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Abstract—The new so-called COVID-19 virus is 
unfortunately founded to be highly transmissible across the 
globe. In this study, we propose a novel approach for 
estimating the spread level of the virus for each country for 
three different dates between April and May 2020. Unlike 
previous studies, this investigation does not process any 
historical data of spread but rather relies on the socio-
economic indicators of each country. Actually, more than 1000 
socio-economic indicators and more than 190 countries were 
processed in this study. Concretely, data preprocessing 
techniques and feature selection approaches were applied to 
extract relevant indicators for the classification process. 
Countries around the globe were assigned to 4 classes of 
spread. To find the class level of each country, many classifiers 
were proposed based especially on Support Vectors Machines 
(SVM), Multi-Layer Perceptrons (MLP) and Random Forests 
(RF). Obtained results show the relevance of our approach 
since many classifiers succeeded in capturing the spread level, 
especially the RF classifier, with an F-measure equal to 93.85% 
for April 15th, 2020. Moreover, a feature importance study is 
conducted to deduce the best indicators to build robust spread 
level classifiers. However, as pointed out in the discussion, 
classifiers may face some difficulties for future dates since the 
huge increase of cases and the lack of other relevant factors 
affecting this widespread. 

Keywords—covid-19, socio-economic indicators, data 
preprocessing, spread level prediction, machine learning, country 
classification, feature importance  

I. INTRODUCTION 
Considering the continuous COVID-19 pandemic growth 

across the globe, many worldwide researchers are attempting 
to estimate accurately its potential spread. According to the 
World Health Organization, the virus has caused over a 
quarter million confirmed deaths by Mai 27, 2020 [1]. In 
order to explain this disturbing spread, socio-economic 

indicators in each country may be explored to investigate this 
alarming evolution further. Coupled with machine learning 
and analytics techniques, these indicators may help in 
explaining some aspects of the coronavirus crisis around the 
globe. In fact, a socio-economic policy of a specific country 
constitutes an interesting source of information and gives 
relevant insights to predict the number of spread cases. In 
literature, most machine learning applications developed for 
spread prediction have tried to forecast national and 
international statistics concerning total cases, total deaths and 
total recoveries [2]–[5]. Their overall approach is to build 
prediction models, essentially based on previous spread data. 
Our approach in this work is to find a relevant relation 
between socio-economic indicators and the level of spread in 
each infected country. Our main contribution consists of 
predicting the level of spread by proposing different 
classification models based solely on more than 1000 socio-
economic indicators and more than 190 countries. 
Furthermore, given developed classifiers, an importance 
study is proposed in order to determine the most influential 
indicators in the classification process. The rest of the paper 
is organized as follows: the next section reviews related work 
to spread prediction and impacting indicators. Our proposed 
approach is presented in Section III. Models implementations 
details are exposed in section IV. All results and related 
discussions are presented in section V. Section VI concludes 
the paper and gives some perspectives for future work.  VIII 

II. RELATED WORK 
We divide this section into two parts. On the one hand, 

the first part is dedicated to works that have focused on 
predicting the spread of the COVID-19 epidemic. On the 
other hand, the second part focuses on the work concerned 
with the existing correlation between the spread of certain 
diseases/pandemics and the socio-economic indicators of 
different countries.  
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A. Studies about COVID-19 spread prediction  
Following the onset of the COVID 19 epidemic, several 

researchers and scientists have taken an interest in studying 
the possibilities of the spread of this pandemic. These 
different studies used different techniques and focused on 
specific geographic areas. In what follows, we offer a brief 
overview of some of these studies. First of all, since the 
pandemic initially appeared in China, several research works 
[5]–[8]  have concentrated on the study of its spread in this 
country of origin. First in [5], the authors presented a new 
prediction model called FPASSA-ANFIS, which is an 
extension of a  neuro-fuzzy inference method for forecasting 
the number of confirmed COVID-19 cases over ten days 
based on previously reported cases observed in China.  
Second in [6], the authors proposed the so-called SUQC 
model to describe the COVID-19 dynamics and parameterize 
the intervention impacts of quarantine and control measures. 
Third in [7], the authors proposed a hybrid AI (Artificial-
Intelligence) model which combines an ISI (Improved 
Susceptible–Infected), an NLP (Natural Language 
Processing) module and an LTSM (Long Short-Term 
Memory) network for COVID-19 prediction. Fourth in [8], 
the authors adopted a sub-epidemic wave model, the 
Richards growth model, and generalized logistic growth 
model for generating five-and ten-day ahead predictions of  
COVID-19 spread in two Chinese cities namely Guangdong 
and Zhejiang. 

 In what follows, we consider a collection of works 
which focused on the spread of the COVID-19 pandemic 
outside of China.  In [9], a simple heuristic was proposed in 
order to identify the date at which the number of confirmed 
cases outside China will reach one million. The proposed 
heuristic consists of approximating the number of cases 
using an exponential curve. In [10], an econometric model 
based on the ARIMA (Auto Regressive Integrated Moving 
Average) model was proposed in order to predict the spread 
of COVID-19. In the study presented in [11], the authors 
proposed a multivariate prediction model to approximate 
pandemic trajectories in sixteen countries, from different 
continents and economic categories (High-income, Upper-
middle income, Lower-middle income and Low-income) and 
with respect to different prevention scenarios. More 
precisely, the proposed analysis was based on an SEIR 
(Susceptible Exposed Infected Recovered) compartmental 
model.  

In [12], data-driven prediction techniques such as curve 
fitting and  LSTM (Long Short-Term Memory) were 
explored in order to approximate the number of COVID-19 
cases in India 30 days ahead. The study presented in [13] 
allowed to use a segmented Poisson model to make a 
statistical forecasting about the attack rate, duration and 
turning point for COVID 19 for six Western countries (USA, 
UK, Italy, Germany, France and Canada). Similarly, the 
authors of [14] proposed an analysis for predicting the 
duration of the pandemic and the number of infections in 
eight western countries (USA, UK, France, Spain, Italy, 
Germany,  the Netherlands, Greece)  using a Gaussian 
hypothesis for propagation. In [15], the propagation of the 
pandemic in six African countries (Kenya, Senegal, Nigeria, 
Algeria, Egypt and South Africa) was simulated and 
estimated using the customized SEIR (Susceptible Exposed 
Infectious Recovered) Model and MH (Maximum-Hasting) 
parameter prediction technique under three intervention 
situations (mildness, mitigation and suppression). 

It is worth mentioning that all the cited works in this 
subsection only considered as input for propagation 
prediction the previously identified and registered numbers 
of confirmed cases in different countries and none of them 
explicitly considered socio-economic indicators for 
achieving that purpose. 

B. Studies about the correlation between the spread of 
diseases and socio-economic indicators. 
As previously mentioned in the previous subsection, not 

many works in the literature studied the correlation between 
the spread of COVID-19 and socio-economic indicators. For 
this reason, we enlarge our perspective and consider works 
that studied this correlation for both COVID-19 and previous 
pandemics, which appeared in the modern history during the 
last few decades. For instance, the authors of [16] explained 
that their goal was to study the impact of social and 
economic factors on the propagation of COVID-19 in China. 
However, they were limited to healthcare measures, weather 
characteristics, geographic proximity and similarity in 
economic conditions and did not consider other socio-
economic factors. Moreover, the previous study was 
restricted to the case of China. In another study [17], 
perspectives from behavioral economics were explored, 
focusing attention on how to encourage people to take part in 
preventive behaviors with COVID-19.  In this previous 
work, the presented study was qualitative and was not based 
on any mathematical modeling or calculation. 

In [18], the authors argue that existing pandemic 
transmission models generally do not take into account the 
specific nature of a society and location-specific parameters. 
For this reason, they attempted to identify the underlying 
spatial attributes which may influenced SARS transmission 
in Hong Kong in 2003. In another study [19], the authors 
analyzed the spatial-temporal mortality trends in Spain due 
to the 1918-1919 influenza pandemic in Spain. However, 
they did not take into account any other socio-economic 
indicators. In [20], the author studied the effects of economic 
activities and social interactions on infection spread. For this 
purpose, data describing the occurrence of three main viral 
infections were exploited. The data extends up to a quarter of 
a century through geographical areas in France, at a weekly 
pace. 

In contrast with all these previous cited works, our goal 
in this work is to study the correlation between COVID-19 
spread and as many socio-economic indicators as possible in 
as many countries as possible using artificial intelligence 
techniques [21]. 

III. APPROACH 

A. Overview 
The key idea of this paper is to estimate, at a specific 

date, the spread level of each country on the basis of multiple 
socio-economic indicators. Indeed, with regards to spread 
intensity, four levels of spread are proposed in our work: 

• Level 1: Total number of confirmed cases is less than 
1000 cases. 

• Level 2: Total number of confirmed cases is between 
1000 and 10000 cases. 

• Level 3: Total number of confirmed cases is between 
10000 and 50000 cases. 

• Level 4: Total number of confirmed cases is above 
50000 cases. 
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This way, each infected country around the globe will be 
assigned to one of these four levels. These proposed levels 
correspond to four output classes, as we will detail in the 
classifiers section. The ranges of levels 3 and 4 were set 
intentionally quite large in order to make the corresponding 
classes consistent in terms of number of instances. For 
instance, on May 1st, the number of countries belonging to 
level 3 was 24 and only 12 countries belong to level 4. More 
split on these classes makes them irrelevant for training and 
testing processes. 

In our classification approach and unlike previous works, 
we rely uniquely on socio-economic indicators without any 
use of historical spread data. Actually, our methodology tries 
to map the socio-economic situation of a country to a 
potential level of COVID-19 spread. Concretely, almost 
1429 socio-economic indicators were used to categorize each 
infected country around the globe. These indicators span 
over a wide range of socio-economic related field such as 
Economy and Growth, Demography, Agriculture & Rural 
Development, Energy, Environment, Education, Financial 
Sector, Public & Private Sector, Health, Infrastructure, 
Poverty, Science & Technology, Social Development, Social 
Protection, Trade, Urban Development, etc. Therefore, our 
philosophy is to find relevant models that map those 
multimodal indicators to the expected spread level. 

To reach this goal, our approach can be split into three 
big steps: (1) Data Preprocessing (2) Feature Selection and 
(3) Classification and Evaluation (see Fig. 1). First, before 
any classification procedure, a data preprocessing step is 
required to denoise and prepare data. In this work, many 
preprocessing manipulations were undertaken, especially 
treating missing values, normalizing indicators values and 
changing the format of the target variable. More details about 
preprocessing are presented in the Implementation section. 
Afterward, the second step is feature selection. Feature 
selection consists of selecting the best features fitting the 
tackled problem. Concretely, it is the process of selecting the 
subset of indicators that contribute the most in predicting the 
spread level. Irrelevant indicators should be discarded in this 
step since it may even decrease the model accuracy. In this 
paper, feature selection was applied using the Univariate 
Feature Selection approach that will be shortly described in 
the next subsection. Once raw data are preprocessed and 
relevant indicators are selected, we can move toward the 
classification process. Three classifiers are proposed and 
tested in this research, which are Support Vectors Machines 
(a.k.a. SVM), Neural Networks (especially Multi-Layer 
Perceptrons a.k.a. MLP) and Random Forests (a.k.a. RF). 

 
Fig. 1:Overview of level spread prediction using socio-economic indicators 

B. Univariate Feature Selection 
The idea of Univariate feature selection is to select the 

most relevant indicators on the basis of univariate statistical 
tests computed between each input indicator and the output 
variable. It allows us to keep indicators having the highest 
scores according to specific ANOVA tests [22]. Concretely, 
using our quantitative indicators and our target spread levels, 
we can compute the ANOVA F-value score between each 
indicator and the desired output classes. Hence, selecting the 
best k indicators is actually selecting the k indicators having 
the highest ANOVA F-value scores. 

C. Classifiers 
1) Support Vectors Machines 

Support vector machines (SVM) represent a powerful 
technique widely used and successfully applied for treating 
classification and regression problems [23]. This method is 
based on two key principles formally combined by Vapnik 
[24] in 1995. The first principle is the maximum-margin 
hyperplane principle. The main idea here is to find the 
optimal hyperplane that separates the classes with the 
maximum margin. If data is linearly separable, this is a 
classic quadratic optimization problem. However, data is 
often linearly inseparable. The kernel function which 
represents the second key idea, gives the solution by 
transforming the initial data space to a higher-dimensional 
space, where it is likely to get a linear separator. This way, 
nonlinear classification problems are handled efficiently by 
the SVM concept. 

2) Multi-Layer Perceptrons 
Multi-Layer Perceptrons (MLP) are part of Artificial 

Neural Networks (ANN) and Deep Learning models [25]. 
ANNs are computational models that are inspired from the 
human brain and composed of several interconnected and 
successive layers. Each layer is composed of a set of 
artificial neurons called nodes. These nodes are connected to 
the next layer via links representing their impact on the next 
layer node. The first layer is called the input layer since it 
injects input data to the network. The intermediate layers are 
called hidden layers and the last one is the output layer. 
Basic topologies of ANNs are also known as Multi-Layer 
Perceptrons or Feed-Forward Networks.  

3) Random Forests 
Random Forests (RF) [26] is another widely applied 

technique for classification. It is part of the Ensemble 
Learning approaches [27] since it forms an ensemble of 
decision trees [28] and merges their multiple classification 
decisions according to a voting system. It represents an 
interesting approach since it maintains decision trees 
advantages and prevents their over-fitting issues. Compared 
to classic decision trees, RF results in a more stable and 
accurate classification output. In the next section, we present 
the implementation details of our approach. 

IV. IMPLEMENTATION 

A. Data Preprocessing 
We remind that our goal is to predict the spread level of 

COVID-19 for each infected country. To this end, 1429 
socio-economic indicators were used as raw data to our 
models. Indicators data were downloaded from the Word 
Bank official website1. Because of many missing indicators 

                                                           
1 https://databank.worldbank.org/source/world-development-indicators# 
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for the last two years, we precise that used indicators 
concerned the year 2017. For COVID-19 spread data - 
especially the total number of cases to a specific date - three 
key dates are used: April 1st, April 15th and May 1st, 2020. 
For the spread data, they are easy to find and freely available 
on many websites 2 . All used data in this work can be 
downloaded using this link: "http://167.114.185.168:8800/". 
Once we get the indicators and the spread data of a certain 
date we merge the two databases with an inner join on the 
country code. For instance, for May 1st, this manipulation 
gives a dataset with shape (196, 1430): 196 countries on 
rows and 1430 columns (1429 indicators in addition to the 
total number of cases column). 

First, a major issue with this dataset is missing values in 
some columns. To treat this problem, a missing value filter 
was applied to keep only the indicators having at least 120 
non-missing values. Because of this mandatory operation, 
almost half of the indicators were deleted and the new shape 
of our dataset decreased to (196, 682). Second, to normalize 
data a min-max scaler is applied. This way, all indicators 
values are now rescaled and ranged between 0 and 1. We 
remind that this normalization operation is recommended 
(and even mandatory in some cases) for efficient 
classification. Lastly, the output variable i.e. the total number 
of cases was discretized in order to obtain a categorical 
output variable for the classification. This new output 
variable contains as previously described (refer to subsection 
III.A) four levels of spread. Table I gives, for instance, the 
number of countries for each level on May 1st, 2020: 

TABLE I: OUTPUT VARIABLE (LEVEL OF SPREAD) DISTRIBUTION ON MAY 
1ST , 2020 

Level of spread Number of countries 

Level 1 109 

Level 2 51 

Level 3 24 

Level 4 12 

 

B. Indicators Selection and Classifiers 
As mentioned before, three types of classifiers were 

applied in this paper, namely SVM, MLP and RF. Before 
presenting these classifiers results, we precise that: three big 
classification experiments were explored since we try to 
estimate the level of spread for three different dates which 
are April 1st, April 15th and May 1st, 2020. For each tested 
date, the corresponding dataset was split into a training set 
(67% of data) and a testing set (33% of data). Moreover, 
please note that before classification, we apply the univariate 
selection approach to keep only relevant indicators. From the 
preprocessed indicators (681 indicators, for instance, on May 
1st), many numbers were tested, especially 20, 40, 60, 120, 
200, 300 and 500. 

 Furthermore, some of the important parameters of 
classifiers are as follows: for the SVM, Radial Basis 
Function (RBF) kernel is used and a one-vs-one strategy is 
applied to deal with the multiclass problem. For MLP 
architecture, many topologies were explored. The optimal 
configuration was two hidden layers with a number of nodes 
equal to 1.5*number of selected indicators. For RF, the 

                                                           
2 https://opendatawatch.com/ 

number of decision trees was 100 trees. Please note that 
many other hyper-parameters were finely tuned based on 
literature review and empirical results in order to optimize 
classification performance. For information, indicators 
preprocessing, feature selection, models training, models 
testing and evaluation metrics were all computed using 
Python Data Science packages, especially Numpy, Pandas, 
Matplotlib and Scikit-learn [29].  

V. RESULTS AND DISCUSSION 
All the metrics presented in this section represent F-

measures. F-measure represents the harmonic mean of recall 
and precision. Recall, precision and F-measure are reminded 
in the following formulas where: 

• TP stands for True Positive: number of instances 
classified in a class and actually belonging to that class. 

• FP for False Positive: number of instances classified in a 
class and actually not belonging to that class. 

• FN for False Negative: number of instances belonging to 
a class but classified in another class. 

  (1) 

  (2) 

  (3) 

As mentioned in the implementation section, three dates 
are tested: April 1st, April 15th and May 1st, 2020. For each 
date, 3 classifiers are applied: SVM, MLP and RF. For each 
classifier many numbers of indicators were explored in the 
selection process especially: 20, 40, 60, 120, 200, 300 and 
500. Best classifiers results and selection configurations are 
exposed bellow in Table II. 

TABLE II: BEST CLASSIFIERS RESULTS AND SELECTION CONFIGURATIONS 
FOR ALL TESTED DATES. 

Testing 
date 

Best 
classifier 

F-
measure 

Optimal number of 
selected indicators 

April 1st  SVM 89.06 % 40 

April 15th   RF 93.85 % 60 

May 1st  SVM, MLP 81.54 % 300 

 

As shown in Table II, for April 1st, the best classifier was 
the SVM with an F-measure equal to 89.06%. This optimal 
result is obtained with the optimal number of 40 indicators 
representing the best 40 indicators according to the 
univariate selection approach. This result is emphasized in 
Fig. 2 in which we observe increasing scores till 40 selected 
indicators and then decreasing scores when more indicators 
were selected (60 indicators and higher numbers). This is 
explained by the fact that adding irrelevant features may 
disturb the classification process. 

The overall best result was 93.85% obtained by the 
Random Forest (RF) classifier for the tested date of April 
15th. If we take a close look at the confusion matrix of this 
classification (see Fig. 3), we observe quite interesting 
performance even for classes having a few numbers of 
training and testing examples. For instance, the RF classifier 
has succeeded to detect 4 of 5 instances for class 3 (Level 3) 
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and the 3 instances of class 4 (Level 4). This result was 
computed using the best 60 indicators according to the 
univariate selection approach. 

Since the RF classifier resulted to the highest overall 
score (93.85%), we tried to compute the importance of each 
indicator for this particular classifier (for date April 15th). By 
crossing univariate selection results and RF feature 
importance results, some indicators with contrast to others 
seem to have an impact on the classification process. Among 
these indicators, we find essentially those related to touristic 
activities in countries such as "International tourism, number 
of arrivals", "International tourism, receipts" and 
"International tourism, expenditures". Here, we would like to 
insist that our study was intended only to predict countries 
levels of spread by examining the socio-economic situation 
of each country. We do not claim any direct causation 
between the aforementioned indicators and the virus spread. 
Causality studies need further and deeper investigations. 
However, importance scores may serve as a means to explore 
and search informative variables that may be used to build 
robust predictors [30]. 

For May 1st, the best F-measure was 81.54% obtained by 
two classifiers: SVM and MLP. For this particular result, we 
observe that classifiers needed a large number of indicators 
to reach such a score (300 indicators). It may be explained by 
the unexpected high increase of cases since April 1st. In fact, 
one month after that date, the virus has widely spread 
throughout the world and the socio-economic indicators 
alone may not be sufficient to explain such high spread 
levels. We even expect that our results may decrease below 
80% for future dates since other factors - not included in our 
study - should also have a significant effect on the spread 
such as human attitudes, political decisions, meteorological 
aspects, etc. 

 

 
Fig. 2: SVM results (F-measure) for each selected number of indicators. 

The tested date is April 1st, 2020. 

 
Fig. 3: Confusion matrix for RF classifier (classification date is April 15th, 
the number of selected indicators is 60 and F-measure is equal to 93.85%). 

VI. CONCLUSION 
This paper suggests innovative methods for measuring 

the spread level of the COVID-19 for each infected country 
around the world based on their socio-economic indicators 
through performing the best classifiers. To this end, more 
than 1000 socio-economic indicators and more than 190 
countries were processed in this study. Moreover, to find the 
class level of each country for three different dates between 
April and May 2020, many classifiers were proposed based 
especially on Support Vectors Machines (SVM), Multi-
Layer Perceptrons (MLP) and Random Forests (RF). The 
results provide evidence that our approach has promising 
performance since many classifiers succeeded in capturing 
the spread level, especially the RF classifier, with an F-
measure equal to 93.85% for April 15th, 2020. For this 
specific date and classifier, a feature importance 
investigation is performed showing that indicators, especially 
those associated with touristic activities, seem to have an 
impact on the classification process.  Other probable 
extensions of this paper may consist of developing a novel 
tool to overcome the difficulties faced by classifiers for 
future dates regarding the considerable increase of cases and 
the lack of additional relevant factors explaining this 
widespread pandemic. 
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