \) at 60 mg/kg. This indicates that compound 5h can be considered as a powerful anti-hyperglycaemic agent in the context of type 2 diabetes. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates. This study is also an example of molecular diversity-oriented strategies to identify the fittest inhibitor of GP and from the identification of this candidate, multigram-scale preparations for in vivo validation called for a robust and faster synthetic route to the target glucose-based spiro-oxathiazole.

Conflicts of interest

There are no conflicts to declare

Acknowledgements

Financial support from CNRS and the Hungarian Academy of Sciences, University Claude Bernard Lyon 1, the French Agence Nationale de la Recherche (ANR-08-BLAN-0305) as well as the Hungarian National Research, Development and Innovation Office (OTKA K109450), and the EU co-financed by the European Regional Development Fund under the project GINOP-2.3.2-15-2016-00008 are gratefully acknowledged. We are grateful to Prof. A.J. Fairbanks for providing the internal report of B. Wilkinson (January 2008) on the research carried out under his supervision. CCIR-ICBMS (UCBL) is gratefully acknowledged for the allocation of computational resources.

Notes and references