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QUANTITATIVE FLUID APPROXIMATION IN TRANSPORT THEORY:
A UNIFIED APPROACH

EMERIC BOUIN & CLEMENT MOUHOT

ABSTRACT. We propose a unified method for the large space-time scaling limit of linear colli-
sional kinetic equations in the whole space. The limit is of fractional diffusion type for heavy
tail equilibria with slow enough decay, and of diffusive type otherwise. The proof is constructive
and the fractional/standard diffusion matrix is obtained. The equilibria satisfy a generalised
weighted mass condition and can have infinite mass. The method combines energy estimates
and quantitative spectral methods to construct a ‘fluid mode’. The method is applied to scat-
tering models (without assuming detailed balance conditions), Fokker-Planck operators and
Lévy-Fokker-Planck operators. It proves a series of new results, including the fractional diffu-
sive limit for Fokker-Planck operators in any dimension, for which the characterization of the
diffusion coefficient was not known, for Lévy-Fokker-Planck operators with general equilibria,
and in cases where the equilibrium has infinite mass. It also unifies and generalises the results of
ten previous papers with a quantitative method, and our estimates on the fluid approximation
error seem novel in these cases.
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1. INTRODUCTION AND MAIN RESULTS

The study of transport processes, i.e. linear collisional kinetic equations, has its theoretical
roots in the mean-free path argument of Maxwell [35] and the kinetic theory of gases of Maxwell
and Boltzmann [36, 10]. A linear version of the Maxwell-Boltzmann equation can be written
for the movement of a tagged particle within a rarefied gas, but the study of such transport
processes was given a crucial new impetus in the twentieth century with:

(1) the radiative transfer theory [42], where the kinetic distribution models the flux of
photons that are transported in the plasma making up the internal layers of the sun,

(2) the nuclear reactor theory (see [47], the collection [7] and in particular its fifth chap-
ter [48]) where the kinetic distribution models the neutrons transported and scattered
inside the reactor, whose flux is used to initiate and maintain the chain reaction,

(3) the semi-conductor theory [33] where the kinetic distribution models the flow of charge
carriers in semiconductors, i.e. the evolution of the position-momentum distribution
of negatively charged conduction electrons or of positively charged holes, which are
responsible for the current flow in semiconductor crystals.

Date: June 3, 2021.
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The main mathematical object of study in transport theory is the linear equation
(1.1) of+v-Vof=Lf

on the time-dependent density of particles f = f(t,z,v) > 0 over (z,v) € R? x R, for t > 0.
The left hand side accounts for free motion and the right hand side accounts for the interaction
with a background, for instance scatterers, with an operator £ that only acts on the kinetic
variable v. Several forms are possible. In nuclear reactor, radiative transfer and semi-conductor
theories it is common to consider scattering operators, sometimes also called linear Boltzmann
operators, which write

(12 £10) = ([ b0 o)1) @) M(0) = w170
given the collision frequency v(v) := /]Rd b(v, v )M(v") dv,

some collisional kernel b = b(v,v") and an equilibrium distribution M(v). In astrophysics and
sometimes in semi-conductor theory, one also considers Fokker-Planck operators which write

(1.3) Lf:=V,- <Mv,, (/(;)) .

Finally, as a simplified model of long-range collisional interactions in a gas of charged particles,
we also consider Lévy-Fokker-Planck operators (given s € (0,1)):

L(f)=ASf+V,-(Uf) with U(v) =U(|v|) radially symmetric so that
(1.4)
AM 4V, - (UM) =0.

Denoting F the Fourier transform, the fractional Laplacian is defined as

(1.5) Asf(v) = —F 1 [[L\stf(a)] (v).
These three operators are discussed respectively in Sections 6-7-8. Extensions, such as Fokker-
Planck operators with non-gradient force, are discussed in Section 9.

The equation (1.1) is too intricate for many applications. When the relevant time and space
scales of observation are much larger than the mean free time and mean free path, it is thus
natural to search for a simplified regime. The so-called diffusion theory was born out of this
endeavour, and in the words of Wigner [48], ‘this [diffusion] theory gives the spatial variation of
the [neutron transport] flux quite accurately in regions well removed from interfaces’. We also
refer to [47, Chap. IX] for the diffusion theory of monoenergetic neutrons, to [42, Chap. II1.2]
for the so-called Eddington approzimation in radiative transfer theory, and to [12, Chap. 2] for
a modern mathematical review. Note that anomalous diffusions and Levy flights are observed
by biologists and physicists [3, 45, 5, 34, 43].

We rewrite the equation (1.1) by changing the unknown to h := %:

(1.6) Oth+v-Vyh=Lh where Lh:=M"1L(Mh).

This change of unknown is convenient since asymptotic estimates compare f with the equi-
librium M. Consider the complex Hilbert spaces L?(R% Mdv) =: L2(M) and L?(R¢ x
R% M dz dv) =: L2 (M) and denote ||All, == [|(1 + | - |2)%h||Lz(M) (the integration variable(s)
will be emphasized when there is ambiguity). We omit the index when & = 0. The scalar
product (-, ) refers to L2(M) or L2 (M) depending on context.

We assume, for some o, 8 € R with o + 3 >0 and A € R} :

Hypothesis 1 (Equilibria). The equilibrium M takes one of the following two forms.
(i) Either it is given by

-1
(1.7) M(v) =cap |v] =@+ with, Cap = (/]Rd |v] 4P dv> and |v] == /1 + |v|?

(ii) Or it is a smooth positive radially symmetric function decaying faster than any polyno-
mial. The latter case is denoted by ‘c = +00’ in the sequel.
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Note that the normalisation implies the following generalised mass condition

(1.8) Mp(v)dv =1 with Mgs:=|]°M.
Rd

We present our main results assuming that the equilibrium M is given by the exact for-
mula (1.7) in the case of a polynomial decay because it leads to a neater treatment. However,
as discussed in Section 9, our results remain true with an equilibrium M that is not an explicit
power-law or even symmetric or centered, but only comparable to |-]~(@+) (see equation (9.1)
and Subsections 9.1-9.3); this requires a few technical changes in the proofs that we present
separately in this last section so as not to clutter the paper.

Hypothesis 2 (Weighted coercivity). The operator L is linear, independent of time t and space
x, commutes with rotations in v, is closed densely defined on Dom(L) C L2(M) and satisfies
L(1) = L*(1) = 0, where L* is the L2(M)-adjoint. Finally L = HgL(Hg) is closed densely
defined on Dom(L) C L2(M), with the spectral gap estimate

_B 4
VgeDom(L), gL|]72, —Re(Lgg)>A]|g|?.

The latter means, translating back to L,

Vh € Dom(L), —Re (Lh,h)>X|h— PhHQ_B with ~ Ph = </ h(v" ) Mg (') d?/) .
R

d

The assumption that £ commutes with rotation in v is convenient (and satisfied for most
physical models), but in fact only M(v) = M(—v) is really used in the proof. The latter could
in turn be relaxed at the price of a few technical changes in the proofs discussed in Section 9.

Hypothesis 3 (Amplitude of collisions at large velocities). Given 0 < x < 1 a smooth function
that is 1 on B(0,1) and 0 outside B(0,2), and xgr = x(5) for R > 1, one has

_a+B
IL(xr)llg S B2

Our first result, on the basis of the three previous hypothesis, is a quantitative construction
of a branch of ‘fluid eigenmode’ in the asymptotic of large time and small spatial frequencies,
i.e. a unique eigenvalue branching from zero for L* + in|v]?(v - o) for small 7 (see Figure 1):

Lemma 1.1 (Construction of the fluid mode). Given Hypothesis 1-2-3, there are ng > 0 and
ro € (0, ), explicit in terms of the constants in these hypothesis, such that for any n € (0,19)
and any o € S, there is a unique solution ¢, = ¢p(v) € L2(|-]7P M) and u(n) € (0,70) to

— Ly — in(v- o)y = p(m)|v] P, with /Rdaﬁn(v)/\/lg(v)dvzl.

Moreover, the branch (¢, pu(n)) connects to (1,0) as n — 0, with

(L9) I6g =15 Su(m)?*  and  u(n) < O(),
where the function © is defined by

n? when a > 2 + 3,
(1.10) O(n) == 7*[In(n)| when a =2+ B,

77% when — < a <2+ 0.

Note that © is well-defined in the case a € (—f3,2+ ) since (1+ ) > (a+3)/2 > 0. In this
lemma and in the rest of the paper the dependency in ¢ is kept implicit rather than explicit
in order to lighten notation. In fact, ¢, also depends on o, but p(n) does not if L is invariant
by rotations in v. To identify the macroscopic limit with quantitative rates and constants, it is
necessary to estimate the leading order of 1(n), and this requires estimates on the eigenvector,

2
which is our last hypothesis. We denote |ul, := (nT+5 + |u|2)%
Hypothesis 4 (Scaling of the fluid mode). We make different assumptions depending on c:
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A
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v

FiGURE 1. The blue dashed zone on the left of Rez = —A\ corresponds to the
spectral gap estimates on L* + in|v]?(v - o) for g L H_g (Hypothesis 2). The
orange dashed zone is where Lemmas 1.1-1.2 construct a unique real eigenvalue
—u(n) ~ —pp®(n) of the latter operator, that goes to zero as n — 0.

(i) Case a > 2+ B: The fluid mode ¢, constructed in Lemma 1.1 satisfies
Vi<a, |énll, el

1
(ii) Case a =2+ B: The rescaled fluid mode ®,, := ¢,(n~ 7 -) is converging in L2 (RT\0)
as n — 0 to a limit ® and satisfies the pointwise controls

1B, (u)] < Jul M,

Tm (@, (w))] S July™ @D,

(1.11) VYne (0,m), YueRY,

for some m; € (0,1m9) and C > 0, and there are a(n) — 0 and Q € L*(S¥™Y) such that

< a(n)|n(n)],

/ . (w-o)|Im®,(u) —Im @(u)} ]u\;d_a du
1>Ju|>nT+P

Im® (A\o’) a0

v /e Sd*l
g ’ A8 A—0

Qo).

(iii) Case a € (8,2 + B]: The rescaled fluid mode ®,, is converging in L}

loc

(RNO) asn — 0

to a limit ® and satisfies the pointwise controls (1.11).
(iv) Case a € (=3, B]: The rescaled fluid mode ®,, is converging in L% (R¥\0) as n — 0 to

a limit ® and satisfies the pointwise controls (1.11), together with the additional control

(1.12) / 1@, (w)]? [ul, P du < 1.
[u|>1

Note that in (1.11), |u]$“(") ~ 1 as n — 0 in the region |u| < nﬁ. The second part of
point (ii) above is subtle and made necessary by the fact that the case a = 2 + 3 is borderline
between two different regimes (standard diffusion vs. fractional diffusion) as well as borderline
between two different scalings for obtaining the diffusion coefficient (fluid mode in variable v

1
vs. fluid mode in the rescaled variable u =1 #8v).
With these four hypothesis we can characterise the precise scaling of the fluid eigenvalue:

Lemma 1.2 (Scaling of the fluid eigenvalue). Assume Hypothesis 1-2-3—4. The eigenvalue
w(n) constructed in Lemma 1.1 satisfies (with convergence rate explicit in terms of the constants,
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error terms and convergence rates in the hypothesis)

(1.13) (1) ~p—0 1oO(n),

where the constant py > 0 is determined as follows:

o = /Rd (v-o) F(u)M(v)dv when a > 2+ (3,

I
where F = lim Im ¢y is solution to LF = —(v-0) and / F(v) Mg(v)dv =0,
=01 R4
po = 01216’5 Sd_l(a - )Q(o')do’  when a =2+ 8,
. Im ® (\u) . . 1
where Q(u) = )\J(},Hi;éo ES\ET and ® = 7171_% P, = 71]13(1) by (77 +8 ) ’

po 1= ca”g/ (u-0)Im®(u)|u| " %du  when a € (—f3,2+ B).
Rd

Note how in the previous statement, when o > 2 + 3, the function F' used in the previous
works on standard diffusive limit (usually with 8 = 0) is recovered here as a limit of our fluid
mode; this allows our proof to track the convergence rate. Define the diffusion exponent

2 when « € [2+ 3, 4+00]
(114) C = C(aa B) = ay + B
1+8

when « € (3,24 3),

with ay = max(a,0), and the scaling function

€ whena e (—f,+00]\ {0,248},
2
e“|lneg| when a =2+ 5,
(1.15) 0(e) := | | &
£THB
—_— when a = 0.
|Ine|

Note that the threshold a = 2 4+ § between standard and fractional diffusion corresponds to
whether or not Mg has finite variance. We finally derive the diffusion coefficient:

Lemma 1.3 (Diffusion coefficient). Assume Hypothesis 1-2-3—4. Then the following limit holds

(with convergence rate explicit in terms of the constants, error terms and convergence rates in
the hypothesis)

( H./\/ngll(Rd) when o > 0,

)l 1+5
(1.16) k:= %%m =po X S|

when a = 0,

—1
|:Ca”3 /Rd ®(u)|u| "> du when a € (—f,0).
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The diffusion coefficient thus emerges from the ratio between integral quantities that reveal
the comparison between physical scales:

( /R (v 0) F)M(v) dv
Ml 21 (ra)

‘Whena>2+ﬁ‘

. /S (o090 do’

1+ /8 LU"‘ —d—a dw
Rd

/ (- o) Im ®(u)|u|~ du
R

d /R e

(u- o) Im ®(u)|u| " du

‘Whena:2+ﬁ‘

(1.17) K= ‘ when a € (0,2 + 6)‘

1+,B Rd

d—1

S / L’U]_d_o‘_ﬁ dv
]Rd

/ (u- o) Im ®(u)|u|~* du
R4

/ ®(u)|u| " du
Rd

where we recall, for the legibility of this catalogue of formula:

‘ when a € (—f,0) ‘

. Img, . . _1 ) Im ® (Au)
= = e 1+8. — -~ 7
Plm =R =l @y = lime, (7). 000 =t S

and (note that o > 2 4 8 in this case) F is also the unique solution to LF = —(v - o) with

Jga F(v) [v] —d=a=Bdy = 0. For legibility again, we wrote, in the cases o € (—f3,2 + ], the
formula for k with M given by (1.7), and we refer to Section 9 for more general M.

The proof of Lemma 1.3 is done in Section 5; it requires the estimating of (1, ¢,,), which is
done in Lemma 5.1. The limit rescaled fluid mode ® can also be defined as the solution to

L*® =i(u-o)|ul’® with ®(0) =1,
1
when the rescaling of the operator L* in the new variable v = vn1+# has a limit L*.
Given a solution f in L$°([0, 400); L%U(M_l)) to equation (1.1) we denote

t

fg(t,l',’U) ::f N sV € LI?O ([0,—|—OO),L§,U(M_1)) and Tg(t,él?) ::/ fg(t,l',’U)LU—‘_ﬂd’U,
O(e) e ’ R

where € > 0, and 0(¢) is defined in (1.15). The equation satisfied by f: is

(1.18) 0(e)0ife +ev-Vyufe = Lfe.

Theorem 1.4 (Unified second fluid approximation, see Figure 2). Assume Hypothesis 1-2-3—/,
and consider f € L°([0,+00); L2 ,(M™1)) solving (1.1) in the weak sense with initially

Je

(1.19) ' (0,-,-) — (0, -)‘ <O(e) and lim7.(0,-) :=7(0,-) in H S(R?).
M -8 e—0
Then for any T > 0,
- =t
Moz ramg)) =0
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()

”]V |2(1+13> ﬂ 2(17+D;3‘> </J\%l —r)

when « € (=0, ), where r = r(t,x) solves

when a > B and

— 0
L2((0,T);Hy SL2(Mp)) €70

I

when o = B and

— 0
L2(0,T];H; ¢ L2(Mg)) €70

<
Or =kAZr, t>0, with initial data r(0,-) defined in (1.19).

The rates of convergence are estimated in terms of T, the constants, error terms and convergence
rates in Hypothesis 1-2-3—/, and the initial convergence (1.19). Apart from the error in the
initial convergence (that depends on the initial data), the rate we obtain is polynomial for a €
(=B, 4+00) \ {0,2 + B} and logarithmic for o € {0,2 + S}.

Note that when (1.19) is not satisfied at ¢t = 0, the energy estimate implies that it is for any
later time 7 > 0, and we could still deduce the fluid approximation for ¢ € [r,T] (at the price of
an initial time layer). We however chose to keep the assumption (1.19) since we are interested
in tracking precisely the rate of convergence.

This theorem is the core contribution of the paper, and is used to obtain new results on
concrete models (see the corollaries below). Together with Lemmas 1.1-1.2-1.3, it reveals the
relevant macroscopic scales for a large class of operators in any dimension and provides a unified
theoretical framework to answer questions of the last decades on the topic. The diffusive limit
is reduced to a spectral problem —the construction of the fluid mode— that we solve in a general
setting. The proof is constructive and the key constants governing the macroscopic behaviours
are derived. The fractional Laplacian in the space variable is defined as in (1.5), and r(¢, x) is
the limit (in the topology of the above theorem) of the weighted velocity average

re(t,z) = /Rdf (0(’;):”0 ]2 do.

When « > 0, the density pe(t,z) == [pa f ( , ) dv exists and also converges to (¢, z).

™

We now apply the previous abstract theorem to particular models:

Corollary 1.5 (Scattering equation). Assume that L is the scattering operator (1.2) with b € C!
and M satisfying Hypothesis 1 and that, for some constant vg > 0 and 8 > —«

Vo eR?Y,  [v] P Sv(v) S [v] P
(1.20) Yo e R\ {0}, MNv(\) ~yoo volv]?
Vo eR?,  [b(v, g+ [Ib(v)lls < [v]77.

This includes b(v,v") = |v]7P|[v']7# for any a + B > 0, and b(v,v') = |v —v']7? when B < 0
and o+ > 0 or when 8 > 0 and o > 38. Then Theorem 1.} applies with o, given in
Hypothesis 1 and (1.20). This proves the diffusive limit for solutions to (1.18) with quantitative

rate, diffusion exponent ( = aff;, scaling function (1.15) and diffusion coefficient (1.17).

In fact the constants can be computed explicitly since

F(u)=v(v) (v o) when a > 2 + 3,

Qu) = Vo_llu\’g(u o) when o = 2 + 8,

o

D(u) = when a € (—f3,2+ f),

vo — tlu|?(u - o)
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FIGURE 2. Summary of the results in the (a, 8) plane. Admissible parameters
are in half-plane o + 3 > 0. The blue hatched area leads to §(¢) = 2 and a
standard diffusive limit with symbol |¢]2. The blue line is the set of parameters
yielding the anomalous scaling 0(¢) = £2|In(e)| but still a standard diffusive

limit with symbol x|£|?. The green hatched area results into the fractional scaling
0(e) = £1%5 and a fractional diffusive limit with symbol k[¢] %% . The orange bold
line yields the fractional scaling §(¢) = e7+7|In(e)|~! and a fractional diffusive
limit with symbol k[ \%. Finally, the orange hatched area yields the fractional

B B
scaling 0(¢) = ¢T+# and a fractional diffusive limit with symbol x|{|T+5.

resulting in the diffusion coefficient

( / (- o) ()~ [o]4 du
R4

/]Rd lv] =4 dw

1 Jsar(o-0")?do’
VO(l + /8) v —d—a v
[ b1

/ vlulP(u-0)?  du
R

@ Vg + [ul? (u- 0)? ful+e

k= /]Rd |v] —d—a 4y

when a € (2+ 3, +00)

whena=2+/8‘

‘ when a € (0,2 + 3)

/ volul’(u-0)?  du

1 2 2B(0) . \2 [1/]d

(S:lr_lﬂ) R Vg + [u]?P (u - 0)? |ul

| | /Lzﬂ_d_ﬁdv
]Rd

/ volulP(u-0)?  du

R

@ Vg + [ulP(u - 0)? ul ¢+

‘ when a € (—4,0)

/ 1/3 du
( Jre 5+ [u]?B(u - 0)? [u]dte
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as well as k := HM||211(Rd) Jpa(v - 0)*v"IM(v) dv is the case “a = +00”. This recovers and
unifies all results from [6, 20, 37, 38] (except for the case of space-dependent collision kernels
in [20]) and extend them to new cases such as « € (—/3,0) (infinite mass). The convergence
rate is also new. Our approach bears partial similarities with, but differs from, the Hilbert
expansions in [6] and [20], the moment method in [37] and the Fourier-Laplace calculation
in [38].

Corollary 1.6 (Kinetic Fokker-Planck equation). Assume that L is the Fokker-Planck opera-
tor (1.3) with M satisfying Hypothesis 1 with « > —2 if d > 2 and o > —1 if d = 1. Then
Theorem 1.4 applies with o given in Hypothesis 1 and 5 = 2. This proves the diffusive limit

or solutions to (1.18) with quantitative rate, diffusion exponent ( = min (2, ay +2 , scalin
q D 5 g

function (1.15) and diffusion coefficient (1.17).

Note that the constants may be precised using that ® solves the Schrodinger-type equation
—|uPAu® + (d+ a)u - V@ —i(u-o)|ul>?® =0 with the normalisation ®(0) = 1.
In particular in the case a = 2 + § = 4, the function € solves

_ JulP(u-0)

—[uPAQ + (d4+ Q)u -V, Q= (u-0)ul* with Q0)=0 = Q(u):= P

This recovers and unifies all results from [15, 39, 26, 25, 32] and obtains the first derivation of
the diffusion coefficient in dimension higher than 1, as well as for equilibria with infinite mass
when a € (—2,0) if d > 2 and a € (—1,0) if d = 1. The convergence rate is also new.

Corollary 1.7 (Kinetic Lévy-Fokker-Planck equation). Assume that L is the Lévy-Fokker-
Planck operator (1.4) with parameter s € (%, 1) and with M satisfying Hypothesis 1 with o > s.
Then Theorem 1.4 applies with B := 2s—a.. This proves the diffusive limit for solutions to (1.18)
with quantitative rate and diffusion exponent

2 when o« > 1+ s

¢= 2s

1425 —«

and scaling function (1.15) and diffusion coefficient (1.17).

when o € (s,1+s),

The formula (1.17) for the diffusion coefficient may be precised with (see Section 8)

®(u) ;= exp <i236a’0 ul (- J)) ;o Qu) = 2scao Jul*(u- 9,
Ca,B 1+p Ca,B 1+p
This gives, in particular,
2sc?
a’02/ (o' - 0)?do’ ’Whenazl—i-s‘
Ca’g(l + ﬁ) gd-1
K=
a—1
Ca0 25Cq.0 ) 18 / . dw
: : w-o)sin(w-o0)———5 when o € (s,1+ s
1+ (Ca,ﬁ(1+ﬁ) Rd( )sin )\wdﬂig ’ ( )‘

This recovers and extends the qualitative results in [1, 18] to general equilibria, with quan-
titative error estimates and characterizations of the diffusion coefficient. In the latter papers,
the moment method initiated by Mellet is used to derive a fractional limit in the case 5 = 0.
It raises several interesting questions: (1) can our approach be extended to s € (0, %)7 (this
seems to be a technical difficulty), (2) is the fractional diffusive limit possible for infinite mass
equilibria? (i.e. @ < 0), (3) can the connexion between the kinetic Lévy-Fokker-Planck equa-
tion with o = 2s (for which the £ is the generator of a Lévy process) and the standard kinetic
Fokker-Planck equation with Gaussian equilibrium be clarified as s — 17 (our diffusion con-
stant k above diverges as s — 1 so the two limits in ¢ — 0 and s — 1 do not commute which

calls for further investigation).
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Let us summarise our contributions. Theorem 1.4 and Corollaries 1.5-1.6-1.7 recover the
results of [1, 6, 15, 20, 26, 25, 32, 37, 38, 39] with a shorter and unified constructive method and
prove new results for (1) Lévy-Fokker-Planck operators, (2) scattering operators with decaying
collision kernel and infinite mass equilibria and importantly (3) Fokker-Planck operators in
any dimension (for which the characterization of the diffusion coefficient was not known) as
well as for infinite mass equilibria. The quantitative error in this fluid approximation seems
to also be novel for all equations considered. Note finally that like the abstract Theorem 1.4,
the Corollaries 1.5-1.6-1.7 are stated with the exact equilibrium of Hypothesis 1, but can
be extended to more general equilibria, see Section 9. Moreover, it would be interesting to
try and apply this method in other settings such as [4, 27] (radiative transfer theory), [11,
21, 29] (rarefied gas in a region between two parallel plates), [16, 17] (bounded domains), [2]
(scattering with external acceleration field), [41] (models for chemotaxis) and [30] (adding a
local conservation of momentum).

The method of the present paper extends to the fractional diffusive limit the approach pio-
neered in [40, 23] of constructing exact dispersion laws in the regime of parabolic time-space
scaling and small eigenvalues; this extension is inspired by the recent one-dimensional result [32]
and in particular we use and generalise the idea of rescaling velocities to obtain a non-trivial dis-
persion law in the latter paper. In comparison with [32], the main novelty of the present paper
is a quantitative spectral method for constructing the branch of fluid eigenvalue: in [32] it was
done by a one-dimensional argument connecting two infinite series on R_ and R4 (and it was
done by fixed points in the simpler case of classical diffusive limit in the older works [40, 23]).
We also provide the first quantitative error estimates, and prove the first result of fractional
diffusive limit when the equilibrium has infinite mass.

Let us now compare our paper with the previous recent works by probabilists [26, 25]. In
probabilistic terms, we try to describe particles moving in the full d-dimensional space along
dX; = V, dt with velocities V; following a reversible process with invariant measure of the form
given in (1). The velocity process is typically of scattering type, or Langevin type with drift
and Brownian or non-Gaussian Lévy-type noises. We show in (1.4) that the rescaled process
£Xg(c)-14 converges, with explicit rates and multiplicative constants, towards a Brownian motion
when o > 2 + 3, and towards a radially symmetric (-stable process when a € (=8, a + ). In
spite of using quite different languages, the common point between [26, 25] and the present
paper is the use of a scaling in velocity, which corresponds to applying some power function to
the random variable in the probabilistic viewpoint and corresponds to the study of the rescaled

fluid mode &, := (bn(n_ﬁ-) in our study. Note however that in the case of equilibria with
infinite mass a € (—/3,0), the scaling considered in [25] is different from ours and more akin to
a large deviation limit; it does not correspond to a fractional diffusion scaling and this explains
why the authors obtain a kinetic (rather than fluid) limit equation with a Bessel process in
velocity. Note also that the arguments in [26, 25] seem qualitative so the eigenvalue problem
we study to compute the limit diffusion coefficient has no clear counterpart.

The rest of the paper is structured as follows. Section 2 is devoted to the proof of Theorem 1.4
assuming Lemmas 1.1, 1.2 and 1.3. We then prove Lemma 1.1 (construction of the fluid mode)
in Section 3, Lemma 1.2 (scaling of the fluid mode) in Section 4, and Lemma 1.3 (derivation
of the diffusion coefficient) in Section 5. Sections 6-7-8 prove the abstract hypothesis on the
three concrete models; one argument of independent interest is a tightness estimate for the
Schrodinger-type equation satisfied by the rescaled fluid mode in the cases of Fokker-Planck
operators, see Lemma 7.3. Finally, Section 9 briefly discusses extensions of our results to more
general equilibrium distributions and operators.

Acknowledgments. The authors wish to thank Jean Dolbeault for an enlightening discussion
on Hardy-Poincaré inequalities, Marc Briant for a careful reading and feedback leading to an
improvement of the statement of the main abstract result, Christian Schmeiser and Sara Merino-
Aceituno for discussions in this initial phase of this work, and Nicolas Fournier for crucial
feedback and pointing out explicit one-dimensional computations with constant equilibrium,
which show that the threshold a > —1 is sharp for d = 1 in Corollary 1.6 (see Subsection 9.5).
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2. PROOF OF THEOREM 1.4 (CONVERGENCE)
In this section we assume Lemmas 1.1, 1.2 and 1.3 and prove Theorem 1.4. Consider equa-
tion (1.6) and the rescaling
v)

_t_

— x _fé(t’x7v) _f< ()’%
he(t,x,v) .—h<0(€),6,v> =MW M(0)

It satisfies the equation

(2.1) 0(g)Othe + ev - Vyhe = Lh,.

2.1. The energy estimate. Integrate (2.1) against h. M in t, z,v, and take the real part:
0(e) 0(e) '
P01 = T2 101 + [ Re (Lha(r).hetr))ar

< 0001 <3 [ ) = re(r ) 0

where we have used Hypothesis 2 and

re(t,z) = /]Rd he(t,x,v)Mp(v)dv

This proves
2 2 ! 2 0(e) 2
(2:2) Vi=0, [[h(t)[]" < [h(0)]" and ; lhe(T) = re(T)IZg dT < 7[R (01"

2.2. Framework of the calculations. Denote ¢ the Fourier variable of x, and Fourier-
transform equation (2.1) in x to get on h.(t,&,v)

(2.3) 0()8she = Lhe +ic(v - €)he.
Note that (2.2) and the Plancherel theorem imply h. € L°(R*; L2 ,(M)) and

~

(2.4) he — 7 < 0(e)z.

SHLE(RHLE (M) ~
Denote & =: |¢{|o and 7 := €[¢|. Test (2.3) against M@, with ¢, constructed in Lemma 1.1:
d - . - A .
25)  0E) 5 (hedy) = (Lhe+ie(v- €y 6y ) = (hes L (6) + (v ) )
= —p(n) (he, 101 %0, ).

We then split the integrals as follows:
<iL€, ¢77> =T <17 (bn) + <ile — Te, ¢n> = <17 ¢77> [725 - El}

Te <1, Uﬂ _B¢n> + <ﬁ€ — Pe, LU“ _5¢n> = <1, ¢n> z((;)) [Iﬁnﬁ; — Eg]

<]A71€7 |:U-| _6¢77>
with the definitions (using the normalisation (1, [v]?¢,) = 1)

T p(n) (1 7LU17’8¢71> __ pln
n 0(c) (1, b,) 0(c) (1, o)’

(he — 2 0,) ) (e = 7, |01, )
BT ey M BT T ey

Consequently, equation (2.5) writes

8”% + /ﬁ?nf’g = 8tE1 + EQ.

We then want to pass to the limit € — 0 (hence n — 0 for each frequency &).
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2.3. Estimating k,, 0;F; and E3. Lemma 1.1 yields

++p
1+37

with constructive rate, for each frequency ¢ € R? (note that in the cases a = 0 or v = 2 4 3,
the error in the convergence includes a loss of frequency weight |In |£||). Lemma 1.3 implies

;g%‘gg)) nolélS with  ¢:=2

( |]MH211(Rd) when a > 0,

' 14+
(26)  lim g = wIEJ = ol x § [gaT]

when a = 0,

—1
|:Ca”3/ P (u)|u| du] when a € (—4,0),
\ R4
with constructive convergence rate. Observe that the previous estimates also imply

() < I€[S.
0(e)| (L dn) [ ™~

To estimate E5, write

(o= 5 =,

where we have used ||¢,||—s = 1. All in all, we get, using again Lemmas 1.3 and 5.1,

1(n)
Es| < T N’ ‘.
EErE TRl G 51
To estimate Fq, compute first
(e = )| < e =] ol
to get
||¢n”5
51 S gy e -

One then estimates [|¢y|[;. When a > 3, it is bounded by construction, and when a < 3,

2 a8 2 |—d—
6215 = 0¥ [ f@ 0l el

Using the pointwise bound (1.11) and the moment bound (1.12) from Hypothesis 4, the latter
integral exists and is uniformly bounded in 7 for @ € (—f,3) and is bounded by |Inn| when
a = (. Thus we get, using Lemma 5.1 to estimate (1, ¢,,) again,

( 0(5)%, when a > 3,
B
e57 |In (e[¢])] when o = f3,
7 N o a=f
|Eq| < 0(6)*% he — Te 5 X S gTHB €| 204 when « € (0, 8),

B
[ n(e)| ™" (Inf¢)) ™" €] 7207 when a =0,

__«a __a+B_
g 2047) |¢|7 2B when « € (—4,0).

We then define r := (¢, x) solution to d;r+x|£|Sr = 0 with initial data (0, -) defined in (1.19)
and deduce that w, := 7. — 7 satisfies

Opwe + K,|§|ng =0, F1 + By + (I{ — Hn) Te
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which implies

welt, €) = e (0,€) + / M=) [0,y (5, £) + Ba(5,€) + (5 — ) (5, €)] dls
0

= we(0,8)e I L By (1,6) — e HE B (0,)

t
+/O efﬂmg(t*‘q) |:H‘§|CE1(57§) + E2(Su§) + (fi — lin) fa(sag) ds.

Define then
1 when «a>p,

W(E) = [€]¢ x )m%_l when =8,

B=la| _ B=lo|
|§’2(1+[3) Lg—l 2(1+58) when o€ (-ﬂ,ﬂ)

and integrate in LE(W) and then in L?([0,7]) to get, using again (2.4) as well as (1.19),
lwell 2(fo,7); 120W)) which concludes the proof.

3. PROOF OF LEMMA 1.1 (CONSTRUCTION OF THE FLUID MODE)
In this section we prove Lemma 1.1, assuming Hypothesis 1-2—-3. Denote
= B s B By B .
Lyp = 1525 (1130) = 1347 (1139) + inlv] (v o).
As before, the dependency in o is omitted from the subscripts for readability.

3.1. Existence of the resolvent. We first prove that when r € (r{,7) with 0 < r{ <ro < A
and n small enough and 2z € S(0,r) (circle with radius r in C), the operator L} — z has a
bounded inverse in L2(M), and the bound is uniform in z € S(0, ).

Given G € L?(|-]17PM) and z € S(0,7), consider a priori a solution F € L*(|-]7P M) to
(3.1) —L*F —in(v-o)F — z|v]PF = [v]PG.

Recall the decomposition
(3.2) F=PF+P'F:=m[F|+P'F with m[F]:= | F(v)Mg(v)dv,

Rd

which is orthogonal for the scalar product associated with || - ||_s. Integrate (3.1) against F.M
and take the real part to get, using Hypothesis 2,

A 7>LF2 —r|F|I2, < |G F
s T FlZs < |G-l Fll-p

2
= O=n)|PHE| < IGI-slF s+ im()
1
2(A —19)

2 A—r 1
1 < 0 2
la FH_B_< . +7’> m(E) 4 s

A—Tg
2

2
= G- |[PE| ] < SRR IGIZ 5+ 7 fm(F)*

)\ —To
2
which implies finally

—

2
1G11Zg

L2 1 2 2r 2
. < - .
(3.3) HP FH_ﬁ_ o lGIR s+ (14 5 ) )

Consider then a function 0 < y < 1 smooth radially symmetric and such that y =1 on B(0,1)
and x = 0 outside B(0,2), and denote xr(v) := x(%) for R > 0. Integrate (3.1) against xy gM:

(3.4) —(L*F,xRr) —in /Rd(v -o)F(v)xr(v)M(v)dv — zmp[F] = mg[G]
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where we denote the truncated average

malF) = | Flo)xa(v)Ms(v) do
Using the decomposition (3.2), L*1 = 0 and Hypothesis 3:
(35 Pl = (2 (PEF) xw)| < I Gl [PAF| | <m0 phr||
Observe also that

Lol P@xam@)as] =| [ (©-0) [PHFE)] xrlo)ME) do
(3.6) < ( | ool Me) ) |Pr|_, sem|PF|
with

1 when o > 2 + 3,

(37  UR)= ( / I<2R<v.a>2mw<v>dv>2 <{ VI(R) whena =2+ 6,

Rl_aTiﬁ when o < 2 4 .
Combining (3.4)—(3.5)—(3.6) yields the following estimate on the truncated average:
_atB 1
(3.8) malP) < 5 [oe(B) + 5 [PLE]_ 4 LGy

We next estimate the difference between m[F] and mg[F]:

m{F) = mafF) < [ 1|11 = el Ma(0) do

1
( [ =xaf Mﬁdv) VFll_s < B,

which implies for R large enough

(39) mIFIP < lmalF)P? + B2 | PLF||
Finally, taking the square of (3.8), and using the last estimate, we deduce

e 5 (Lo + w2]) e e me e s e,
(3.10) < iQ (Pe(R)? + R+ HPLFH% + 5162,

Choosing R = 77_@ (with 1 small enough so that R is large enough in the previous calculations)
implies n%¢(R)? ~ R~(*#) and (© was defined in (1.10))

(PR + RO S o),
Combining (3.3)-(3.10) yields

[(A_lTO)QJrngT(AzC)] \GH25+C< Ai%) o)

for C' > 0 uniform in r € (0,79) and n small enough. For 1 small enough in terms of ry and r{,

o )e(n) 1

A—19 rz2 =2

2
P, <

Vre (ry,ro), C (1 +
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and we deduce that

1o, a0
A=r9)2 12 r(A—rg)
Plugged into (3.10), it implies [m[F][ < [|G]|_5, and finally
(3.11) 1FI_g Srowy IGll g -

With the latter a priori estimate at hand, we now construct a solution to (3.1). The latter
equation re-writes

(3.12) CLF —in(v- 0)[v]PF — 2F = [v]"5G € L3(M),

2
[poef, <2 G125 Sra IGI25

with F := H‘gF . Since (Hypothesis 2) L* generates a contraction semigroup in L2(M), it is
a standard result (see [24, Theorem I1.3.15]) that L* is maximal dissipative. Therefore, given
any M > 1, the operator I:;M = L* +in(v-o)|v]?xar(v) is maximal dissipative (perturbation
by a bounded purely imaginary multiplicative operator). Observe that the previous a priori
estimate (3.11) holds for I~/7”; s by the same calculation, and uniformly as M — +o0. This implies

first that for each M > 1 and z € S(0,7), there is Fp; € L2(M) that solves —L%, Far — 2Fy =

|v] -3G , and second that F); is uniformly bounded in L2(M) as M — oo. Taking a subsequence
weakly converging to some F' € L2(M) as M — oo gives a solution to (3.12) and thus to (3.1).

3.2. The spectral projections. We can therefore define the spectral projections
1

~ -1
20 S(0,7)

T -

for r € (r{,r0), the interval of the previous subsection. In the next subsections, we first estimate

the difference of the projections II,., and II, o when acting on v := Lvl‘g (the kernel of f)o)
and projected on Span(tg), which is enough to show that II, , is non-zero for r and 1 small
enough and thus proves the existence of an eigenvalue. Second, on the basis of this first scalar
estimate, we prove that |||II,, — IL.o||| — 0 as n — 0, which implies that the dimensions of
these two projections are the same for r and n small enough. This implies the uniqueness of
the eigenvalue and quantitative convergence estimates on it as n — 0.

3.3. Preparation for the first scalar estimate. Recall ¢y = H_g, then

ratbo = Mrovo = % S(0,r) [E;; a z] R [ié a E"} [ES B Z} h Yo dz
- _% S(0,r) [I:; a z}_l {(v o)l [IDS a Z}_lwo} 4

where we have used
-, -1 8 8 -1 1
TR0 N (R (CLD A P
and we have defined F' through

(B2 [ 0 o) 18] () = 01
that is
(3.13) — L*F —in(v-0)F — z[v] PF = (v-0)

(the dependency of F' on 7, z and ¢ is omitted for readability).
Note that since I, 999 = ¥y and

/Rd M0t0(v) [v] ™2 M(v) do _/

Rd

[v] P M(v) dv = | M) do =1,
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to prove the existence of an eigenvalue, it is enough to prove that for r and n small enough

Ay = '/Rd (M0 — My 0%0) Lﬂ_g./\/l(v) dv| < 1.

Using the decomposition (3.2) one gets

77/ miF] dz|.
2r Jsonm) Z

The next three steps are devoted to estimating m[F].

(314) Ar,n =

3.4. Localised average estimate. Integrate (3.13) against ygM: the right hand side vanishes
since M and xpr are even and one gets

(L Foxn) =i | (0 @) F(e)xr(o)M(v) do — zmn[F] = .
Using the same argument as for (3.5) and (3.6), we get
(3.15) malF) < 1 [ne(R) + B8] [P
and using (3.9) we deduce, for R large enough,

PP S o (PR + r ) [ < S pr|

~> r2
1
with the choice R =n 1+5.

3.5. L? estimate. Re-organise (3.13) as

—L*F —in(v- o) <F — ;7) = z|v]PF,

1
(D)
m
and take the real part to obtain

—Re<L*F, (F— ;7>> = Re <z/RdLv15F<F— ;})Mm) .

The left hand side satisfies (using L1 = 0 and Hypothesis 2)

integrate it against

2
—Re <L*F, <F - 1>> — _Re(L*F,F) > A HPLFH S
in _

and the right hand side is bounded by

Re <Z/Rd m—ﬁp(F - ;7>Mdv> <r| |25+ % im[F]| .

This results in the estimate (using again the orthogonal decomposition)
A[Pr|” < rlEz,+ L imiF)
—B n
<rimF) o [PLF| 4 mlr,
and thus since r < rg < \ stays away from A (19 € (0,\)), we get

(3.16) |pLe|, < rimiE) + Z i)
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3.6. Synthesis and the first scalar estimate. The two previous steps lead to

m(p)? < 2D |prp|”

~

2
|PF| s imlFIP + pmlF)).
B n
Plugging the second estimate into the first one, we obtain

(317) m(E)] £ 2 )+ 22,

Given any r € [RoO(n), o) With Rg large enough and 1 small enough, we have r—'©(n) small
enough so that

©(n)
1 M| < .
(318) m(F)| S =
Plugging the latter into (3.14) finally yields
A, <L o) 4, < @(n)’
2 5(0,r) nr2 T

which is as small as wanted for r € (RgO(n), r9) with Rg large enough and n small enough. This
concludes the proof of this scalar estimate. Note that so far we have proved the existence of
the resolvent only for z € S(0,r) with r € (r(, ), however it will prove useful to record here
that the a priori estimates are still valid for even smaller r’s.

3.7. Estimating the full norm of the difference of projections at 1y. Combining (3.16)
and (3.18) yields

HPLFH,Bﬁ } @(77)+717@(n)%.

ram
This implies

7 1
M, — M <L 21F|_sd
1M 0 — My oo S 27r/( ,7«)7“” [|-pdz

TIRCCRLE B
S T

(319) < %@@) +-76() + O(n)}

which is as small as wanted for r € (Rg©(n), o) with Rg large enough and 1 small enough.

3.8. Estimating the full norm of the difference of projections. Take now any ¢ €
L?*(M). Then |-] gzp € L?(|-17PM) and the following decomposition holds

¥ =115 m [[159] + 0175 P (1150).
As a consequence,
1My = Mgl < | [1159]| 100y = M)l + || (M = M) [175P (115) ]|

The first term in the right hand side is estimated by (3.19). We estimate the second term in
the right hand side by the triangle inequality:

(e = M) L1752 (1150
[ () i -4 (9]

<|
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and now consider each term separately. Start with
-4t (1950)] = L PG et (194
Moo [1175P (1130)] = 5z [ [Ta=e] 7 [L17ER (1150)] @
1 8
320 = — v 7§FdZ
(3.20) o= U

where F' satisfies this time (as before we omit writing the dependency in 7, z, o)

(3:21) S LF —in(o-0)F — 2] PF = [P (1150).

First, test (3.21) on GM, take the real part and use m[P(|-]3¢)] = 0
(Re 2) |F|2 5+ Re (|1°P~(|159), F)
= (Re 2) | FI2 5+ Re ([17PH([1]50), P F)
< rmlFIP + PRI, + [P (12| [[P4F]|

e, <

which implies, since r < rg stays away from A (rg € (0, )

(3:22) [PAE(”, < v i + [P (1150 S 7 imlE)? + ol

We now estimate m[F]. Integrate (3.21) against xgM with R =1n"
(L*F,xRr) — z'n/d(v -0)F(v)xr(v)M(v)dv — zmpg[F| = mp [Pl (ngﬂ .

1+8

Using the same arguments as in Subsections 3.1 and 3.4 we obtain
VOm) |IpL 1 1 g
< ¥ U - : .
malf) < XS [ 2 [P (1150 |

e can estimate [mpg[P+(|-] gw)]| as follows:

o)l [P (11%0)] - ma [P (1170)]
SECE P (15| < BT e £ Vel

B
2

Since m[P+(|-]2%)] = 0,
e (1

From this, we deduce

pmalr) < YOO ([,

and using
im[F]|% < |mg[F]? + R~@+5) HPLFH26 < Imgr(F)[* +©(n) HPLGHfﬁ

we finally get

XD ([, + 1)

(3.23) m[F]? < 2 (HPLFH + ||¢||2> +6(n HPLFH
Combining (3.22) (3.23) implies for r € [RoO(n),r9) with Rg large enough and n small enough
miFl? < SRl and s [PoF| < Sz 4w
Plugging the latter estimates into (3.20) yields

[Mea [L175P5 (L130)] | < 7115 S rlml Pl + 7IPHFIlg S Ol + rl]l




QUANTITATIVE FLUID APPROXIMATION IN TRANSPORT THEORY 19

We now come to the estimate of

Mo [L175P5 (L150)] = o= [ [Eo—2] [P (1150)] a

% S(0,r)
1
= — LU‘I_ngZ

29 S(0,r)
where F' satisfies this time
(3.24) ~L*F — z|v]7PF = [v] PPt (H gz/z) .

. . . . o . . L8

Integrating this equation against M implies m[F] = 0 since (L*F,1) = m[P~(|-]2¢)] = 0 and

z # 0. Hypothesis 2 then implies since r < rg < A is away from A:
15 = ||P4F|_, < el
and thus
_B 1 B8
Mo [L175P (15
The conclusion is that for any ¢ € L?(M),
1
(M = Mro) &l S O) 2[4 + |

which means that (combining all the previous conditions), for r € (Rg©(n),r1) with r1 € (0,70)
small enough (independently of n) and Ry large enough (independently of n) and n small enough,
the operator norm

)| 5 el

My = Mol L2 vy £z < 1
It implies that, for any r € (r(,r1) and n small enough, the projections I, , and I, both
exist thanks to Subsection 3.1 and their dimensions are the same, i.e. 1, which proves uniqueness
of the eigenvalue within B(0,71). This in turn shows that the eigenvalue is real: if (¢, —u(n))
is an eigenpair of L, with u(n) € B(0,71), then so is (¢,(—-), —u(n)). Since L, < 0 and 0 is
not eigenvalue for n # 0, this proves that p(n) > 0.

3.9. Estimate on the branch as n — 0. Since the projection has dimension one, there are
no other eigenvalues in a disc of radius r; independent of  — 0. We can therefore vary and
decrease the radius until it touches the eigenvalue, and since our estimates above are uniform
in r € (Rg©O(n),r1) with r1 € (0,r9) small enough (independently of n) and Ry large enough
(independently of n), we deduce that this eigenvalue in fact belongs to the disc with radius

RoO(n), i.e. u(n) S O(n). Moreover denoting ¢, = |-| gi/fn and normalizing the eigenvector as
/ Pp(0) 0] M(v) do :/ 6(0) 0] P M(v) dv :/ 6 (V)M (v) dv = m [] = 1,
R4 Rd R4

then integrating the equation against %M, taking the real part and using Hypothesis 2:
2 2 2
Mty = boll™ < () [y [1™ < w(n) by — doll™ + ()

where we have used ||1g|| = 1. Hence for 1 small enough we deduce

6 — 1l1_s = lttn — voll S u(n)?.

This concludes the proof of Lemma 1.1.

4. PROOF OF LEMMA 1.2 (SCALING OF THE EIGENVALUE)

In this section we prove Lemma 1.2, assuming all Hypothesis 1-2-3—4. Consider the unique
eigenpair (¢,, 11(n)) that satisfies p(n) € B(0,71) and

@ =Ly in( ), = Lol 6, and [ 60 Ma(e)du =1,
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4.1. Proof in the case o > 2 + 3. The function F,, := Imf" satisfies

—L*F, — pu(n)|v]PF, = (v-0)Re¢, and /Rd F,(v)Mgdv = 0.

_B
2,

Since (Hypothesis 2) L* is invertible on the L2(M)-orthogonal of | -] and |-] IMe L2(M)

when o > 2 + 3, we can define then F € L?(|-]7#M) solution to

—L*F =(v-0) with F(v)Mgdv = 0.
Rd

The difference F,, — F satisfies
—L* (Fy = F) = p() [v] 7 (Fy = F) = (v-0) [Re ¢y — 1] + p(n) [v] 7 F.
Integrate the latter against (F; — F')M and use Hypothesis 2:

A=l B = FIZ, < [ (- 0) (Redy = 1) (B = F)Mdv+ o) [ F(Fy = F) My do
< [Re gy = Uloy sl Fy = Fll—g + 1 Fl[ -]l Fy — Fll-5.
Write for any ¢ € (24 3, «)

— < _
IRe ¢y — 11y, 5 < [IRedy — 1 5 [Redy — 1], < ()2 [Redy, — 1]l

with z = efe(i;ﬁ ) > 0, then Hypothesis 4-(i) implies

[Redy — 1245 S M(U)é —0 as n—0,
and thus, since a > 1 (combining & > 2+  and a+ 3 > 0)
1El-s S I(v-a)l S 1,
we deduce
IFy = Fll_s Spm: =0 as n—0.

Finally,
7(77) - o co)(Fp(v) — F(v v)dv
‘Mn2 /d(v- VE(0)M(v)do| < /d(U )(Fy (o) (v))M(v)d

S 1ll+gl1Ey = Fll—p S p(m)? = 0 as 9 — 0,

which identifies the limit of u(n) and the rate.

4.2. Proof in the case o < 2+ 3. Take 0 < x < 1 a smooth test function that is 1 on B(0, Ry)
1
and zero outside B(0,2Ry). Integrate (4.1) against ©(n)~1x(-n™7)M and take the real part:

(4.2) g((z)) + @377)7’ ((w-0)tmgy,x (477 ))
- —g@) [0 Re gy, x (077 ) ) = 1) = @217) (L*(Redy = 1),x (077))
= —g@) (o177 Re gy, x (074) =1) - @277) (Regy —1,L (x (n77))).

The first term in the right hand side is controlled by

1 a+tp

0 (e () =) s (1 () =)
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and the second term is controlled by

0 (Redn = 1.2 (7)) < g o 11y 2 [ (477)]

somH e ()],

) i)
< @(77) 2772<1+/3 RO < RO .

~

The second term in the left hand side satisfies

&77) <(1} -0)Im On,s X(Uﬁ)> = Ca, /Rd(u -0)Im (I)n‘uudfax(u) du

and we deduce

atp

/1'(77) / —d—a -
—= + Cq, u-o)Im®,|u x(u)du| SR, * .
’@(77) B Rd( ) 77| ’r] ( ) 0

Then observe that assumption (1.11) in Hypothesis 4 implies the uniform integrability of the
integrand on the support of x and the convergence of the integral as n — 0 for a given x.
All in all we have the double limit

/ (u-a)Im@n\qu x(u) du / u- o) Im ®|u|~7 du.
Rd Roﬁoo R4

This double limit thus proves that % converges and

lim #n) = ca,g/ (u- o) Im ®|u| "% du.
(n) R¢

4.3. Proof in the case a = 2+ . Take 0 < y <1 a smooth test function that is 1 on B(0,1)
and zero outside B(0,2). Consider again (4.2) (with now ©(n) = n?|Inn|) and estimate

‘(/;((7777))<Lv15Re¢mx<'77”15> B 1>‘ S [(Lo1 " Regpx (077 ) — 1)

and
M@G%—LL(M‘WW'S gy 190 = s 12 [x (077)]
1 1 1
S e X ('W)]Hﬂ S am)F

We have also

1 _1 c —d—
g (0 @V monx (7757 ) ) = o8 (o) gl () d
which gives
n Ca, _ 1
(4.3) ‘—i-‘ Q('B)’ (u'a)Im®n\u|nd “x(u)du| < T+ 1.
() Rd |In(n)|2

Let us decompose

Ca,B ( —d—a
u-o)Im®,|u x(u) du
‘ lnm Rd ) 77’ ‘77 (
_ Cap Ca,B

| Jyu< ﬁ(u-a)lmfbn]u];d—a)((u)du—i— ] Jus ﬁ(u.U)Im(I,n‘u’;d—ax(u)du.
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The first term is bounded by
Ca,B
: v-o)Im ¢, (v)M(v)dv
77|1n77| |v|§1( ) 77( ) ( )
- Om): <1 .
nlnnl ™ |n(n)|z

C —d—
] oyt 4 I Bl = x () du =
ulsn

We approximate, using the second part of Hypothesis 4-(ii)

1 —a—x
[In(y) /u|> o (0 0) [ @ ) = T ()l () S al)
Define,
N(n) :—/ L (u- o) Im ®(w)u] "y (u) du.
|u|>n 145
Observe that since [Tm ®(u)| < [ul>™8, and a = 2 + B,
N(p) — /| o, (00 I @l () o / o g
/ |<on TP ol d"”‘dmu Oé_l’dv
<lv 77

SRS

since Hv|d+a |v] 4= — 1‘ ~o—soo HTaﬁ We get, using the second part of Hypothesis 4-(iv),

) 1 ) Im® <?7141r5 0'/ ) )
—nN ~— cg-0)—— 2 do’ ~ / Q o) do'.
" (77) 1 + B o’/eSd—1 ( ) n 6 1eSd—1 ( )

Apply then L’Hopital’s rule to deduce

N(W)_ 1 o Qo /
W ] _5/egd 1(0 U) (o")do'.

We conclude by taking n — 0 in (4.3).
5. PROOF OF LEMMA 1.3 (THE DIFFUSION COEFFICIENT)
Using Lemma 1.2 and the definition (1.15) of ¢, Lemma 1.3 follows from:

Lemma 5.1. Assume Hypothesis 1-2-3—4. Then, the following convergence holds
M L1 (ray when o > 0

51, N
<17¢77> ~n—0 1 +,6’| n(n)| when o =

o / CI)(u)|U’_d_a du  when a € (—f3,0).
R

with explicit convergence rate.

Proof. When « > 0, the integral

P—1,1)= | Mdv<+o0
Ca,0 R4

is well defined and, choosing ¢ € (0, «),
(L, o) = (LD < (L, dp = D < [lminge,s) 100 = L= minge,)
Sy = 1% g lldy = Ulg™ S p(m)?
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with a = min(%, 1) € (0,1], which shows (1, ¢,) ~ (1, 1) with explicit rate, and thus

<17¢T]> _W_i% <17 1> = 2047,/3 = ”MHLl(Rd) when o > 0.

a,0

In the case a =0,

/R oy(0) M) dv = /| o M) o / by (0)M(v) dv.

[v|>n T+P

The second term is estimated by

/ o ¢n(”)M<”)dU:Cw/ @, (u)ul,* du
[v]>n [u|>1

8
= co,8 (/ I@n(U)IQIUInd+5du> (/ IU\n”dU>
[u|>1 lu|>1

using the moment bounds (1.12). The first term is decomposed into

N|=

D=

<1

/Ugn 1 Cf)n(v)./\/l(v)dvz/ L (gbn(v)—l)/\/l(v)dy+/ . M(v) dv.

1+8 v|<n I+B lv|<n I+B
Since
—1 do| < —1 1
[ EEFUOLE BRI (. |
S u(n)%n”(lﬂﬂ” <1,
we deduce
sa(M(e) o~ [ M) do ~ cos S 1y
v v v~ v UV ~ C n
RE fol<n” T+ R R

with explicit error term.
We finally consider, in the case a € (—/,0), the convergence of the integral

N T / b (V) M (v) dv 122 ca,ﬁ/ O(u)|u| " du.
Rd Rd
Observe that the left hand side is
05 [ oM@ do=co [ B0l
R4 R4
The bound (1.11) implies that the integrand is uniformly integrable near zero:

e—0

/ B, ()]l du % 0
lu|<e
uniformly as 7 — 0. On the region |u| > Ry the integral bound (1.12) implies
[ gl du B
[u|=Ro
uniformly as n — 0. We finally use the L?-convergence ®, — ® on {e < |u| < Ro}.

6. PROOF OF THE HYPOTHESIS FOR SCATTERING EQUATIONS

In this section we consider the scattering operator
£f = [ ) F@)IME) = £ MW)]

Lh= /R b(-, o) M) [R(0) — h()] dv.

Y

23
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We assume that b is C!, that the operator conserves the local mass
/ (b(v,v") = b(v',v)) M(v')dv" =0

R4

and that the collision kernel b and collision frequency
v(v) := / b(v,v") M(v') dv’
R4
satisfy, for some constant vy > 0,
1P Sv) S 177 MrOw) ~aseo wlul ™ and  1b(o,)lg + [16(50)lls S L0177

This includes b(v,v’) = [v]™?|[v']7? for any a + B > 0, and b(v,v’) = |[v —v']7? when 8 < 0
and a+ > 0 or when >0 and o > 3/.

6.1. Proof of Hypothesis 2. Hypothesis 2 is standard and proved for instance in [20].

6.2. Proof of Hypothesis 3. We perform the following calculations:

ILGer)l3 = / [0]P|L(xR) PM(v) do
/ / IxRr(v (") [*b(v, ") M(v") M(v) dv' dv
// ’XR — xr(")|*b(v,v") M(v) M (') dv dv’

</ ] -
{lv]<R}xR9 {lv]>R}xR4

< // b(v,v") M(v) M(v") dvdv’ + // b(v,v") M(v) M(v") dv’ dv
Riax{|v'|>R} {lv|>R}xRd
+8)
S IGMI_y 5 B 0.

6.3. Proof of Hypothesis 4. The eigenvalue problem writes

(176, @)= [ B0 o) M0 = (410) = (0 ) = ) 01 o)
Rd
[ Moo e =1,

Observe first that Hypothesis 2 implies

ey — 1117 5 < (n) Il
and thus, for 17 small enough

2 1
||¢77||_5 < m

is uniformly bounded as 7 — 0. Observe second that
L5 (o) ()] < 16, 0) g 6l g S 10177
which yields, for n small enough,

0] L

60(0)] S P —
(000) = w197 + 72w 02] T TR0

i.e. ¢ is uniformly bounded in L®(R?) as n — 0, and Hypothesis 4-(i) when o > 2 + 3 follows.
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The rescaled eigenvector ®,, satisfies
B 1
T *, +¢ <7]_mu>
_B_ __1 . -B
nttiv (77 = U) —i(u- o) — pu(n)|uly

We turn to the case a@ < 24 3. Estimate (1.11) in Hypothesis 4 follows from @, uniformly
bounded and for 7 small and |u| < 1 (using |L*T(¢,)(v)| < [v]77),
|u- o

(u-0) [177 L%y (070}
B S B 1

1 2 ~ B _ 1
(077w (7 750) = ulmluly®) + (02| w7 (07 u) T

The integral moment bound (1.12) in Hypothesis 4-(iv) follows from (for small  and large u
and using again |L*F (¢,)(v)| < [v]7F)

1
) < -

O, (u) == ¢, (n—ﬁu) _

[T @, (u)| = < fuly .

which implies

2 o T p+oo ?”71 a+p
||<I),7||BN/0 /1 T p—s drdf < +o0.

To prove the remaining points we use L*1 = 0 to write

_B_ 1 _B_ 1 _B_ 1
rr’l+5y (77 148 u) 7”1+ﬁ L*7+¢77 (rr, 1+8 u) — 7]1+BV (77 1+ u)

(I)n(u) T B 1 ] -5 _B_ __1_ . -8
Ty (0 ) —ilu-0) — pluly” 0Ty (07T a) —itu-0) — n(lul;
1
N LY (¢ — 1) <17 T8
niHBy (77 48 u) —i(u-0)— u(n)luw
Since then

B B

, 5
N+ L (¢ — 1) (n_ﬁU)‘ ST [n_ﬁuw 6y = 1|5 S Vu(mn™7v <” Hﬁ“)

we deduce

P
' B < ) — 0
(I)mO Lo (R4) n—0
with the simpler function
B 1
ni+ey (n*ﬁu)

1
w75 (n” u) — i 0) — ()l

To prove the convergence of ®,, it is thus enough to check the convergence of ®, o:

Vo
lim & = lim ®
Y, @ (1) = iy @0 () = vo — i|ulP(u- o)
. . Mul?(Au - o)
Qu)= lim A9 _Y0
(=, tm 72+ (- 0)?

= ®(u)

—1
=1 ‘U|ﬁ(u : U)v

and the corresponding diffusion coeflicients are given in the statement of Corollary 1.5.
Moreover, since

Uﬁl/ u Uﬁ u-o
I, o(u) = )l ) |
(lulvn(w) = )" + luli (w02
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and
volul’(u - o)
Im®(u) :=
) L G o
we deduce
2
2
Im®(u) vy |ulf (MgVn(u) - M(Tl)) + |U’nﬁ(u -0)?
T ®y0(0)  [uffun(u) [ul] R+ Tl (- o)
B
u
=(1 —i—o(l))%.
|l
Since [Im @, — Im @, | < /() [Im @5, 0],
Im®(u)  Im®(u) ImPyo(u) (1+0(1))M
Im®,(u) Im®,o(u) ImP(u) \u]?,

and this gives the second part of Hypothesis 4-(ii).

7. PROOF OF THE HYPOTHESIS FOR KINETIC FOKKER-PLANCK EQUATIONS

In this section we consider the operator

L(f) = Vo (MVU (Ja))

where M is given as in Hypothesis 1. In this section the constant = 2, and the operator L
and L are self-adjoint respectively in L2(M~1) and L2(M).

7.1. Proof of Hypothesis 2. This hypothesis reads in the case of Fokker-Planck operators:

/ IV oh|* M(v)dv > X ||h — Phl||_, with Ph := / A )W) EM ') dv'.

R4 R?

for some A > 0 (recall that [(-)72M = 1 as per Hypothesis 1). It is a form of the so-called
Hardy-Poincaré inequality, see for instance [8, equation (1)] where references are collected for
proving it for d > 3 and o > —2, [22, Corollary 1] and [9, Appendix A] where it is proved
in all dimensions d > 1 under the condition d + o > 0 (for instance the “a” in [22, Corollary
1] corresponds to our “—(d + «)”). Note that the case when d > 3 and «a € (—d, —2) would
correspond in [22, 9] to situations where the Hardy-Poincaré inequality holds without the need

of the zero-average condition; this case is however excluded by our assumption a + 3 > 0.

7.2. Proof of Hypothesis 3. It is proved via the following computation

Ll = [ 19 (MToxw 1o 5
2
= /Rd Axr(v) + W’VXR(U) W—|2M(U) dv
VoM 2
= /BQR\BR AXR+W'VXR LUPMdU

= / ]2 Mdo <, R-H) = p=(B+a),
Bar\Br

7.3. Proof of Hypothesis 4. The equation satisfied by ®,, is
(7.1) —[uZAu®y + (d+ a)u- Vy®y —i(u- o) |uli®y = p(n)®,.

We first prove the pointwise bounds, i.e. (1.11) in Hypothesis 4. We start with pointwise
estimates of the non-rescaled eigenfunction.
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Lemma 7.1. The unique solution to

~Ley —in(v- o)y = p(n)[v] ¢y with /R o) W] M()dv =1
satisfies for any R > 1

PnllLoe(Bo,r)) SR1  and  |[Im ¢yl oo (B(0,r)) Sk max(n, u(n))

with constants depending only on R but uniform in n — 0.

Proof of Lemma 7.1. As for the scattering equation, Hypothesis 2 implies, for 1 small enough

1
on— 1], < ool . = 2, <——%51
| n | 2 p(n) || 77” 2 H(bn” 2 A — u(n)

The elliptic regularity of the operator L = A — (d + a){v)~2v - V,, with uniform ellipticity
constant, then classically implies that

H¢nHLoo(B(o,R)) Sk 1
Since P¢, = 1 in the decomposition ¢, = Pe, + <z5f7‘, one deduces
Mm < [l ||y < ()

and the imaginary part satisfies the equation

—L(Im ¢y) — p(n)[v]*Im ¢, = n(v - ) Re gy
Therefore the elliptic regularity combined with the integral bound on Im ¢, and the bound
[n(v - o) RedyllL2(p0,2) S 1 on the right hand side implies that

[[Tm ¢nHLoo(B(o,R)) Sk max(n, 1(n))
which concludes the proof. O

The following lemma proves (1.11).

Lemma 7.2. There is n; € (0,19) small enough and A and C' large enough so that
vy e (0,m), VueR?, 1@y (w)| S [ulSHO, | Im @y (u)| S [ulinGHed=Cun,

Proof of Lemma 7.2. Multiply (7.1) by ‘%;" and take the real part,

)
|u|?7Re(|¢”|A P ) +(d+o¢)u-Re<|(I)"|V P > w(n)|@y].
Since

pu— >
V.|, <‘q) ’vq»> AU|CI>U]_Re<‘q) ’A<I>>

~[ulAul@y| + (d + )u - V| @] — u(n)|@y| < 0.

one gets

Then observe that the real function F(u) = |u\,(f”(m satisfies for |u| > An% with A large:
— ]u\%AuF + (d+ a)u-VyF — p(n)F

2
> u(n)F cde —C(Cu) - 2)‘|

',g + C(d+ ) — 1]
p(mF [-Cd(1+¢) = C(Cu(n) —2)(1 +¢) + C(d + o) — 1]
> () F[C2+a) =1 —eC(d—2) = C?u(n)(1 +¢)]

2
where we have used that % < 1+ ¢ with € small for |u| > An% when A large enough. The
right hand side is thus positive for C large enough and € and 7 small enough, since 2 + a > 0:

Viu| > Ans,  —[ul2AuF + (d + a)u- Vo F — u(n)F >0
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i.e. F'is a super-solution in this region. Moreover the previous lemma shows that

sup L @y (u)| < ”QSWHL"O(B(O»A)) Sal
[u|<An3

and we can therefore compare ®, and F' on the ball lu| < An% with a bound uniform in n. The

maximum pr1nc1ple thus implies that |®,| < |u] ) for all lu| > A773 with a bound uniform in
n. Finally, since n¢ #m ~ 1 as n — 0, this bound extends to any u € R? up to enlarging the
comparison constant (independently of n — 0).

Take then the imaginary part of equation (7.1)

—\u\%Au Im®, + (d+ a)u-V,Im @, — p(n) Im &, = (u- U)\u|727 Re @),
multiply by &%ﬁ”n' and use the previous estimate to get for |u| > An%
—[ulp Au Tm(®,)| + (d + @)u - Vi Tm(®,,)] — pu(n)| Tm(@)] < [ufiy 0.

Define G(u) := \u|§;l with ¢’ := min(2 + «, 3) — Cu(n) and compute for |u| € [An%, 1]:
—[u2AG+ (d+ a)u-VuG — p()G =G [ (2+a—C) —um) —0(A2)] Zq [uf37OH0
for C'large enough and 7 small enough. The maximum principle then shows again that | Im ®,| <
|u|77/ on |u| € [An% 1] by comparing Im ®,, and G on |u| = An% thanks to the second inequality
in the previous lemma. Again the bound extends to any |u| < Ans using the second inequality

in the previous lemma, since max(n, u(n)) S 7 5 uniformly as n — 0 (examining separately the
cases o € (—2,1] and « € (1,4)). O

The next lemma allows to prove the integral moment estimate (1.12) in Hypothesis 4-(iv).
Lemma 7.3. There is ¢ > 0 such that for any ¢ > —2 and G, ® € L*(|u]9"%"%) such that
(7.2) —[ul2Au® + (d+ a)u- Vy®y —i(u-o)|ul;® = G,
the following gain of decay at infinity holds

/Rd@(uﬂ [u] T du <q§/ |G(“)|2Lqu_d_adu+/ 1@ (w)[*[u]?4* du.

Rd

Proof of Lemma 7.3. Consider a real-valued smooth function xo(u) that is zero on |u| < 3 and

equal to 1 on |u| > 1, and integrate (7.2) against ®x2|uld9"*

R O e e I ] N G [ A e T T
uj =z

< [ (@ +162) g au

|u|q d—a—1

and take the real part to get

Integrate then (7.2) against ®(u-o)x? where x is a real-valued smooth function that
is zero on |u| < 1 and equal to 1 on |u| > 1, and take the imaginary part to get

[ 0P a0 S [l 90 0l
u|zZ
+ / 51 (|(I)77‘2 + ‘G’2> ’U‘gfdfa du
uj=Z
< [ (=16 g
u|zZ

where we have used the previous real part estimate in the last line. This yields

[ ol @yl Lt du s [ (19,2 +1GF) 1w
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This first estimate improves the decay at infinity outside a cone around u_lo. We now use the
ellipticity of the equation to control this latter region. The operator writes L, = —yu\fﬁavu

[Jul, d=ay,] and we deduce by simple commutator estimates that

g—d—a+2 2 —d—a
[ |7 (@t =5=) [ aus [ (12 416 fuly o du
lu[>2 [ul>1

Consider first the case d > 2. The Caffarelli-Kohn-Nirenberg inequality yields
2

24 5/ (|<1> |2+|G|2) lu|d=%= qu.
Ld-2 luf>1 n n

Consider now the cone C := {M—Z' co| < Lu}fg, |u| > 2} for some § > 0, and a gain of weight

qdcx+2

o

1Iu|z2‘

|u]¢ for some ¢ > 0 to be precised later. The Holder inequality then yields

2
2 d(¢=2) d
2d_ lu| "2 du
La=2([R%) \J¢

The extra volume integral may be estimated as follows using spherical coordinates,

+00 +oo
d(¢—2) a(¢—2) _d
/IUI 2 dUS/ ri=t )T (r)72 dTS/ P T8 gy
C 1 1

which is finite as soon as { < g (which defines and restricts §). Outside the cone we use the
first estimate:

/ "I’np ‘u’q—d—a—s—f du ,S / ’(I)WP (u ) 0)2’u‘—2+6+q—d—a+g du
cenfjul>2} R

g —d—a+2
12 [l < [ )51

which is controlled as soon as ( < 3 — 4. The constraints are compatible for ¢ € (0, %)

In the case d = 1, the gain of decay is immediate from the first estimate alone. In the case
d = 2, we follow a similar argument but replace the Caffarelli-Kohn-Nirenberg inequality with
the Onofri inequality:

| @q ()l

S [ (1@ +1GE) fulg
|u|>1

for any p < oo. The Hélder inequality then gives
1
? / [u|9€=2) du !
LR\ Je

is the exponent conjugate to p. The conclusion follows as before by taking p

2
"z
ful22|| 5,

g g—d—a+2
1@ 4 < [ ) 515

where ¢ = ﬁ

large enough. O
We now apply this latter Iemma to obtain the moment bound (1.12). Observe first that the
pointwise bound |®,(u)| < |u|“#" proved in the previous lemma implies that

/| P < o
uj=2

for ¢ = —2 and 7 small enough with bound uniform in 7, since « + 2 > 0. On this basis,
we then apply repeatedly the latter lemma with G = u(n)®, to obtain that ®, decays faster
than any polynomial at infinity, with constants uniform in 7 (note that ¢ is independent of ¢ in
the lemma). Finally the convergence ®, — ® in L2_(R?\{0}) follows easily from the bounds
established above and the convergence of the coefficients of the equation satisfied by ®,: one
can prove that n — @, is Cauchy in L? on any such compact set as 7 — 0, and such convergence
has a polynomial rate and is uniform on any compact set in R%\ {0}.
We now prove the second part of Hypothesis 4-(ii). The equation for W, := &, — ® is

- |u\2A W, + (d—l— a)u-Vy Wy +i(u- a)|u|727Wn — p(n) Wy

—773(d+a) 5 Vu® + u(n)®,
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We derive a bound on V,®. For this, differentiate the limit equation for &,
— [u]PA(V®) + (d + a)u-V (V) + (d+ ) VP + 2(Ad)u
=i(u-o)|ul*V® + iV ((u- 0)\u|2) ¢

Test against ~o:, use

IV@\’

o Vo
V. |VE :Re< VCI>> Re(Au V(I))gAu Vo)),
| @) Vo) (Vo) (IVe]

()
whe (A0 T8 ) —u T (V). IV (o)) | < 3l

and take the real part to get
—[uPA (VO + (d+a—2)u-V(VP]) + (d+ a) V| < 3[ul*|| |-
The maximum principle then yields that |[V®| < |ul?2. As a consequence,
2 2
—luls Au Wyl + (d + @)u - Vo[ Wyl = p()[Wy| < 03 lul + p(n) S 03 |uly,
since ® is bounded uniformly. From this, one deduces |W,| < 77% |ul,,. Since,
- |u\$]Au Im W, + (d + a)u -V, Im Wy, — p(n) Im W),
= ngAu Im®+ p(n) Im® + (u-0) (\u|727 Re @, — [u]*Re @),
= n%AuImcﬁw—u( ) Im® + (u- o) (]u\%ReWn—i—n% Re@) ,

— 13 (d+ a)—5 - Vo, Tm® + () Tm ® + (u - 0)[ul% Re Wy,

Juf?

we bootstrap the bound on V,® to a bound on V, Im ®, the imaginary part of V®. Since
—|ulPA (ImV®|) + (d+ o — 2)u -V (ImV®|) + (d + o) Im V| < |ul* + |ul?,
we obtain [Im V®(u)| < |u|* on B(0,1). From this, we get
— [ul2 Ay [Tm Wy + (d + e)u - Vo, [Im Wy | — p(n) [Im W]

2
S [uf® + )l + Ju - ol [ul2n’ [uly S 03 [ul} + - ollufZniul,

and thus
| Im Wy, (u)| n—0 0
|u’737—0u(n)
on B(0,1), which implies the hypothesis since then
1
N I @ — I (P :| —d—a d
[ In(n)| /12|u|2771i5(u U)[ m &y (u) — Im ®(u) |ul, u
on(1) 3—Cp(n) |, |—d—a
: [ In(m)] {1 ful> ﬁ(u'g)‘mﬁ |ul, " du
u
< 9 1) | |—d—0u(n)d n—0 0.
= )| |1z pzg e th v 5

8. PROOF OF THE HYPOTHESIS FOR KINETIC LEVY-FOKKER-PLANCK EQUATIONS
In this section, we consider, given s € (%, 1) and M is given by Hypothesis 1, the operator
L(f)=A+V - (Uf).
The fractional Laplacian is defined as in (1.5) but we use the equivalent definition

. 4°T (4 + 5)
Asf(v) == —Cy / o ,|d+28 Jaw  with Cuys 1= —2—2.
v m2|I(=s)]
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The drift force U solves

AM 4V, - (UM) =0.
We restrict ourselves to a > s. It is proved in [13] that a radial solution U to the previous
equation satisfies U(v) = U(v)|v] Pv with  := 25 — a and U a uniformly positive function
bounded from above. The operator L is

Lh = M7LAS (Mh) + M7V, - (U Mh) = M~} [Ag (M) — (ASM)B] + U - V,h

8.1. Proof of Hypothesis 2. This hypothesis is implied by the fractional Hardy-Poincaré
inequalities proved in [13] and earlier in [46]:

Proposition 8.1 ([13, 46]). Letd > 1, s € (0,1), @ > s and f := 2s — . Then there is A > 0
(depending on s) such that

—Re (Lh,h) > A|h = Phl|? 5.
Proof. Compute
~Re <Lh,h>=—Re/ [Ai(Mh)Jer-(UMh)]Edv’
Rd
_ 1
:—Re/ (Agh)thv+Re/ ~U -V, (|h]*) M dv
Rd RdQ
_ 1
:—Re/ (Agh)thv—Re/ ~V, - (UM) |h)?dv
Rd Rdz
:—Re/ (Aih)thu+Re/ 1(Af;/\/l)my?ow
]Rd ]Rd2

C h—h|?
— Zds / 7| | M do dv
2 Jpaypga v —v'[4+2s

and thus

Cas h — h'|?
—Re (Lh, h) = Z’ /Rd ]v|— U/|dL2s (M + M) dvdo'.

Note that there is k > 0 such that
M+ M

V(U,U/) S Rd X Rd, I_U—l_ﬁ LU/W_ﬁMM/ S K m,

by matching the asymptotics at large v and v’. Hence we get that
—Re (Lh,h) 2 /Rd |h— 2] P [V P MM dvdd = ||k — Ph|? 5,
where we used in the last line the classical coercivity for scattering operator discussed above. [

Note that in the previous coercivity inequality A(s) — 0 as s — 1 since Cy, — 0 as s — 1.
This explains why the coercivity weight 8 = 2 of the Fokker-Planck operator differs from
the coercivity weight 8 = 2 — «a of the Lévy-Fokker-Planck operator when s — 1. In fact
when o = 2s and s — 1 the correct formal limit is the Fokker-Planck operator with Gaussian
equilibrium, in view of the general theory of Lévy processes, for which 8 = 0 is indeed the limit
of f=2—a=2—-2sass—1.

8.2. Proof of Hypothesis 3. We estimate
1L Ger)ls = [ M7 [AL (Myr) = (AM) X&) + U - Vx|

in several steps. Write first

0 oxald = [ 10Tl 1P M) o = [
R4 R4

Uv)[v] v Voxr

)2 |v]P M(v) dv

<Vl [, lo- Foxal® Ma(w)do S R,
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Then split the other term into

2
M s (Vow) = (a3M) x|
2 2

= [t [ (vm) — (@5M) xa ]+ [lM A (Mxw) = (A5M) xR L]
When |v| < R, write v = Rw with |w| < 1 and observe that x(w) = x(w’) when |w'| <1 to get,
x(w) — x(w') N pd g
M(Rw') R® dw

/|w1|>1 Rd+a |y — w/|d+2s ( )

< |X(w) - X(w/)| dw’ < R*(d+23+a)
~ |w"21 Rd+a+a |w _ w/’d“rQS ‘w/‘d+04 ~

[A% (Mxr) — (AgM) xr] (Rw)| = Ca,s

which yields (using 8 = 2s — « and a > 0)
2
HM*l [Af) (Mxr) — (AIM) XR] 1|U|SRH5 < R4stB—a < R~ B,
When |v] > R, we write

[Af) (Mxr) — (AgM) XR] (v) = / XT:)_) ;féfgl)/\/l(”l) dv' = /uv'<’; o /Uu/|>

R4

Jicl]
2

Start with the first integral in the right hand side:
_ /
/ xr(v) — xr(v )M(v') do’
fo—vr|< 3t

d+2
I ChaiCl

A}_U/|<|v

S sup V3 [(xr(v) = xr() M@)]].

B(v3)

supp ) [V 0r(0) = xa(@) M|

”U N Ul|d+25_2

N

dv’

One has
sup | Dy ((xr(v) — xr(W')M())]

B(u,%)

<SR[~ sup

w (V' —1y,,|—d—a—1
X' | = R~ v sup

!
s —d—a—2
\ ( R) \ T o2,

vEB(v,13) R v'eB(v, 12
Consequently,
. /
/ XR(U) />§RQ(U )M(UI) o'
\v—v’|§% ’U - ’ +as
v v
5 ”U|2_25 R_Q"U|_d_a sup X// (R> ‘ + R—1|U|—d—a—1 sup Xl <R> ' + |,U|—d—a—2
veB(v, 1) v'eB(v, 12
2 / /
v v v v
S ’,U’—d—oa—2s ’RL sup X// <R> ' + |R| sup X/ <R>' 1 S ’,U’—d—oa—2s,
UIGB(U,%) U’GB(U,%)

where we have used that x’ ans x” have compact support and |v| < 2[v'| in this region.
Focus now on the second integral (using o > 0)

Xr(v) — xr(V")
A)v/|>|ﬂ| |val|d+28 M(’U/) dU/

_ /
< |XR(U) XR(U )|M(Ul) d’U/ S \v[ﬁd*%.

a /vv'lz; o — |72

2
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As a conclusion,

[t (85 M) = (@300 xa| v € [ PP s R,

[v/|>R
since 8 = 2s — . This concludes the proof.

8.3. Proof of Hypothesis 4. The adjoint of L is L* = A — U - V,, and following exactly the
same arguments as in the proof of Lemma 7.1 for the Fokker-Planck operator yields

Lemma 8.2. The unique solution to the eigenvalue equation
~L%6, = info- o), = plle] P, with [ 6,017 M) do =1

satisfies for any R > 1,

[PnllLe(Bo,r)) SR and  |[Im eyl Lo (B(0,r)) Sk max(n, u(n)),
with constants depending only on R and uniform in n — 0.

We now come to the pointwise estimates on the rescaled eigenvector. This is when a < 2+ 3,
that is @ < 1+ s. Observe indeed that when o > 1+ s, the scaling is diffusive, and the diffusion
coefficient is obtained by solving

AS(MF)+Vy - (UMF) =—(v-o)M(v),
with [pq F(v) Mg(v)dv = 0.

Lemma 8.3. Assume that s € (3,1). There is m € (0,m9) small enough and A and C large
enough so that

Vi€ (0,m), Yue R, [y(u)| Sulf"™  and  |Tm@y(w)] S fuly bR,

1=8 1
Proof. The rescaled equation for @, is, using U,(u) :=n™+8U (un +#) and since 2s — 3 = a,

AP, + Up(u) - Vy @y —i(u-0)P, = M(U)’u‘;ﬁq)n

Multiply the latter equation by E—ZI and take the real part:

—7]1+3Re<|¢"|AS >+Un(u)-R <@ |V u® > p(n)lul,?|@,].

Using the classical Kato inequality Af|®,| > Re <|$"| ASD ) (see [14] for the Laplacian and [19]

for the fractional Laplacian), one gets
T [ul ALy |+ [l Uy (1) - V| @] — ()| 4] < 0.
Then observe that the real function F'(u) = |u\§ 1) gatisfies for lu| > An%:
— T S ASF 4 [ulfUy () - Vo F — u(n) F
= T ful]ALF -+ Cpa(n) ul 02U, )l — paCn) 4

where we have used that U,(u) = |ul, A U, (u)u with some U, positive bounded from below
(independently of 17). We now estimate A% (] : \WC“(")> (u). By scaling:

VueR’, A (\ ' !S""”) (u) = ncuﬁ)ﬂ A8 (L.}Cu(n)) (W?_%> .

We then estimate A$ (|-]9#) using
/1040 — (4]0

s (1.1Cun) — !
Ay (H ) (v) = Cas /Rd |vf — v|d+2s dv ’

_c, / |0/ ]CHm) — | ] CHn) W+ C, / |0/ CHD) — | ] CHn) 4
? |v v/|<|v o |v v’\>H

|’U/ _ ,U|d+25 |’U/ _ ,U|d+2.s
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To control the first term in the right hand side, use that
[0"]CHM) | ]Ck) _ v, (HCN(")> (v — ) < Culg) ] CHM 2]y’ — p|?

to get

[ WO O o
[v—v!|< |12’| ”U’ - v’d+28 ~ |U—U’|<% |UI - v‘d+2s

|U/ o U|2_25

< Cpln) ] M2 / dv/

|v7v’\<% ‘UI - v’d
< Cp(n) [o] OHD=2,
To control the second term, use that
[ 1910 — (019K < Cpa(n) [w] P! — o
to get (using here s > 1)

[ W o CHI O
|v7v/|>% |U/ - U|d+2s ~ |v7v/|>% ‘U, - U’d+2s

_ do’
S Cu(n) o] o071 / ) o7 =T

‘/
lv—v'|> 5

S Cu(n) [w]OHO0N=2,
We therefore have (using the scaling)
A3 (L1940) (v) S Cm) 1072 — AL (11§70 (u) S Cpaln)|ulg072.
This estimate implies, for some absolute constant Cy > 0,
N8 [ulSASF < CoCpln)n ™ u|GHm+A=2s
< CoCu(m)ul V05 ul ;< CoCp(m)lulg"® (1 + A%)

&
2

in the region |u| > Anﬁ. As a consequence
— 018 [ulJALF + Uy(u)u - Vo F = p(n) F
= T WAL F + Cpa(n) |l SO0 2Uy () [l — pu(n) ] §#
> —CoCu(m)|ulSHO (14 A2) ™% 4+ Cp(n)]ulSH02 (it U,) uf? — u(n)|ulSHO)
> Cp(m)|ul ") | ~Co (14 4%) 73 + Jul;? (nf Uy) [uf? — €]
> Cp() |l GO [—co (1+A4%)72 4+ (14472 (infU,) — C*I} >0

1
for A and C sufficiently large, and we deduce |®,| < F on |u| > An™5 and, for the same reasons
as for the Fokker-Planck operator, the bound extends to any u € R<.
Taking now the imaginary part of the equation, one gets

—n T |uly A Tm | + Uy (u)u - V| Tm @y — pa(n)] Tm @y | S Juf FHHOR0.

Define then 7 := min(a, 1) + 8 — Cu(n) € (0,2s) and the real function G(u) := |ul;). Note that
v € (0,2s) for n small enough, which implies that A G makes sense. Write for |u| > An%

=T [l ALG A+ [ulyUy(u) - VoG = p()G = =07 [ulg AL G +Auly Uy (u) [ul? — u(n)G

Let us now estimate A$ (| - |}}) (u). Note that by scaling

1

VueRY A3 (Juf)) (u) = H%Ai (1-17) (un~ T#8).
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One estimates A (|-]7) using

AL () = Cas | H]_]}J ',

L7 = o] L7 = ol
=C, ———d C ———dv.
d,s /v—v’|<§ ’,UI_U’d-i-Qs v+ Cys |v—u/|>% |U/_v|d+2s v

Small v’s are fine since A# ([-]7) is locally bounded. Continue with large v. In the first integral,

/ L = [o]” d — / W = [0]” = Vo (1Y) (v) (v — ) d’
lo—v'|< 2l o< 2l

’v/ —v|d+25 |U/ _U|d+25

dv’ < |2,

[ e V2 (L) )] I o
lo—vr|< 12 [0 — |42

The second integral may be estimated from above using that |v —v'| > ‘%' implies v — | > %,

/ LUI-‘A{ — \_,U‘I’y dv’ 5/ I_'U — ,UFI’y dv’ 5 |,U|'y—25'
o> 3! |

”Ul - v|d+2s v—v’|>% ”Ul - v’d+28

From this, we deduce A3 (|- [)(u) < nTTQ; Lunfﬁwﬁs = |u[}™** which implies
N ulfALG S Tl S (14 A7) ul)
in the region |u| > Anﬁ. As a consequence, as previously,
—n T Ul ASG + [ulJU (w) - VG = p(n)G 2 [ul]
for A sufficiently large and we deduce |Im ®,| < G on |u| > Anﬁ and, for the same reasons
as for the Fokker-Planck operator, the bound extends to any u € R%. O

8.4. Rescaled drift force and limit equation. We formally discuss the behaviour of the

1
force U,) when 7 goes to 0. First write the rescaled equation: setting v = un 1+# gives
a=B
N+ Ay My + V- (Uy M) = 0.
Observe that when u # 0,

IL s 1& ’u‘;dia - ‘ul‘;dia /
ni+s AUMU(U) = _Cozﬁcd,sn +8 /Rd |u — u/|d+23 du

o [l I I U
= *Ca,ﬁcd,an' /Bg |u_u,’d+25 du Cozﬁcd,an’B/B |u_u/’d+2s du.

The second term in the right hand side goes to zero as 7 — 0 since the singularity around zero
has been removed from the integration domain. To deal with the first term, decompose

—d—a /—d—a —d—a /—d—a
[e3 - (&3 [e3
[ fuly 'l P |uly - |u'l;, ,
e / lu — u/[d+2s du’ = ni+s /B [ — /[ d+2s du’ —ni+s /B fu — /[d+2s du’.
€ [ €

The first part goes to zero if € < |u|. The second part writes

ﬁ |u/|7;d_a d I ’ ‘—d—Qs ﬁ ‘ /’—d—ad !
U B, Ju— /]2 U ~e U n Win u

€

= 2 / (1 o) do
B(O en‘m)

)

Taking 1 small then ¢ arbitrarily small yields

|u’77dfa _ ’u/|;dfa Cap 1

«
lim | —c, gnTt7 du' | = " Tuldt2s
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Since VU(|U\_d_28v) = —2s|v|7972% we deduce that

,6‘ __1 C B u d Cq B -B
l ( 1+5) = g ol ta = — .
nl_%?? P un Uso(v) 25Cq0 |uldt2s [ul 25¢a,0 ful™u

This proves the scaling limit of the drift force.
From the rescaled equation for ®,, we deduce that ®, goes to ®, where ® solves,

25¢0.0 [ul®(u - O‘))
Ca,B 1+ 5 .

Ca,B U (

Sasce [ulP -V, @ — o)®=0 with ¢0)=1 = &(u) —exp(i

Thus, Q(u) = limy_0, A0 Im}\(ﬂ;") satisfies,

Ca, B QSCQ,Q |u]'(ua)
U - = . e =
. 70u Vu = (u-o)|ul Q(u) ~ :

8.5. The particular case o = 2s. Explicit calculations are available when o = 2s. In this
case =0, U(v) = cyv for some constant ¢y > 0, and the eigenproblem is

—A3) + cov - Vyp —in(v-o)p = pu(n)o.

Taking the Fourier transform (in the dual of the Schwarz space) gives

—[€[%*¢ — cof - Ve + 10 - Ved = (u(n) + co)$

or equivalently
(no = co€) - Ved = (u(n) +co + [€1**) &

The solution to this equation is given by ¢ = J, 1 , and pu(n) = —|c_1770|2s = ¢ ~25125 which

yields by inverse Fourier transform ¢, (v) := exp (ZCO n(v-o ) This agrees with the expression
of ® given above, and allows to compute ¢y = 2%

9. REMARKS AND EXTENSIONS

In Hypothesis 1, the equilibrium M is an explicit power law, and in particular is centered and
even. We discuss in this section the changes required for our proofs to deal with more general
M that are (i) characterised by asymptotic power-law estimates rather than exact formula, and
(ii) non necessarily centered or even. This means replacing Hypothesis 1 with:

Hypothesis 1’ (Equilibria). The equilibrium distribution satisfies
(9.1) M = []7 IS (v),

H1/2 with the generalised mass condi-

where S is a slowly varying function, |-] :== (1 +] -
tion (1.8).

Slowly varying functions are non-vanishing measurable functions that satisfy S(az) ~ S(z)
as x goes to infinity, for any a > 0. Examples of slowly varying functions are positive constants,
functions that converge to positive constants, logarithms and iterated logarithms.

9.1. Equilibria characterised only asymptotically. If one considers an even equilibrium
M that satisfies Hypothesis 1’, the proof of Theorem 1.4 in Section 2 and the proof of Lemma
1.1 in Section 3 are essentially unchanged. The formulas for pg and s in Lemmas 1.2 and 1.3

dto __1
are slightly modified, and rely on the existence of a scaling limit of ™ T+ M(un~ +8) as n — 0,
which follows from Hypothesis 1’. Everything else remains unchanged and the structures of the
proofs in Sections 4 and 5 are the same. Rates of convergence will depend on the form of S.
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9.2. More general velocity fields. One could replace the transport operator v-V, by a more
general a(v) - V,, where a is odd. All our results and proofs can be extended, even though the
scalings found may be changed since the scaling of ¢(R) in (3.7) will be different. If a(v) scales
like |v|°, redoing the computations as in Section 2 and Section 3 then one would find

n? when a > 20 + 5,
O(n) :=<{ n*|In(n)| when a =25+ B,
atp
nﬁ when — (8 < a < 2§+ 0.

An example is given by relativistic particles, for which a(v) := cﬁ, where c¢ is the speed

of light. Such transport operators are relevant to special relativity, see for instance [44] in
physics and [28] in mathematics. There, § = 0, so that

n? when a > £,
O(n) = ¢ n’|In(n)| when a =5,
771+% when — < a < g.

9.3. Non-centered equilibria. When the microscopic equilibrium M (v) is not centered, it
results in a drift in the macroscopic equation. Our approach however allows to tackle such a
situation, with the following changes depending on whether this macroscopic drift is of higher,
comparable or smaller order than the resulting (fractional) macroscopic diffusion. In view of
Theorem 1.4 in the centered situation, we expect a macroscopic diffusion of order ((a, ) =

min (2, af ;3’8 ), and therefore we expect the drift to be dominant when o« > 1 and dominated

when o < 1, with a borderline case at &« = 1. Observe that o = 1 is also the threshold for the
absolute convergence of the integral [pq(v-o)M(v)dv defining the macroscopic drift.
Consider a solution f in L>([0, +00); L2 ,(M™1)) to equation (1.1) and denote

t «x Vet

rtea = (555 +
1

where € > 0 and 6(e) is defined in (1.15), and where the velocity corrector v, is defined by

) € L (0, +00): L2, (M)

( / vM(v) dv
JRE when a > 1,
M(v)dv
Rd
(9.2) = 1 /Rd waME) ) |
A Tn(R) 1+ Vheme=1L
» Xr(v)M(v) dv
0 when a € (—f,1).

The equation satisfied by f. is
(9.3) ()0 fe +e(v—1:) - Vaufe =Lfe.

With this definition of f., Theorem 1.4 holds and yields the (fractional) diffusive limit of f..
The changes in the proofs are as follows. The arguments presented in Section 2 are essentially
unchanged with a few modifications to obtain the scaling of the eigenvalue resulting from (9.3).
We chose 7. in such a way that the dominant eigenmode has the scaling obtained in Lemmas
1.2 and 1.3. The new spectral problem to be considered in the modified Lemma 1.1 is

_L*¢77 —n [(U — V) - U] Oy = ,U("?) \_'U—| _ﬁ¢n with /]Rd @7(1)) Mg(v) dv = 1.
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Line-by-line technical modifications are needed in the proof of Lemmas 1.2 and 1.3 due to
the additional drift but the procedure and method are preserved and we do not repeat the
arguments. Let us just explain why we define the correction velocity v. in this way. The
spectral projector estimate follows the same procedure, but (3.13) is replaced with

(9.4) —L'F—in[(v—"1.) 0] F —z|v] PF = (v —10.) - 0.

The L? estimate is unchanged and the crucial estimate (3.18) remains true as long as
1
q(R) := / [v =] xr(V)M(v)dv at R:=mn +5
Rd

is small compared with Rin~10(n), when R; is large enough. This implies that the influence of
the drift is smaller than the size of the fluid mode, which is of order n~1©(n). Recall that

n when a > 2 + 3,
(9.5) —Z :=¢ n|ln(n)| when a =2+ 3,
U?T_é when —f<a<24+p

1 a—1
One can then prove that for all @« > —f, one has ¢(n %) < ni+7, which proves that
1
q(n~ TF) is small compared with Ry~ 1O(n) when R; is large enough.

9.4. Kinetic Fokker-Planck equation with non gradient confining force. All the results
we obtain for the Fokker-Planck equation with gradient force can be extended to Fokker-Planck
operators with non-gradient confining force at little expense. We chose not to present this more
general setting in the core of the paper to stay consistent with the clean and simple Hypothesis
1 and to help with readability. It is however possible to consider

L(f)=A,f+V,-(Uf) whereU satisfies A,M+V, -(UM)=0,

provided that quantitative bounds are available on U to ensure it is comparable to the drift in
the Fokker-Planck operator. The analysis is then similar.

9.5. About the limitation o > —1 in the Fokker-Planck case in dimension 1. The
scaling av with a — 0 shows that d + o > 0 is necessary for the Hardy-Poincaré inequality
to hold since otherwise it would imply the inequality ||f E}v) lz2@) < I1f 2@y which is false.
This restriction is implied by our condition o + 5 > 0 with 8 = 2 in dimension d > 2, but
further restricts & > —1 in dimension d = 1. The borderline case @ = —1 in dimension d = 1
corresponds to d 4+ a = 0 and a constant M and the Kolmogorov equation 0, f +v -V, f = A, f.

Given initial data fi,(z,v) := pi(z)M(v) = pim(x) the solution computed in [31] is

ft,z,v) = Glt,z — 2’ —tv' ;v — V) piu(2') dz’ dv’
R2
Sk
vl — .
4t
/

re(t,z) = /3 G (t,a: — 2 — v esv — v’) Pin <$€> |v] 72 da’ dv’ dw.
R

Assuming that pj, (f) ~ pin(z) at initial time, we obtain the limit r. — r with

t

with  G(t,z,v) := ﬁexp <—3 T3

2mrt?

After integrating in v against |v]~2 and rescaling, one gets

r(t,xz) = . G,z — 2’ — tv', =) pa(a’) [v] 7> da’ do' dv

1 o
= cst/ / Gt,z — 2/, 0")dv' ) pin(2)) da’ = cst/ — exp 3—2) pin(@") dz’
R \J/R o 12 4t

which does not solve the fractional heat equation, but the heat equation with a change of time.
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