3-O-Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake
Jing Zhao, Yanan Zhu, Xuehong Song, Yuanyuan Xiao, Guowei Su, Xinyue Liu, Zhangjie Wang, Yongmei Xu, Jian Liu, David Eliezer, et al.

To cite this version:

HAL Id: hal-03006247
https://hal.archives-ouvertes.fr/hal-03006247
Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
3-O-Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake

Jing Zhao 1, 9, Yanan Zhu 4, 9, Xuehong Song 4, Yuanyuan Xiao 1, Guowei Su 6, Xinyue Liu 1, Zhangjie Wang 6, Yongmei Xu 6, Jian Liu 6, David Eliezer 7, Trudy F. Ramlall 7, Guy Lippens 8, James Gibson 1, Fuming Zhang 1, 3, Robert J. Linhardt 1, 3, Lianchun Wang 4, 5, Chunyu Wang 1, 2, 3.

1 Center for Biotechnology and Interdisciplinary Studies, 2 Department of Biological Sciences, 3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States. 4 Department of Molecular Pharmacology and Physiology, 5 Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, United States. 6 Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, United States. 7 Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York, United States. 8 Toulouse Biotechnology Institute, CNRS, INRA, INSA, University of Toulouse, 31077 Toulouse, France. 9 These authors contributed equally: Jing Zhao and Yanan Zhu.

Correspondence and requests for materials should be addressed to C.W and L.W. (email: wangc5@rpi.edu and lianchunw@health.usf.edu)
Prion-like transcellular spreading of tau in AD is mediated by tau binding to cell surface heparan sulfate (HS) and the glycan determinants of this interaction are beginning to be decoded. In a microarray of structurally-defined HS oligosaccharides, an additional 3-O-sulfo group (3-O-S) resulted in significantly increased tau binding. SPR assays showed that an HS dodecasaccharides (12-mer) with one additional 3-O-S inhibited tau-HS interaction with a ~5-fold lower IC_{50} than an HS 12-mer without 3-O-S. In $Hs3st1^{-/-}$ (3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished cell surface binding and internalization of tau. An NMR titration mapped the 3-O-S recognition site in tau to PRR2 and R2 domains. Treatment of cells with the 3-O-S HS 12-mer reduced both tau-HS interaction and tau cellular uptake. This study established the important role of 3-O-S in tau-HS interaction, suggesting that 3-O-S represents a pharmacophore for glycan-based drug discovery targeting the spread of tau pathology.
Alzheimer’s disease (AD) pathology is characterized by amyloid plaque and neurofibrillary tangles (NFTs). NFTs are composed of microtubule-associated protein tau (MAPT), whose normal functions include bundling and stabilizing microtubules (MTs) in neurons. Continued failure of anti-amyloid compounds in clinical trials has shifted the focus of AD research towards tau. In AD, tau becomes hyperphosphorylated, dissociates from microtubule and aggregates to form NFTs. In contrast with amyloid plaques, NFTs pathology correlates well with cognitive decline in AD. Recently, mounting evidence from cell culture, animal models and human pathology has established that tau NFTs spread through neural networks in an orderly and ‘prion-like’ manner, mediated by transcellular movement of tau (Fig. 1A). Because NFTs directly correlate to cognitive deficits, inhibiting the prion-like spread of tau is likely a viable strategy to slow down cognitive decline and the progression of AD in patients. Thus, there is a pressing need to understand the molecular mechanisms of NFT spread.
Figure 1. Cellular uptake of tau is mediated by HSPGs on cell surface. (A) Prion-like spread of tau pathology (represented by blue color) in AD brain. (B) Uptake of tau mediated by the binding to heparan sulfate proteoglycans (HSPGs). Microtubules are represented by a tube composed of α- and β- tubulins (yellow and purple). (C) Primary structure and sulfation pattern of heparan sulfate.

A key step in tau transcellular movement is tau binding to heparan sulfate proteoglycans (HSPGs)\(^\text{11–14}\) on cell surface (Fig. 1B), followed by the endocytosis of tau. HSPGs are HS glycosaminoglycan (GAG) chains covalently linked to a protein core. HS is a linear, polyanionic GAG composed of disaccharide repeats of uronic acid (glucuronic acid or iduronic) and glucosamine with sulfation on the 3-OH, 6-OH and -NH of the glucosamine residue, and the 2-OH of the uronic acid residue (Fig. 1C). Specific sulfation patterns are required for the recognition of HS by its protein binding partners\(^\text{15,16}\). In a previous study, we have identified the 6-O-sulfo groups as an important determinant in tau-glycan interaction\(^\text{17}\), which was later confirmed by others with a variety of approaches, including the knockout of 6-O-sulfotransferases, HS biosynthetic enzymes responsible for carrying out cellular 6-O-S sulfation of HS\(^\text{13,14}\). The 2-O-sulfo group is not critical for tau-HS interaction, while controversial data exist regarding the role of N-sulfo groups\(^\text{5,8,17}\). The role of 3-O-S, a rare sulfation site in HS, has not been studied. Only six proteins are known to rely on the 3-O-S for binding specificity\(^\text{18–20}\). In the human, 3-O-sulfation of HS is catalyzed by seven isoforms of 3-O-sulfotransferase (HS3ST): HS3ST1, 2, 3A, 3B, 4, 5 and 6. HS3ST1, 2, and 5 are only expressed in the brain based on a tissue-based map of human proteome\(^\text{21}\), and a recent study showed
that *Hs3st2* and *Hs3st4* were overexpressed in AD hippocampus22, suggesting the involvement of 3-O-sulfation in AD pathology. However, how 3-O-sulfation in HS contributes to AD is unknown.

Here, utilizing structurally defined HS oligosaccharide microarray, surface plasmon resonance (SPR), nuclear magnetic resonance spectroscopy (NMR), and cellular binding and uptake assays, we report for the first time that 3-O-S is a crucial determinant in tau-HS interaction and tau uptake. Our results provide molecular details of the link between 3-O-sulfation of HS and AD, pointing towards novel strategies for tau-targeted AD therapy.
Results

3-O-S enhances tau binding to HS in glycan array analysis. Previous interaction studies of tau/glycan have relied on heparin as a substitute for HS but important structural and functional differences exist between heparin and HS. In this studies, tau/glycan interaction has been examined using HS. Structurally defined HS oligosaccharides were synthesized by a chemoenzymatic method as previously described \(^{19,23}\) and were then immobilized on a microarray chip, creating the low molecular weight HS (LMHS) array. Full-length tau binding (or lack thereof) to the HS array was visualized by fluorescently-labeled tau remaining on the chip after incubation and washing. As shown in Fig. 2, high fluorescence intensity was observed for a HS heptasaccharide (7-mer) on spot 4 (oligo-4), and three HS dodecasaccharides (12-mers) in spot 18, 19 and 20 (oligo-18, -19 and -20). Remarkably, oligo-4 which only differs from oligo-5 by a single additional 3-O-sulfo group, exhibits ~ 10-fold higher fluorescence intensity than oligo-5, indicating that the presence of 3-O-S increases the binding of tau protein. The significance of 3-O-S is also underscored from the binding of tau to longer oligosaccharides as demonstrated by the microarray analysis. HS 12-mer oligo-18 and oligo-19, containing two and one 3-O-S, respectively, displayed higher binding to tau compared to oligo-20, a HS 12-mer lack of 3-O-S. Oligo-21, which is not sulfated, exhibited negligible fluorescence.
Figure 2. Low molecular weight heparan sulfate (LMHS) array shows the crucial role of 3-O-sulfo group (3-O-S) in tau binding. Fluorescence intensity on each spot of array was shown in a bar graph, with the monosaccharide composition/sulfation pattern drawn for the HS oligosaccharides with high fluorescence intensity (tau binding). Complete results of the LMHS array can be found in Fig. S1 and S2.

3-O-S promotes inhibition of tau-HS interaction by oligosaccharides as demonstrated by SPR analysis. Binding kinetics and affinity between HS and tau have not been measured before. Here, HS from three different sources, porcine brain, porcine spine, and porcine intestine, were prepared, biotinylated, and immobilized on a SA sensor chip for binding studies using full-length tau. Brain, spinal and intestinal HS exhibited similar binding pattern to tau, with a binding affinity (K_D) of 0.02 μM (Fig 3A and Fig. S3), showing similar behavior in tau interaction of HS from these three different sources. The more accessible porcine intestinal HS was then used to further characterize the role of 3-O-sulfation in tau-HS binding, which likely resembles endogenous HS from brain tissues. Three synthesized HS 12-mers, oligo-19, oligo-20...
and oligo-21 (the oligosaccharides in spots 19, 20, and 21 of the LMHS array, for chemical structure see Fig. S1B) were tested by a solution/surface competition SPR assay (Fig. 3B) to examine their ability to inhibit tau-HS interaction. Full-length tau protein was individually pre-mixed with each of three HS 12-mer and then flowed over a chip with surface-immobilized HS. The tau protein binding to 12-mer in solution diminishes its interaction with the HS immobilized on the chip surface (Fig. 3B). With increasing 12-mer solution concentrations, less and less binding to the surface was detected. An IC_{50} of 0.9 μM and 4.9 μM for the inhibition of tau-HS interaction were obtained for oligo-19 and oligo-20, respectively (Fig. 3C and 3D). Observed lower IC_{50} value for oligo-19 is consistent with the stronger binding of tau to oligo-19 in HS microarray analysis. This ~ 5-fold lower IC_{50} indicates oligo-19 is much more effective in the inhibition of the tau-HS interaction. In contrast, oligo-21 showed very little inhibition of tau-HS interaction, with an IC_{50} higher than 700 μM (Fig. 3E), also consistent with the negligible fluorescence signal for oligo-21 in LMHS array. The significantly lower IC_{50} of oligo-19 compared with that of oligo-20 and the lack of inhibition by oligo-21 demonstrates that sulfation is required for the ability of HS 12-mer to inhibit the tau-HS binding, and that 3-O-S greatly enhances this inhibition.
Figure 3. HS 12-mer oligo-19 and oligo-20 inhibit full-length tau-HS binding with an IC_{50} of 0.9 μM and 4.9 μM, respectively. (A) Binding affinity of full-length tau-HS interaction was measured to be 0.02 μM by SPR binding kinetic assay for the first time. The association and dissociation curve of different tau concentrations were fitted (black line) by a 1:1 Langmuir kinetics model in Bio-evaluation. HS from three sources (porcine brain, porcine spine and porcine intestine) were tested (Fig. S3) and only porcine intestinal HS binding is shown here. (B) Scheme for Competition SPR. (C) Oligo-19 inhibits tau-HS binding with an IC_{50} of 0.9 μM. (D) Oligo-20 inhibits tau-HS binding with
an IC_{50} of 4.9 μM. (E) Oligo-21 does not inhibit tau-HS binding, with an IC_{50} higher than 700 μM.

Hs3st knockout reduces tau cell surface binding and cellular uptake.

Based on the microarray and SPR data, we hypothesized that 3-O-S in HSPGs may play an important role in tau binding to the cell surface and its subsequent internalization. To test this hypothesis, we next carried out tau cell surface binding and cellular uptake assays using a pair of wild type (WT) and Hs3st1 knockout (Hs3st1-/-) mouse lung endothelial cell (MLEC) lines. The selection of Hs3st1 was based on the expression profiles of HS 3-O-sulfo transferases in primary mouse cerebral cortex neurons determined by RNA-seq, with the highest expression level observed for Hs3st1 among all Hs3sts (Fig. S4). The Hs3st1-/- MLEC line was derived from the WT parent line using CRISPR-Cas9 gene-editing and expressed normal levels of NS, 6-O-S and 2-O-S (Fig. S5A), but reduced level of 3-O-S (confirmed by significantly reduced cell surface binding to antithrombin III requiring a 3-O-S for binding, Fig. S5B)\(^{24}\).

Biotinylated-tau was generated and incubated with cells, followed by washing and detection of surface-bound tau with streptavidin-HRP. Tau bound strongly to the surface of WT MLECs surface, while the binding was greatly diminished on Hs3st1-/- MLECs surface, showing that 3-O-S strongly enhances HS binding of tau on the cell surface (Fig. 4A). We next incubated both WT and Hs3st1-/- cells with Alexa488 labeled full-length tau (tau-Alexa) for 12 hrs., followed by detection with both flow cytometry (Fig. 4B) and confocal imaging (Fig. 4C) to further investigate the effects of 3-O-S deletion on the cellular uptake of tau. Large amounts of tau were internalized into the WT
MLECs, but internalization was greatly reduced in the Hs3st1Δ/Δ MLECs, indicating that 3-O-S indeed enhances HSPG-mediated tau internalization. Here, we demonstrate another role for cell surface 3-O-S in tau pathology, in which it specifically recognizes extracellular tau and mediates efficient cellular uptake.

Figure 4. Deletion of Hs3st1 diminishes tau cell surface binding and internalization. (A) The Hs3st1Δ/Δ cells showed less (46.3% reduction) tau cell surface binding, compared with WT. After fixing and incubating with biotinylated full-length tau (500 ng/ml, 100 μl/well) for 90 min at RT, the cell surface bound tau was measured after incubating with Streptavidin-HRP and color development. (B) The Hs3st1Δ/Δ cells showed significantly less internalization of tau-Alexa (500 ng/ml) assessed by flow cytometry. (C)
The *Hs3st1* cells showed significantly less internalization of tau-Alexa by confocal images. The cells in 12-well plate were incubating with tau-Alexa (2 μg/ml, 500 μl/well) at 37°C for 3 h. The data shown are representative of 2-4 independent experiments.

Oligosaccharides with 3-O-S blocks tau cell surface binding and internalization. Interfering with tau-HS interaction using heparin (HP, a highly sulfated analog of HS) or its mimetics can block tau transcellular spreading in cell culture and animal models. Designing glycan-based compound to disrupt the tau-HS interface represents a novel strategy to develop effective therapeutics for tauopathy in AD. We asked whether 3-O-sulfated oligosaccharides could be more effective at blocking tau cell surface binding and internalization than counterparts without 3-O-S. As expected, HP potently inhibits tau cell surface binding and internalization (Fig. 5). Oligo-19 and oligo-20, but not oligo-21, inhibit tau cell surface binding and internalization with similar pattern as to HP. Compared with oligo-20, oligo-19 exhibits significantly greater inhibition of the cell surface binding and internalization of tau, underscoring the crucial role of 3-O-sulfation for effectively blocking tau-HS interaction on cell surface and tau internalization. The addition of 3-O-S modification may lead to more potent HS-based therapeutics for tauopathy.
Figure 5. 3-O-S modification enhances the inhibitory potency of HS oligo on tau-cell interaction and tau cellular uptake.

(A) HP, oligo-19 and oligo-20 inhibit tau cell surface binding by 46.3%, 28.0% and 13.0%, respectively. After fixing and incubating with biotinylated tau (500 ng/ml, 100 μl/well) without or with HP (50 ng), HS oligos (25 ng) for 90 mins at RT, the cell surface bound tau was measured after incubating with Streptavidin-HRP and color development. Oligo19 has a stronger inhibitory potency than oligo-20. Olig-21 has no inhibition.

(B) HP, oligo-19 and oligo-20 inhibit tau-Alexa (500 ng/ml) internalization assessed by flow cytometry.

(C) HP, oligo-19 and oligo-20 inhibit tau internalization assessed by confocal images. The cells were incubated with tau-Alexa (2 μg/ml, 500 μl/well) without or with HP (10 μg/ml), HS oligo (2.5 μg/ml) at 37 °C for 3 h. Oligo-19 has a stronger inhibitory potency than olig-20. Olig-21 has no inhibition. The data shown are representative of 2-4 independent experiments.
3-O-S is recognized by tau PRR2 and R2 regions in NMR titration. We next determined which regions of tau are responsible for the recognition of 3-O-S in HS. The primary sequence of the longest tau isoform (441 residues) features the N-terminal projection region (N1 and N2), the proline rich region (PRR1 and PRR2), and the microtubule binding region (MTBR) and the C-terminal region (Fig. 6C). The MTBR includes four internal repeat motifs (R1-R4), which mediates tau interactions with MTs and other proteins, as well as tau aggregation. We use full-length tau to map the binding sites of 3-O-S. Shorter HS oligosaccharides, i.e. oligo-4 (HS 7-mer with 3-O-S) and oligo-5 (HS 7-mer without 3-O-S), were used in the experiment, because tau preferably binds to oligo-4 from the microarray analysis. Oligo-4 and oligo-5 were individually added to 15N labeled tau and the refocused two-dimensional (2D) 1H-15N heteronuclear single quantum coherence (HSQC) NMR spectra of tau were recorded before (blue peaks in Fig. 6A) and after the addition of the HS oligosaccharides (green and red peaks in Fig. 6). Significant chemical shift perturbations (CSPs) in tau were observed upon addition of both oligo-4 (resonance in red) and oligo-5 (resonance in green) titration (Fig. 6). As expected, oligo-4 caused much larger CSPs than oligo-5, due to the stronger binding conferred by the 3-O-S modification. Several isolated peaks with large CSP are highlighted in Fig. 6B. The CSP differences (ΔCSP) between CSP due to oligo-4 and CSP due to oligo-5 were plotted against the residue number (Fig. 6C) to map the binding site of 3-O-S in tau (Fig. 6C). Significant ΔCSPs were located at the PRR2 and R2 domains, in which residues V226, L243, and Q276 exhibit the largest ΔCSPs, indicating a specific interaction between 3-O-S and the PRR2 and R2 of tau.
The hexapeptide \(\text{VQINK}^{275} \) in R2, which contributes to tau aggregation and MTs association, was previously identified as the main site of contact with HP. PRR regions of tau are not only important for MTs binding, but also hot spots for tau phosphorylation and protein interactions. The recognition of 3-O-S in HS by both PRR2 and R2 suggests HS interaction may modulate both tau aggregation and phosphorylation.

Figure 6. Chemical shift perturbation difference (\(\Delta \text{CSP} \)) reveals specific interactions between 3-O-S and PRR2 and R2 domain of full-length tau. (A) Overlay of \(\text{H}^{1-15N} \) HSQC spectra of full-length tau before (blue) and after 1:0.6 molar ratio addition of HS 7-mer oligo-5 (green) and HS 7-mer oligo-4 (red). (B) Zoomed-in NMR spectra of residues with biggest CSPs. (C) CSP differences (\(\Delta \text{CSP} \)) reveals specific interaction between 3-O-S and tau PRR2 and R2 domain. Construct of tau is shown above the figure, PRR = proline-rich region, MRBR = microtubule binding region.
Growing evidence has established that tau NFTs pathology propagates in a “prion-like” manner. While the mechanisms underlying the intercellular spread of tau are not completely understood, a required step in this process is that tau binding to HSPGs on the recipient cell surface. HS interactions with proteins are mainly driven by electrostatic forces, between positively charged side chains on proteins and negatively charged sulfo groups on HS. Although charge-based association is relatively non-specific, many HS-binding proteins require specific sulfation patterns in the glycan, e.g., heparin/antithrombin III (ATIII) interaction requiring a pentasaccharide sequence with a 3-O-sulfo group in its central residue. In contrast to the less stringent requirements for sulfation pattern reported for α-synuclein and Aβ binding to HS, tau requires more specific sulfate moieties. In previous work, we were the first to report that 6-O-S, but not 2-O-S, is required for tau binding, using structurally heterogeneous polysaccharides.

Here, we demonstrate that the 3-O-sulfation strongly enhances the tau-HS interaction and cellular uptake of tau, using LMHS microarray, SPR, cellular binding and uptake assays, and NMR. Structurally defined HS 7-mer and 12-mer with additional 3-O-S exhibited significantly stronger binding to tau in LMHS array (Fig. 2). This was then confirmed in SPR competition assays showing that an HS 12-mer with one additional 3-O-S (oligo-19) inhibits tau-HS interaction with ~5-fold lower IC_{50} value than the same HS 12-mer without 3-O-S (oligo-20) (Fig. 3). The reduced cell surface binding and internalization of tau in Hs3st1^- cells indicates that 3-O-sulfation significantly enhances the cellular uptake of tau (Fig. 4). These data conclusively demonstrate that 3-O-S
modification plays a crucial role in tau-HS interaction and tau cellular uptake. Our data provide a mechanistic rationale for the recent observation that the expression of Hs3st2 and Hs3st4 is elevated in AD brain and that HS containing GAGs isolated from AD brain exhibit enhanced tau binding.

To date, tau is only the seventh protein shown to specifically recognize 3-O-S in HS. Heparin/ATIII interaction has been the prime example of the specific interaction mediated by 3-O-S. Interestingly, 3-O-S also facilitates cellular entry of Herpes simplex virus (HSV-1), which has been linked to AD. 3-O-S enhances HS interaction with viral envelop glycoprotein D (gD). Thus, both Herpes virus and tau entry into a cell are enhanced by the 3-O-S functional group, raising the possibility of mechanistic cross-talks between the spread of tau pathology and Herpes infection in the AD brain.

By establishing the critical role of the rare 3-O-S HS modification in tau-HS interaction, we provide one of the most important insights for developing HS-based therapies against the spread of tauopathy: to efficiently inhibit cellular uptake of tau, a 3-O-sulfo group is required. In this work, efficient inhibition of tau-HS interaction has been achieved with a HS 12-mer containing 3-O-S (oligo-19) with an IC50 of 0.9 µM, in a SPR competition assay (Fig. 3C). Significant inhibition of cellular binding and uptake of tau was also observed (Fig. 5) by the same oligo-19. Based on these data, we propose that the 3-O-S and tau interface represents a novel target for AD disease-modifying therapy to block tau trans-cellular propagation in AD. As 3-O-sulfotransferases are overexpressed in AD brain, inhibiting the expression or activity of 3-O-sulfotransferases may represent another avenue for inhibiting the propagation of NFT pathology.
NMR mapping shows 3-O-S (Fig. 6C) preferably bind to the PRR2 and R2 domain of full-length tau, which are the crucial regions for aggregation, MTs association, and interaction with heparin and other proteins. 6-O-S also binds to the R2 domain as previously studied. Taken together, we suspect there may be a synergistic effect between 3-O-S and 6-O-S that enhances the binding of HS to tau. Similarly, in ATIII-heparin interaction both 3-O-S and 6-O-S modification are critical for inducing the conformational change in ATIII needed for anticoagulant activity of heparin. Unlike ATIII, tau is an IDP without a fixed 3D structure, rendering it a more challenging system for conventional structural characterization. More work is needed to delineate the specific HS motifs (the combination of chain length, monosaccharide composition and precise sulfation pattern) required for tight binding to tau in human brain and in Alzheimer’s disease, and to understand the structural basis of the specific interactions between 3-O-S and tau residues at atomic resolution.

In summary, our results demonstrate the key role of 3-O-S in the tau-HS interaction and cellular uptake of tau, uncovering a unique structural requirement of HS recognition by tau. This work represents a major step forward in our understanding of the mechanism of tau-HS interaction, with important implications for 3-O-S as a pharmacophore targeting the spread of tau pathology in the development of effective AD therapy.
Fig. S1. HS oligosaccharides immobilized on microarray chip (A) and chemical structure of oligo-19, 20 and 21 (B).
Fig. S2. Fluorescence image (A) and intensity (B) of each spot on LMHS array.

Fig. S3. Porcine Brain, spinal and intestinal HS exhibited similar binding pattern to full-length tau, with the binding affinity (K_D) of 0.02 μM. The association and dissociation curve of different tau concentrations were fitted (black line) by a 1:1 Langmuir kinetics model in Bio-evaluation.
Fig. S4. Gene target selection in HS synthesis pathway for generating neuro-specific HS deficient mice with specific sulfation pattern. (A). HS structure and biosynthetic/remodeling genes. In mammals, the 3S level is determined by *Hs3st*. In MLECs *Hs3st1* is the most abundantly expressed *Hs3st*. (B). The expression profiles of *Hs6st*, *Sulfs* and *Hs3sts* in primary mouse cerebral cortex neurons determined by RNA-seq.
Fig. S5. The *Hs3st1*−/− MLEC line expressed normal levels of NS, 6-O-S and 2-O-S (A), but reduced cell surface binding to antithrombin III (B).
Methods

Materials. The overexpression and purification of full-length tau protein were performed as previously described \(^{48,49}\). Chemoenzymatic synthesis of low molecular weight heparan sulfate (LMHS) was completed according to methods published previously \(^{50,51}\). Heparan sulfate extracted from porcine intestine is a commercial product obtained as a side stream in the manufacture of porcine intestinal heparin \(^{52}\). Heparan sulfates from porcine brain and spine were purified and characterized as previously described \(^{53}\).

The wildtype and \textit{Hs3st1} −/− MLEC lines were developed in our lab recently using Crispr-Cas9 or conditional Cre-LoxP gene editing technologies \(^{24}\). The \textit{Hs3st1} deletion selectively reduces 3-O-S and correspondingly, can be applied to specifically determine the requirement of 3-O-S in interaction with a protein ligand, respectively, in a cellular setting.

The binding preference of tau to HS using microarray assay. Full-length tau protein was labeled with fluorescence dye Alexa Fluor 488 5-SDP Ester (Life Technologies) according to the supplier's instructions. The degree of labeling (DOL) was 1-2 moles/mole of protein. A series of structurally defined HS oligosaccharides are immobilized on a microarray chip using a robotic printer as previously described \(^{54}\). The fluorescently labeled tau protein is incubated with the slide for 1 h at room temperature and then washed. The wash process was repeated twice before analyzing the slide using the excitation wavelength of 488 nm on a GenePix 4300 scanner (Molecular Dynamics). Resolution was set at 10 μm. The array images were analyzed by GenePix Pro 7.2.29.002 software. Spots were automatically found and spot deviations were
manually fit to correct. Mean median fluorescence intensities of arrays were obtained by Array Quality Control of software.

Characterization of tau-HS interaction by SPR assays.

Preparation of the HS biochip. Biotinylated HS was prepared by reacting sulfo-N-hydroxysuccinimide long-chain biotin (Thermo Scientific, Waltham, MA) with free amino groups of unsubstituted glucosamine residues in the polysaccharide chain according to a published procedure. The biotinylated HS was immobilized to a SA chip based on the manufacturer's protocol. In brief, a 20 μL solution of the HS-biotin conjugate (0.1 mg/mL) in HBS-EP running buffer (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, and 0.005% surfactant P20 (pH 7.4)) was injected over flow cell 2 (FC2) of the SA chip at a flow rate of 10 μL/min. Successful immobilization of HS was confirmed by the observation of an ~250 resonance unit increase in the sensor chip. The control flow cell (FC1) was prepared by a 1 min injection with saturated biotin.

Binding affinity of HS-tau interaction. Lyophilized full-length tau protein was resuspended in HBS-EP buffer. Different concentrations of the protein (0.1 μM, 0.25 μM, 0.5 μM, 1.0 μM, and 2.0 μM) were injected at a flow rate of 30 μL/min for 3 min. At the end of the sample injection, HBS-EP buffer was flowed over the sensor surface to facilitate dissociation. After a 3 min dissociation time, the sensor surface was regenerated by injection with 30 mL of 2 M NaCl. The response was monitored as a function of time (sensorgram) at 25 °C.

Competition assay of 12-mer. Competition SPR experiments were performed to study how the presence of 3-O-S impacts the inhibition of 12-mer on tau-HS interaction. Tau protein was premixed with three different 12-mer, separately, and flowed over the HS
chip at a flow rate of 30 μL/min. After each injection, dissociation and regeneration were performed as described above. For each set of competition experiments on SPR, a control experiment (with only tau protein and no 12-mer) was performed to confirm that the surface was completely regenerated and that the results obtained between runs were comparable. A series of concentrations of 12-mer was tested and IC₅₀ was obtained by fitting the data using the ‘[Agonist] vs. normalized response’ equation in GraphPad Prism 8 software, \(Y=100 \times \frac{X^H}{IC_{50}^H + X^H} \), where \(Y \) is the normalized binding of tau to HS biochip, \(X \) is the concentration of 12-mer, and \(H \) is the Hill slope describing the steepness of the curve.

Cell surface tau binding assay. ELISA was performed to determine cell surface tau binding. In brief, \(3 \times 10^4 \) MLECs, including wildtype and Hs3st1⁻/⁻ cells, were seeded at 200 μl/well in DMEM containing 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin in a 96 well plate. After culturing overnight, the cells were washed with DPBS (3 times x 5 min) and then fixed with 4% PFA (15 min, RT), washed with DPBS (3 times x 5 min) and blocked with DPBS containing 1% BSA (90 min, RT), the cells were incubated with 100 μl DPBS containing BSA (50 ng), biotinylated Tau (50 ng/ml), or biotinylated Tau (50 ng) mixed with heparin (50 ng), oligo-19 (25 ng), oligo-20 (25 ng) or oligo-21 (25 ng) for 90 min at RT. Following, the cells were washed with DPBS (3 times x 5 min), incubated with Streptavidin-HRP (1:2000 dilution in DPBS containing 1% BSA, 30 min, RT), and then cell surface bound tau (represented by HRP activity) was measured using an Ultra TMB-ELISA kit (34028, Thermo Scientific) according to the manufacturer’s protocol.
Tau internalization assay. MLECs (5 × 10⁵), including wildtype and Hs3st1⁻/⁻ cells, were seeded at 600 μl/well DMEM containing 10%FBS, 100 U/ml penicillin and 100 μg/ml streptomycin in a 12 well plate. After culturing overnight, the cells were washed with DPBS twice and then incubated with 500 μl/well DMEM containing BSA (2 μg/ml), Tau-Alexa (2 μg/ml) or Tau-Alexa (2 μg/ml) mixed with heparin (10 μg/ml), oligo-19 (2.5 μg/ml), oligo-20 (2.5 μg/ml) or oligo-21 (2.5 μg/ml) at 37 °C for 3 h. Followingly, the cells were processed for image or flowcytometry analyses. For image analysis, the cells were covered with mounting medium DAPI and examined for internalized tau under confocal microscope for flowcytometry analysis, the cells were trypsinized and resuspended in DPBS containing 2 mM EDTA, 1% BSA and PI which stain dead cells, and then measured for internalized tau-Alexa with flow cytometer.

3-O-S Binding site mapping by NMR. NMR experiments with oligo-4 (HS 7-mer with 3-O-S) and oligo-5 (HS 7-mer without 3-O-S) were performed on full-length tau to map the binding site of 3-O-S on tau. ¹H-¹⁵N HSQC spectra were recorded on an 150 μM full-length tau sample before and after the adding of a 1:0.6 ratio of oligo-4 and oligo-5, separately. Normalized chemical shift perturbation (CSP) of tau for amide ¹H and ¹⁵N chemical shifts upon HS 7-mer addition were calculated using the equation \[CSP = \sqrt{100 \times \Delta H^2 + \Delta N^2} \], where \(\Delta H \) and \(\Delta N \) are the differences between the chemical shifts of the free and bound forms of tau, respectively. As the only difference between oligo-4 and oligo-5 is an additional 3-O-S, a CSP difference (ΔCSP) calculated by CSP (due to oligo-4) minus CSP (due to oligo-5) was plotted against the residue number to map the binding site of 3-O-S in tau.
Acknowledgement
The research was supported by NIH (5R01HL093339, R56AG062344 and U01CA225784 to L.W.).

Corresponding Author
* Dr. Chunyu Wang, Department of Chemistry and Chemical Biology and Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th street, Troy, NY 12180, United States, Tel: (518) 276-3497; Fax: (518) 276-2344; Email: wangc5@rpi.edu.
* Dr. Lianchun Wang, Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 4001E Fletcher Ave, -MDC36, Tampa, FL 33613, United States, Tel: (813) 974-2910, Email: lianchunw@health.usf.edu.

Author contribution
C.W., L.W. and J.Z. conceived and designed the research and wrote the manuscript. J.Z. carried out SPR and NMR analysis. Y.Z. and X.S. generated the cell line data. Y.X. purified full-length tau protein and did fluorescence labeling. G.S. carried out LMHS array assay. X.L. assisted with data presentation. Z.W. synthesized HS 7-mer with 3-O-S. Y.M. and J.L. designed the microarray analysis and synthesized the HS oligosaccharides. J.G. and T.F.R. assisted with NMR analysis. G.L. offered some of the full-length tau protein. F.Z., D.E., G.L., and R.J.L assisted with data analysis and manuscript preparation.

Competing Financial Interests Statement
No competing financial interests.
References

10. L. Guo, J. & M. Y. Lee, V. Cell-to-cell transmission of pathogenic proteins in

