Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks

Florian Binetruy, Marie Buysse, Quentin Lejarre, Roxanne Barosi, Manon Villa, Nil Rahola, Christophe Paupy, Diego Ayala, Olivier Duron

To cite this version:

Florian Binetruy, Marie Buysse, Quentin Lejarre, Roxanne Barosi, Manon Villa, et al.. Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks. Molecular Ecology, Wiley, 2020, 29 (5), pp.1016-1029. 10.1111/mec.15373 . hal-03001756

HAL Id: hal-03001756
https://hal.archives-ouvertes.fr/hal-03001756
Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Microbial community structure reveals instability of nutritional symbiosis during evolutionary radiation of *Amblyomma* ticks

Florian Binetruya,*, Marie Buyssea, Quentin Lejarre a,b, Roxanne Barosia, Manon Villaa, Nil Raholaa,b, Christophe Paupya, Diego Ayalaa,b and Olivier Durona

a MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) - Institut pour la Recherche et le Développement (IRD) - Université de Montpellier (UM), Montpellier, France

b CIRMF (Centre International de Recherches Médicales de Franceville), Franceville, Gabon

* Correspondance: florian.binetruy@ird.fr
Abstract

Mutualistic interactions with microbes have facilitated the adaptation of major eukaryotic lineages to restricted diet niches. Hence, ticks with their strictly blood-feeding lifestyle are associated with intracellular bacterial symbionts through an essential B vitamin supplementation. In this study, examination of the whole bacterial diversity in 25 tick species of the *Amblyomma* genus showed that three intracellular bacteria, *Coxiella*-like endosymbionts (LE), *Francisella*-LE and *Rickettsia*, are remarkably common. No other bacterium is so uniformly present in *Amblyomma* ticks. Almost all *Amblyomma* species were found to harbour a nutritive obligate symbiont, *Coxiella*-LE or *Francisella*-LE, able to synthesize B vitamins. However, despite the co-evolved and obligate nature of these mutualistic interactions, the structure of microbiomes does not mirror the *Amblyomma* phylogeny with a clear exclusion pattern between *Coxiella*-LE and *Francisella*-LE across tick species. *Coxiella*-LE, but not *Francisella*-LE, form evolutionarily stable associations with ticks commonly leading to co-cladogenesis. We further evidenced symbiont replacements during radiation of *Amblyomma*, with recent, and likely ongoing, invasions by *Francisella*-LE and subsequent replacements of ancestral *Coxiella*-LE through transient co-infections. Nutritional symbiosis in *Amblyomma* ticks is thus not a stable evolutionary state, but instead arises from conflicting origins between unrelated but competing symbionts with similar metabolic capabilities.
Introduction

Macro-organisms harbour complex microbial communities living inside and on their body (Margulis, 1993; Theis et al., 2016). These microbial communities, known as the microorganisms, can determine pivotal phenotypic traits of their hosts, driving a variety of ecological and evolutionary processes including major nutritive, reproductive and immune functions (Gould et al., 2018; Groussin et al., 2017; Hanning & Diaz-Sanchez, 2015; Ley et al., 2008; Turner, James, & Poole, 2013). As hosts vary in the microbiomes they harbour, an associated functionally important phenotypic variation exists within host populations (Falony et al., 2016; Ferrari & Vavre, 2011; Jaenike, 2012; Oliver, Russell, Moran, & Hunter, 2003; Scarborough, Ferrari, & Godfray, 2005). In arthropods, these microbiomes notably include highly specialized intracellular bacteria depending almost exclusively on maternal (transovarial) transmission to ensure their persistence in host populations (Moran, McCutcheon, & Nakabachi, 2008; Wernegreen, 2012). Some of these maternally inherited symbionts are essential for the life cycle of their arthropod hosts: They are obligate mutualists able to synthesize biochemical products favouring the specialization of arthropods to novel habitats or to particular feeding niches such as strict haematophagy or phloemophagy (Moran et al., 2008; Wernegreen, 2012). Overall, these mutualistic interactions have facilitated the radiation of major arthropod lineages, leading to remarkable host–symbiont phylogenetic congruence with a strict co-cladogenesis pattern in many cases (Chen, Li, & Aksoy, 1999; Duron et al., 2017; Jousselin, Des devises, & Coeur d’acier, 2009; Moran, Tran, & Gerardo, 2005; Takiya, Tran, Dietrich, & Moran, 2006).

Arthropods and beneficial maternally inherited symbionts can form evolutionary stable associations lasting for millions of years, but that are not necessarily permanent (Bennett & Moran, 2015; McCutcheon, Boyd, & Dale, 2019; Moran et al., 2008; Wernegreen, 2012).
Recent phylogenetic reconstructions suggest that beneficial symbiotic relationships can break down: Recently acquired symbionts can replace ancestral beneficial symbionts and provide similar benefits to the host (McCutcheon et al., 2019; Sudakaran, Kost, & Kaltenpoth, 2017). An alternative scenario is that recently acquired symbionts may cooperate with ancestral beneficial symbionts (Moran et al. 2008; Vautrin & Vavre, 2009). Vertical transmission actually locks the different symbionts together as coinfection and creates then privileged situations for symbiont–symbiont interactions, especially cooperation and dependence between symbionts. Functions of ancestral beneficial symbionts may be complemented by recently acquired cosymbionts and their coexistence can be ultimately stable over millions of years (Meseguer et al 2017). New beneficial symbionts often originate from microbes abundant in the host environment, potentially including entomopathogens, parasites vectored by arthropods or other maternally inherited symbionts, primarily facultative (i.e. not essential) for host survival (Koga & Moran, 2014; Matsuura et al., 2018; McCutcheon et al., 2019; Sachs, Skophammer, & Regus, 2011). These facultative symbionts, however, determine important traits in arthropods: protection against natural enemies, adaptation to changing environments or reproductive traits (Engelstädter & Hurst, 2009; Ferrari & Vavre, 2011; Moran et al., 2008; Oliver et al., 2003). Contrary to beneficial obligate symbionts, facultative symbionts undergo occasional horizontal transfers (HT) across arthropod species, resulting in limited phylogenetic congruence between hosts and symbionts (Duron, Wilkes, & Hurst, 2010; Jousselin, Cœur d’Acier, Vanlerberghe-Masutti, & Duron, 2013; Russell et al., 2009). Overall, the diverse range of microbial lifestyle strategies creates a complex web of interactions mediating the dynamics of beneficial symbioses in arthropods (McCutcheon et al., 2019).
Co-existence of symbionts within microbial communities is expected to involve interactions ranging from cooperation to competition and that can, in turn, determine aggregation and exclusion patterns (Ferrari & Vavre, 2011; Moran et al., 2008; Vautrin & Vavre, 2009). Exclusion patterns have been recently detected between maternally inherited symbionts of ticks, suggesting that replacements of beneficial symbionts occur in this system (Duron et al., 2017). Among arthropods, ticks (Arachnida: Ixodidae) are well known to engage in symbiotic associations with at least 10 different genera of maternally inherited bacteria (Ahantarig, Trinachartvanit, Baimai, & Grubhoffer, 2013; Duron et al., 2017). Ticks are specialized for an exclusive diet of vertebrate blood, and have evolved intimate interactions with beneficial symbionts that provide essential B vitamins and co-factors deficient in the blood diet (Bonnet, Binetruy, Hernández-Jarguín, & Duron, 2017; Duron et al., 2017, 2018; Gerhart, Moses, & Raghavan, 2016; Gottlieb, Lalzar, & Klasson, 2015; Guizzo et al., 2017; Hunter et al., 2015; Olivieri et al., 2019; Smith, Driscoll, Gillespie, & Raghavan, 2015). Approximately two thirds of tick species harbour Coxiella-like endosymbionts (Coxiella-LE hereafter), which are required for tick survival and reproduction (Gottlieb et al., 2015; Guizzo et al., 2017; Smith et al., 2015; Zhong, Jasinskas, & Barbour, 2007). Coxiella-LE genomes encode pathways for the biosynthesis of major B vitamins and co-factors that fit closely with the expected nutritional complements required for strict haematophagy (Gottlieb et al., 2015; Guizzo et al., 2017; Smith et al., 2015). Coxiella-LE are abundant in two organs of ticks: ovaries, that is consistent with vertical transmission into developing oocytes, and Malpighian tubules, where B vitamins are possibly synthesized (Buysse, Plantard, McCoy, Duron, & Menard, 2019; Wang et al., 2018)(Lalzar et al 2012). Owing to their maternal inheritance and beneficial nature, Coxiella-LE are present in most individuals within infected host species [16, 41]. In the Rhipicephalus tick genus, the acquisition of Coxiella-LE was followed by co-
diversification resulting in deeply congruent Rhipicephalus–Coxiella-LE phylogenies (Duron et al., 2017).

In a few tick species, however, Coxiella-LE are present at much lower frequencies than expected for obligate nutritional symbionts, suggesting that they are instead facultative symbionts in these hosts (Duron et al., 2015). Phylogenetic evidence corroborates this hypothesis, since closely related Coxiella-LE may infect distantly related tick species suggesting recurrent HT of some Coxiella-LE (Duron et al., 2015). In other tick species, no Coxiella-LE were detected at all, but alternative obligate beneficial symbionts have been identified or hypothesized (Duron et al., 2017, 2018; Gerhart et al., 2016; Kurtti et al., 2015; Olivieri et al., 2019). Indeed, Francisella-like endosymbionts (Francisella-LE) are commonly found in tick species lacking Coxiella-LE. A recent analysis of endosymbiotic communities in 81 tick species also showed that there is a significant exclusion pattern between Francisella-LE and Coxiella-LE (Duron et al., 2017). Like Coxiella-LE, Francisella-LE are essential for tick nutrition: Ticks deprived of their Francisella-LE completely cease development but resume normal growth upon supplementation with B vitamins (Duron et al., 2018). Genomes of Francisella-LE contain roughly the same biosynthesis pathways of B vitamins and co-factors as observed in Coxiella-LE genomes (Duron et al., 2018; Gerhart et al., 2016). Francisella-LE also presents the same tropism than Coxiella-LE: Francisella-LE are abundant in ovaries and Malpighian tubules of the ticks they infect (Duron et al. 2018, current biology). Although Francisella-LE and Coxiella-LE are distantly related, they have converged towards an analogous nutritional mutualism with ticks [32, 33].

While Coxiella-LE symbioses are likely ancestral in ticks, replacements by Francisella-LE having recently transitioned to an endosymbiotic lifestyle (Duron et al., 2018; Gerhart et al.,
2016) appear across the tick phylogeny (Duron et al., 2017). Yet, the factors favouring
Francisella-LE over Coxiella-LE in this evolutionary dynamic are not well understood. In
this study, we examined the evolutionary dynamic of tick microbiomes, with a focus on
This genus is the third largest in the family Ixodidae, with its species primarily occupying the
tropical zones. The centre of species diversity is on the American continent, where half of all
the 130 *Amblyomma* species are found (Guglielmone, Estrada-Peña, Keirans, & Robbins,
2003). The *Amblyomma* genus includes major vectors of tick-borne disease agents, including
the lone star tick, *A. americanum,* which is the primary vector of *Ehrlichia* spp. (Childs &
Paddock, 2003). Only a few studies have examined the microbial diversity in *Amblyomma*
species, showing that they are infected either by *Coxiella*-LE or by *Francisella*-LE in addition
to other maternally inherited bacteria (Binetruy, Dupraz, Buyssse, & Duron, 2019; Budachetri
et al., 2014; Clay et al., 2008; Duron et al., 2017; Gerhart et al., 2016). Here, we investigated
the variation in tick microbial communities at different geographic and phylogenetic scales
using a representative collection of specimens covering ca. 20% of *Amblyomma* species
diversity. First, we reconstructed the *Amblyomma* phylogeny through the sequencing of large
nuclear rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA). Second, we extensively
characterized bacterial communities in *Amblyomma* species through a DNA barcoding
approach targeting the 16S rDNA. Third, we traced the evolutionary histories of *Coxiella*-LE
and *Francisella*-LE using multilocus sequence typing (MLST) systems. While the *Coxiella-
LE* MLST already exists (Duron et al., 2015), in this study we developed a specific
Francisella-LE MLST. Finally, we compared *Amblyomma* phylogeny with microbiome
structure and further used co-phylogenetics, by comparing *Amblyomma, Coxiella*-LE and
Francisella-LE phylogenies, to reveal the global dynamics of symbiotic interactions.
Materials and methods

Tick collection and processing

We examined a total of 144 tick specimens belonging to 25 *Amblyomma* species (1–11 specimens per species) collected from field sites in America and Africa or from laboratory colonies (Supplementary Table S1). Samples were preserved in 70% ethanol until use. To eliminate external (i.e. cuticular) microbes, tick specimens were surface cleaned with bleach prior to DNA extraction (Binetruy, Dupraz, et al., 2019). A few specimens (*A. loculosum*, *n*=4; *A. sculptum*, *n*=1; *Amblyomma* sp., *n*=1, obtained from a previous study (Duron et al., 2017)) were, however, not bleach-treated prior to DNA extraction (Supplementary Table S1). All tick DNA was individually extracted using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany).

Molecular typing of ticks

To reconstruct *Amblyomma* phylogeny, we sequenced almost complete rDNA sequences, including the 5’ end of 18S, the entire ITS1, 5.8S and ITS2 sequences, and the 3’ end of 28S rDNA (Supplementary Table S2) from 44 specimens (indicated in yellow in supplementary Table S1). Depending on the tick species, the size of the rDNA amplicon obtained varies from 4270 bp to 5054 bp. PCR products were purified using the kit Cleanpcr (CleanNA, Waddinxveen, The Netherlands), fragmented to a size of 300 bp and further used to construct libraries with the kit Nextera XT (Illumina, San Diego, California, USA). These libraries were then pooled together, indexed and pair-end sequenced on a Miseq (Illumina) sequencer using a flow cell equipped with a V3, 600-cycle reagent cartridge.

We obtained >24 million reads after quality filtering and removing adaptors using the Cutadapt tool on a Galaxy workbench (Goecks, Nekrutenko, Taylor, & The Galaxy Team,
2010; M. Martin, 2011). Paired-end reads were de novo assembled using metaSPAdes v3.11 with k-mer sizes of 21, 33, 55, and 73 bp (Nurk, Meleshko, Korobeynikov, & Pevzner, 2017). The resulting metaSPAdes contigs were binned into tick nuclear DNA and non-tick nuclear DNA groups through megablast in the GenBank nucleotide collection (Boratyn et al., 2013). These contigs were scaffolded, when applicable, by aligning to the complete sequences of the rRNA genes operon of *A. americanum* (GenBank AF291874), *A. hebraeum* (GenBank KY457489) and the partial sequence of *A. marmoreum* (GenBank KY457492) using MEGA (Kumar, Stecher, & Tamura, 2016).

Bacterial metabarcoding

A 251-bp portion of the V4 variable region of the bacterial 16S rRNA gene was amplified individually for each DNA sample using a Multiplex PCR Kit (Qiagen) and universal primers (16SV4F: 5′-GTGCCAGCMGCCGCGGTAA-3′ and 16SV4R: 5′-GGACTACHVGGGTWTCTAATCC-3′) (Galan et al., 2016). Amplified bacterial 16S rDNA products were purified and sequenced using an Illumina MiSeq platform (GenSeq, Montpellier University) and 251-bp end sequence reads were obtained. All bioinformatic analyses were conducted using the pipeline Frogs (https://github.com/geraldinepascal/FROGS) (Escudié et al., 2018) as previously described (Binetruy et al., 2019). One step of post-process operational taxonomic unit (OTU) affiliation was additionally performed through the Frogs pipeline on a Galaxy workbench (Escudié et al., 2018; Goecks et al., 2010). This step consists in aggregating OTUs that share 97% of identity within 99% of the amplicon length, and it reduced the probability of keeping artefactual OTUs by resolving multi-hit ambiguities. To control the contamination during these procedure negative controls were performed (three negative extraction controls were included in all extraction series, two negative PCR controls were included in all PCR series).
Moreover, OTUs having a maximal abundance in negative controls were discarded and false-positive OTUs were removed by filtering OTU representing less than 0.005% of the OTU total abundance (Bokulich et al., 2013). Following this procedure, the microbiome was determined individually for almost all Amblyomma specimens (n=142/143); however, the amount of DNA for the single specimen of A. sculptum was not sufficient.

A phylogenetic tree using OTU sequences and beta-diversity matrices based on this tree was assessed with FastTree and GUnifrac packages in R (J. Chen et al., 2012; Price, Dehal, & Arkin, 2009), using the computational procedure described in (Binetruy, Dupraz, et al., 2019). Multidimensional scaling (MDS) plots were then generated using the package ggplot2 in R (Wickham, 2016). Permutational multivariate analysis of variance (PERMANOVA) implemented in the vegan package in R or pairwise PERMANOVA (Arbizu, 2017/2018) was further performed on the generalized UniFrac (α = 0.5) dissimilarity matrix to evaluate the potential impact of the presence of symbionts and co-infection on bacterial diversity. The P-values of the pairwise PERMANOVA were corrected for multiple comparisons using Holm’s method (Holm, 1979). A Mantel test was used to examine the association between microbial diversity (GUnifrac distance) and Amblyomma phylogeny using the ecodist package in R (n=9999 permutations) (Goslee & Urban, 2007).

Multilocus typing of Coxiella-LE and Francisella-LE

Coxiella-LE were genotyped through nested or semi-nested PCR amplification and sequencing of three housekeeping genes (16S rRNA, rpoB and groEL) previously developed for the Coxiella MLST methodology (Duron et al., 2015) (Supplementary Table S2). No Francisella-LE MLST was previously developed and we thus used the published genome of Francisella-LE F-Om strain (isolated from the soft tick Ornithodoros moubata [32]; GenBank accession number: QAPC00000000) as reference to design specific PCR primers.
for five genes (16S rRNA, rpoB, groEL, ftsZ and gyrB; Supplementary Table S2). Positive PCR products were purified and sequenced in both directions by Eurofins (Ebersberg, Germany). Sequence chromatograms were manually cleaned with Chromas Lite (http://www.technelysium.com.au/chromas_lite.html) and aligned with CLUSTALW implemented in MEGA 7 (Kumar et al., 2016; Thompson, Gibson, & Higgins, 2002).

Phylogenetic analyses

Phylogenetic relationships were assessed using *Amblyomma, Coxiella*-LE and *Francisella*-LE sequences produced in this study and additional sequences available in GenBank (including *Amblyomma, Coxiella*-LE and *Francisella*-LE relatives and outgroups). GBLOCKS (Castresana, 2000) was used to remove poorly aligned positions and to obtain unambiguous sequence alignments. All sequence alignments were also checked for putative recombinant regions using the RDP3 analysis package (D. P. Martin et al., 2010). The best fitting evolutionary models were determined using the Akaike information criterion and Bayesian information criterion with MEGA 7 (Kumar et al., 2016). Phylogenetic analyses were based on Bayesian inferences (BI) with MrBayes v3.2.7 (Ronquist et al., 2012). Two replicate analyses were run for 1 million generations. For each replicate, we ran one cold chain and three hot chains of the Markov chain Monte Carlo method, using a random starting tree and sampling trees every 100 generations and discarding 25% as burn-in. The remaining trees were used to calculate 50% majority-rule consensus trees.

The BI phylogenies of *Amblyomma, Coxiella*-LE and *Francisella*-LE were then used to conduct co-phylogenetic analyses using the Procrustean Approach to Cophylogeny (PACo) package in R (Balbuena, Míguez-Lozano, & Blasco-Costa, 2013; Hutchinson, Cagua, Balbuena, Stouffer, & Poisot, 2017). The significance of the co-phylogenetic tests was
established by 100,000 random permutations of the two-association matrix. To test an effect of *Rickettsia* co-infection on the evolution of *Francisella*-LE and *Coxiella*-LE, linear regressions were computed in R using the matrix of genetic distances of these symbionts and the presence/absence of *Rickettsia* as an explicative variable.

Ethics statement

The use of the genetic resources was declared to the French Ministry of the Environment (reference TREL19028117S/156) and to Gabon government (entry authorization #AE16008/PR/ANPN/SE/CS/AEPN and #research authorization #AR0013/16/MESRS/CENAREST/CG/CST/CSAR).

Results

Phylogeny of Amblyomma ticks

We first reconstructed the phylogenetic relationships among the 25 *Amblyomma* species using BI analyses based on large fragments of nuclear rDNA sequences obtained from one-to-two specimens per species (Figure 1). The findings support a monophyletic origin of the five African *Amblyomma* species (AF group): They cluster together in a robust clade nested among the 20 New World *Amblyomma* species (NW group), suggesting an American origin of these African species (Figure 1). Moreover, the phylogeny of *Amblyomma* also parallels the tick host-range at least in the NW group: Closely related *Amblyomma* species often share the same host species, such as *A. dissimile* and *A. rotundatum* feeding on poikilotherms (reptiles and amphibians) or *A. latepunctatum*, *A. scalpturatum* and *A. naponense* feeding mainly on tapirs and Suidae (Figure 1). However, in other cases, closely related *Amblyomma* species use different host species, such as *A. ovale*, a generalist species feeding on a diversity
of domestic and wild animals, and *A. varium*, a specialized species feeding on arboreal vertebrates.

Microbial diversity and symbiont prevalence

We further examined the whole bacterial diversity of 24 out of the 25 *Amblyomma* species (*n*=142 specimens, one-to-ten specimens were examined per species) via high-throughput 16S rDNA sequencing. The amount of DNA for the 25th *Amblyomma* species, *A. sculptum* (*n*=1), was not sufficient to perform bacterial barcoding (this specimen was already PCR-typed for *Coxiella*-LE and *Francisella*-LE, as further detailed). After filtration of false-positive OTUs and contaminants (Binetruy, Dupraz, et al., 2019; Birer, Tysklind, Zinger, & Duplais, 2017), 4,364,360 reads distributed in 195 OTUs were obtained (Table S3). *Coxiella*-LE and *Francisella*-LE were the most abundant bacterial genera representing 33.6% and 33.1% of the total number of reads, respectively (Figure 2 and Supplementary Table S1). Other bacterial genera were found: In most cases, each represented a negligible part of the 16S rDNA reads when present. A remarkable exception to this pattern was the presence of abundant intracellular bacteria belonging to the *Rickettsia* genus in 16 *Amblyomma* species (Figure 2 and Supplementary Table S1). Other exceptions included the *A. roniti* samples for which no *Coxiella*-LE and *Francisella*-LE reads were detected: Most reads were assigned to a tick-borne pathogen, *Ehrlichia* sp. In *A. loculosum* and *Amblyomma* sp. samples, *Coxiella*-LE reads were detected but reads of other bacteria were more abundant. Since the *A. loculosum* and *Amblyomma* sp. samples were not bleach-treated prior to DNA extraction (as done for the other samples), the abundant presence of these bacteria may be due to the cuticular bacteriome, as recently observed in another *Amblyomma* species (Binetruy, Dupraz, et al., 2019).
The structure of microbial diversity was not globally impacted by the phylogenetic proximity among *Amblyomma* species: The dendrogram of microbial diversity did not parallel the *Amblyomma* phylogeny (Mantel two-tailed test, $R=0.16$, $P=0.19$) (Supplementary Figure S1).

However, the MDS plot suggested an effect of tick species on bacterial diversity (Supplementary Figure S2), as confirmed by the PERMANOVA analysis ($R^2=0.51$, $P=0.001$). Further testing showed a clear separation between *Coxiella*-LE-infected tick species/specimens and *Francisella*-LE-infected ones (pairwise PERMANOVA analysis, $R^2=0.31$, adjusted P for multiple comparisons=0.0003; Figure 3A). *Rickettsia* also structures the bacterial diversity but to a lesser extent than *Coxiella*-LE and *Francisella*-LE (PERMANOVA, $R^2=0.11$, $P=0.001$; Figure 3B). The *Coxiella*-LE and *Francisella*-LE clusters are actually structured into two sub-clusters each, fitting with the presence of *Rickettsia* (Figure 3c) as corroborated by PERMANOVA analyses: (1) *Coxiella*-LE without *Rickettsia* vs. *Coxiella*-LE with *Rickettsia* ($R^2=0.2$, adjusted P for multiple comparisons=0.0015), and (2) *Francisella*-LE without *Rickettsia* vs. *Francisella*-LE with *Rickettsia* ($R^2=0.22$, adjusted P for multiple comparisons=0.0015).

Of the 25 *Amblyomma* species (including *A. sculptum*) examined for the presence of *Coxiella*-LE and *Francisella*-LE, 24 were infected by one or both of these symbionts: 11 *Amblyomma* species harbour only *Coxiella*-LE, 13 species only *Francisella*-LE and three species both (Figure 2, Supplementary Table S1). Only *A. romitii* was not infected by *Coxiella*-LE and *Francisella*-LE but this may be explained by the presence of the tick-borne pathogen *Ehrlichia* sp., which may mask the presence of other bacteria. In the 24 infected *Amblyomma* species, *Coxiella*-LE and *Francisella*-LE were not randomly associated (Fisher’s exact test, $P=0.001$): These two symbionts co-occurred in the same tick species less frequently than expected by chance (exclusion pattern), meaning that their distribution across tick species was
strongly dependent on each other. Conversely, neither *Coxiella*-LE nor *Francisella*-LE showed a non-random association with *Rickettsia* (Fisher’s exact tests, $P=0.99$ and 0.68, respectively). However, *Coxiella*-LE and *Francisella*-LE had a patchy and quite uniform distribution along the *Amblyomma* phylogeny: While some closely related *Amblyomma* species were infected by the same symbiont genus (e.g. *A. dissimile* and *A. rotundatum* by *Francisella*-LE, or *A. latepunctatum*, *A. scalpturatum* and *A. naponense* by *Coxiella*-LE), others were not (e.g. *A. americanum*, infected by *Coxiella*-LE, and *A. oblongoguttatum* by *Francisella*-LE) (Figure 2). This distribution pattern paralleled partly the tick host-range: Indeed, *A. dissimile* and *A. rotundatum* that are related and specialized for poikilotherms were both infected by *Francisella*-LE (Figure 1, 2).

In the tick species they infect, *Coxiella*-LE and *Francisella*-LE were present in most specimens examined (Figure 2, Supplementary Table S1). However, a more contrasted pattern was apparent in the three *Amblyomma* species that were co-infected by *Coxiella*-LE and *Francisella*-LE: (i) in *A. geayi*, of the 10 examined specimens, seven were infected by *Coxiella*-LE in one locality, but in other localities, two specimens were infected by *Francisella*-LE and one was co-infected by *Coxiella*-LE and *Francisella*-LE; (ii) in *A. latepunctatum*, of the four examined specimens, three specimens of the same locality were co-infected by *Coxiella*-LE and *Francisella*-LE but one specimen from another locality was only infected by *Coxiella*-LE; (iii) in *A. sculptum*, the single examined specimen was co-infected by *Coxiella*-LE and *Francisella*-LE (Figure 2, Supplementary Table S1). In contrast to *Coxiella*-LE and *Francisella*-LE, the prevalence of *Rickettsia* was heterogeneous, with infection frequencies ranging from 14% to 100% depending on tick species (Figure 2, Supplementary Table S1). In all cases, *Rickettsia* was found with either *Coxiella*-LE (seven
Amblyomma species) or Francisella-LE (seven species) or both (two species). Neither Rickettsia nor Coxiella-LE nor Francisella-LE shows infection-biased sex ratio: within each Amblyomma species, the prevalence of infection did not differ between males and females (Fisher's exact test, all $P>0.1$).

Evolutionary history of Coxiella-LE and Francisella-LE symbioses

Sequencing of three Coxiella MLST genes (16S rRNA, rpoB and groEL) led to the identification of 14 genetically different Coxiella-LE in a subset of 32 specimens representing the 14 infected Amblyomma species (one to four specimens per species were examined). Each Amblyomma species was infected by a genetically distinct Coxiella-LE and no variation of Coxiella-LE was observed among specimens belonging to the same Amblyomma species. We observed no sign of recombination in the Coxiella-LE data set (all $P>0.05$ for the GENECONV and RDP recombination-detection tests) and we thus used the 16S rRNA, rpoB and groEL concatenated sequences for BI analyses. Comparisons with other sequences available on GenBank showed that the Coxiella-LE of Amblyomma are polyphyletic: They were scattered into different well-supported clusters among Coxiella-LE of other tick species (Supplementary Figure S3). Indeed, the Coxiella-LE of A. variegatum, A. tholloni and A. splendidum form a monophyletic clade that is more closely related to the Coxiella-LE of Ixodes tick species than to the Coxiella-LE of other Amblyomma species. Similarly, the Coxiella-LE clade of A. cajennense, A. sculptum and A. americanum is more closely related to the Coxiella-LE of Dermacentor tick species. This pattern is suggestive of recurrent HT events of Coxiella-LE among tick species. However, the Coxiella-LE clusters of Amblyomma species can be gathered into two main groups, one with all the Coxiella-LE of NW Amblyomma species and the other with all the Coxiella-LE of AF Amblyomma species (Supplementary Figure S3). This pattern suggests an effect of phylogeographic drivers in
structuring the evolution of *Coxiella*-LE. This is strongly supported by the co-phylogeny
analysis between *Coxiella*-LE and *Amblyomma* phylogenies: There is a significant topological
congruence between their phylogeny (PACo analysis, \(P=0.0001\); Figure 4A). This shows that
co-cladogenesis with *Coxiella*-LE occurred during the radiation of *Amblyomma*.

Sequencing of five *Francisella* MLST genes (16S rRNA, *rpoB*, *groEL*, *ftsZ* and *gyrB*) led to
the identification of 15 genetically different *Francisella*-LE in a subset of 28 tick specimens
representing the 13 infected *Amblyomma* species (one to four specimens per species were
used). There was only one *Francisella*-LE in each *Amblyomma* species, except *A. paca* and
A. rotundatum in which two and three genetically distinct *Francisella*-LE, respectively, were
present in specimens from different localities. Each *Amblyomma* species harbours genetically
distinct *Francisella*-LE, except for *A. geayi* and *A. latepunctatum* that harbour identical
Francisella-LE on the basis of their MSLT sequences (Supplementary Figure S4). Owing to
the lack of *Francisella*-LE *rpoB*, *groEL*, *ftsZ* and *gyrB* gene sequences available in GenBank
before this study (with the exception of two published *Francisella*-LE genomes), the BI
phylogenetic analysis between the *Francisella*-LE of *Amblyomma* and those of other tick
species (with sequences available in GenBank) was made using only their 16S rRNA
nucleotidic sequences (Supplementary Figure S5). No *Francisella*-LE subclade specific to
Amblyomma exists along the 16S rRNA phylogenetic tree: The *Francisella*-LE of
Amblyomma are instead scattered among *Francisella*-LE of other tick genera suggesting
recurrent HT events among unrelated tick species (Supplementary Figure S5). However, the
inner topology of the *Francisella*-LE clade based on 16S rRNA gene sequences remained too
poorly resolved in many cases (as shown by low support values of inner branches) to infer the
exact relatedness among all *Francisella*-LE. We thus further reconstructed the phylogenetic
relationships between *Francisella*-LE using BI analyses based on their 16S rRNA, *rpoB*,
groEL, ftsZ and gyrB nucleotidic sequences. We observed no sign of recombination in the
Francisella-LE data set (all $P > 0.05$ for the GENECONV and RDP recombination-detection
tests) and we thus used the 16S rRNA, rpoB, groEL, ftsZ and gyrB concatenated sequences
for analyses. Conversely to Coxiella-LE, there was no apparent co-cladogenesis or
phylogeographic pattern along the Francisella-LE phylogeny (Supplementary Figure S4).

Indeed, the Francisella-LE of A. sculptum (NW group) is closely related to the Francisella-
LE of an unrelated Amblyomma species, A. paulopunctatum (AF group). In addition, the
Francisella-LE of A. sculptum and A. paulopunctatum are more closely related to the
Francisella-LE of the soft tick O. moubata than to the Francisella-LE of other Amblyomma
species. The co-phylogeny analysis also showed no significant signal of congruence between
the Francisella-LE and Amblyomma phylogenies (PACo analysis, $P = 0.06$): Only HT events
seem to have impacted the distribution Francisella-LE across Amblyomma phylogeny (Figure
4B). Interestingly, while co-infection with Rickettsia along the Coxiella-LE phylogeny is
random (linear model, adjusted $R^2 = -0.01$, F-stat=0.60, $P = 0.56$; Supplementary Figure S6A),
it is not so along the Francisella-LE phylogeny (adjusted $R^2 = 0.15$, F-stat=6.90, $P = 0.002$;
Figure S6B): Co-infections with Rickettsia are more common with certain Francisella-LE
subclades than with others.

Discussion

Three intracellular bacterial genera, Coxiella-LE, Francisella-LE and Rickettsia, are
widespread across the 25 species of Amblyomma ticks we examined in this study. Only a few
other bacteria have been detected and none is so uniformly present in Amblyomma. However,
the structure of the microbiomes does not mirror the Amblyomma phylogeny and closely
related Amblyomma commonly harbour divergent microbiomes. As expected, almost all
Amblyomma species were found to harbour a nutritive obligate symbiont, Coxiella-LE or
Francisella-LB, both able to synthesize B vitamins but with a clear exclusion pattern between them: Coxiella-LB was found as a single infection in 11 Amblyomma species, Francisella-LB in 13 species and co-infection was seen in only three species. Despite the co-evolved and obligate interactions of ticks with their mutualistic partners, we detected evidence of symbiont replacements during radiation of Amblyomma, raising questions regarding the ecological and evolutionary factors underlying replacements.

The comparison of symbiont and tick phylogenies revealed that the Coxiella-LB symbiosis is ancient and arose in the early evolution of the Amblyomma genus. Hence, some Coxiella-LB are specialized for their Amblyomma hosts, with an ancient acquisition followed by co-diversification, meaning that the persistence of Coxiella-LB through vertical transmission is stable over the duration of Amblyomma species diversification. A very similar co-diversification pattern has also been reported for Coxiella-LB symbiosis in the Rhipicephalus tick genus (Duron et al., 2017). However, the spread of Coxiella-LB was more complex in Amblyomma: The infections found in some Amblyomma species are distantly related and do not form an Amblyomma-specific clade. Rather, phylogenetics shows that Coxiella-LB of Amblyomma are actually scattered among Coxiella-LB of other tick genera such as Ixodes and Dermacentor. Only extensive HT of Coxiella-LB among tick genera may explain these phylogenetic incongruences. Since facultative, but not obligate, symbionts can undergo HT between host species (Bennett & Moran, 2015; McCutcheon et al., 2019; Nancy A. Moran et al., 2008; Wernegreen, 2012), this suggests that some Coxiella-LB are facultative symbionts of ticks. Interestingly, Coxiella-LB is a facultative symbiont in some Ixodes species, such as I. ricinus and I. uriae (Duron et al., 2017; Duron, Jourdain, & McCoy, 2014; Duron et al., 2015). The phylogenetic proximity of Coxiella-LB of Ixodes spp. with the Coxiella-LB of A. variegatum, A. splendidum and A. tholloni thus suggests that a facultative Coxiella-LB of
Ixodes spp. had an early jump to the Amblyomma ancestor of these species before replacing the ancestral obligate symbiont and evolving obligate nutritional symbioses with current species.

The infection dynamics of Francisella-LE is different to that of Coxiella-LE. While the Francisella-LE of ticks form a monophyletic clade within the Francisella genus (Duron et al., 2017, 2018), we observed frequent HT events between unrelated tick species. No co-cladogenesis signal with Amblyomma is apparent along the phylogenies, meaning that current Francisella-LE arose only recently in this genus. The presence of unrelated Francisella-LE in Amblyomma further indicates that several independent acquisitions of Francisella-LE have occurred during the radiation of this tick genus. These acquisitions have likely come at the expense of the Coxiella-LE with their ultimate replacement by Francisella-LE. The AF Amblyomma group is illustrative of this process: Most species (A. splendidum, A. variegatum, A. tholloni and A. loculosum) are infected by Coxiella-LE with a strong co-cladogenesis pattern, but one species (A. paulopunctatum) is infected by Francisella-LE. This pattern suggests that Francisella-LE has replaced the Coxiella-LE primarily present in the A. paulopunctatum ancestor. Other examples include the monophyletic group formed by A. americanum, A. oblongoguttatum, A. cajennense and A. sculptum: Coxiella-LE has co-diverged with all species but one, since here Francisella-LE eliminated the Coxiella-LE primarily present in the A. oblongoguttatum ancestor. In addition, A. sculptum is co-infected at the individual level by an ancestral Coxiella-LE (i.e. showing a co-cladogenesis pattern with Coxiella-LE of the A. sculptum relatives) and a recently acquired Francisella-LE. This pattern suggests that HT of Francisella-LE within Amblyomma communities is recent, likely ongoing, and that co-infections with ancestral Coxiella-LE are only transitory. The preferential association of some Francisella-LE with Rickettsia further implies that these co-
infections may be important drivers since some *Rickettsia* are also able to synthesize folate (B9 vitamin) (Hunter et al., 2015) and thus to participate in nutritional symbiosis along with *Francisella*-LE. Under this hypothesis, *Francisella*-LE and *Rickettsia* are cooperating together, and each may fulfil essential metabolic functions not ensured by the others. They may also act together to replace ancestral *Coxiella*-LE.

Some biological traits of these symbioses are indicative of how and why *Francisella*-LE and some *Coxiella*-LE are both eliminating ancestral *Coxiella*-LE in *Amblyomma* ticks. *Francisella*-LE or *Coxiella*-LE were occasionally detected in the salivary glands of several tick species (Budachetri et al., 2014; Buysse et al., 2019; Klyachko, Stein, Grindle, Clay, & Fuqua, 2007) suggesting that ticks may inject part of their symbionts during feeding. Ticks, unlike other arthropod vectors, often attach and aggregate on the host for several days to obtain a meal, a process termed ‘co-feeding’. The spatiotemporal proximity of ticks during co-feeding may favour the HT of *Francisella*-LE and *Coxiella*-LE between conspecifics but also between different tick species, as commonly observed for tick-borne pathogens (Voordouw, 2015; Wright, Sonenshine, Gaff, & Hynes, 2015). This process may lead to local or systemic infections in vertebrates since a few cases of opportunistic *Coxiella*-LE infections have been reported after tick feeding (Shivaprasad et al., 2008; Vapniarsky, Barr, & Murphy, 2012; Woc-Colburn et al., 2008, p.). This mode of transmission may be particularly significant for *Francisella*-LE and *Coxiella*-LE by leading to co-infections with ancestral *Coxiella*-LE in ticks. Interestingly, we found two *Amblyomma* species, *A. geayi* and *A. latepunctatum*, that are co-infected by their respective ancestral *Coxiella*-LE but that also share the same *Francisella*-LE, which is also closely related to the *Francisella*-LE of *A. dissimile*. The genetic proximity of *Francisella*-LE in these three unrelated *Amblyomma* species is suggestive of recent HT events through co-feeding: While these three *Amblyomma*
species feed on very different vertebrate hosts, hampering the possibility of co-feeding, the immature stages of *A. dissimile* are commonly found in diverse mammals or birds (Binetruy, Chevillon, de Thoisy, Garnier, & Duron, 2019; Guglielmone & Nava, 2010; Scott & Durden, 2015), suggesting that they may be ecological bridges driving HT of *Francisella*-LE across tick species.

By replacing the ancestral *Coxiella*-LE, the novel symbiont colonizes a pre-adapted tick physiological environment that requires the provision of B vitamin. Thus, it must be able to synthesize these compounds as the ancestral *Coxiella*-LE did. The presence of several B vitamin biosynthesis pathways is ancestral in the *Coxiella* and *Francisella* genera, and all members of these genera, including pathogenic species that are also all intracellular, have conserved these abilities through their radiation (Duron et al., 2018; Gerhart et al., 2016; Meibom & Charbit, 2010; Rowe & Huntley, 2015; Smith et al., 2015; van Schaik, Chen, Mertens, Weber, & Samuel, 2013): All *Francisella*-LE and *Coxiella*-LE are already pre-adapted to nutritional symbioses with ticks. Beyond B vitamins, the replacement of ancestral *Coxiella*-LE suggests that the new symbiont could supply an additional benefit that the ancestral *Coxiella*-LE was unable to supply to ticks, thereby out-competing them. The genomes of ancient beneficial endosymbionts have lost most of their gene contents from their ancestor, being usually small in size and dense in gene content but also suffering Muller’s ratchet, with fixation of deleterious mutations through genetic drift (McCutcheon et al., 2019; McCutcheon & Moran, 2012; N. A. Moran, 1996; Rispe & Moran, 2000). This evolution towards massive genomic reduction is obvious for the *Coxiella*-LE of *A. americanum*, which have a genome of only 0.66 Mb (Smith et al., 2015), but not for the *Francisella*-LE of *A. maculatum*: Its genome is 1.56 Mb, and although half is pseudogenized, it may have a higher biosynthetic capability (Gerhart et al., 2016). Similar variation is also reported between
Coxiella-LE with some genomes reaching ca. 1.5 Mb (Gottlieb et al., 2015; Ramaiah & Dasch, 2018), suggesting that some Coxiella-LE have greater biosynthetic capabilities than others. However, other processes may act on the Coxiella-LE replacement. Indeed, ancestral Coxiella-LE may have evolved too reduced (degraded) genomes and become maladapted, opening the road to replacement by a new symbiont. This degeneration–replacement model has been proposed for other arthropods such as cicadas (Campbell et al., 2015; Łukasik et al., 2018; Matsuura et al., 2018), but replacements are expected to be transient making them difficult to observe (McCutcheon et al., 2019). In Amblyomma, the observations of three species with co-infections by ancestral Coxiella-LE and recently acquired Francisella-LE may correspond to this transient state before extinction of Coxiella-LE.

That ecological specialization to strict haematophagy is driven by nutritional symbiotic interactions is beyond doubt for ticks. The present study, nevertheless, shows that nutritional symbiosis in the Amblyomma genus is not stable state, being impacted by competition between Coxiella-LE and Francisella-LE or between Coxiella-LE themselves. We potentially underestimate the amplitude of this dynamics: our intraspecific sampling was low for some tick species and this may have led to an underestimation of the Francisella-LE frequency. Indeed, in the cases of low prevalence, most samples will be found not infected by Francisella-LE while other members of the species, not sampled and tested, are in fact infected. Precisely, this pattern is found in this study: we found variation Francisella-LE infection pattern between sampling localities in three tick species in which just few few specimens were infected, which clearly indicates this potential for false negatives arising from insufficient sampling. Anyway, ticks now march on with their recently acquired Francisella-LE, at the expense of Coxiella-LE, but the precise mechanisms providing the advantage to Francisella-LE remain to be determined, including endosymbiosis intrinsic factors, such as
competition between symbionts with similar metabolic capabilities and the differential degree of genome reduction.

References

Acknowledgements

Financial support was provided by the French government’s Programmes Investissement d’Avenir (Laboratoire d’Excellence CEBA, the MicroBIOMES Strategic Project 2016–2018 and the MiTick Annual Project 2016) and recurring funding from CNRS and IRD (OD, MB, DA). FB benefits from a PhD fellowship financed by the CEBA Laboratoire d’Excellence and Montpellier University. We wish to thank the platforms MGX (Montpellier Genomics and Bioinformatics Facility) and GenSeq (Montpellier University), for the technical help and the high-throughput sequencing. We are grateful to the members of Institut Pasteur de Guyane, particularly Benoît de Thoisy and Agathe Chavy, for technical support. Special acknowledgement to the “Agence Nationale de la Preservation de la Nature” (ANPN) and the “Centre National de la Recherche Scientifique et Technologique of Gabon” (CENAREST) that authorized and facilitated the access to the national parks in Gabon, and Marc F. Ngangué (ANPN) that participated to the field collections in Gabon. We also thank Frédéric Delsuc, Xavier Bailly, Laurence Mouton and Christine Chevillon for helpful discussions. The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD Montpellier for providing HPC resources that have contributed to the research results reported in this paper. We also acknowledge useful discussions with members of the Tiques et Maladies à Tiques (TMT) working group from the Réseau Ecologique des Interactions Durables (REID).

Conflict of interest

The authors declare that they have no conflict of interest.
Figure legends

Figure 1. Phylogenetic relationship of the 25 *Amblyomma* species examined in this study. The phylogenetic tree was inferred using Bayesian inferences (BI) from a large fragment of rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA; 3312 bp unambiguously aligned; best-fit approximation for the evolutionary model: GTR+G+I), the numbers on nodes indicate the BI probability. One to two specimens per *Amblyomma* species (45 specimens in total) were analysed. The vertebrate species on which tick species mainly feed (host-range) is shown. White circles, African group (AF); black circles, New World group (NW).

Figure 2. Diversity of the microbiome and bacterial prevalence in *Amblyomma* species. The left part of the Figure shows the *Amblyomma* phylogenetic tree adapted from Figure 1. One to two specimens per *Amblyomma* species (45 specimens in total) were included in the phylogenetic analysis. At the middle part, the heatmap shows the abundance and diversity of the nine most abundant OTUs characterized in the 16S rRNA bacterial data set for each tick species. The number on the right of the heatmap indicates the number of tick specimens per species used to construct the heatmap (one to ten specimens per *Amblyomma* species (142 specimens in total) were included in the microbiome analysis). On the right of the figure, the prevalence of the three most common symbionts is illustrated by the coloured squares (*Coxiella*-LE, blue square; *Francisella*-LE, green square and *Rickettsia*, red square): full square indicate a prevalence of 100%, while empty or partly colored square indicate prevalences from 0 to <100% (the numbers besides these squares indicate the prevalences). The amount of DNA for the single specimen of *A. sculptum* was not sufficient to perform the 16S rRNA barcoding, therefore the heatmap for this species is not applicable (N/A). In this latter species, the presence of *Coxiella*-LE and *Francisella*-LE was asserted through specific
PCR assays as detailed in the text. White circles, *Amblyomma* African group (AF); black circles, *Amblyomma* New Word group (NW).

Figure 3 Structuration of the *Amblyomma* microbiome. **A** Multidimensional scaling plot (MDS) of the microbial diversity of each *Amblyomma* species depending on the presence of both *Coxiella*-LE (red dots) and *Francisella*-LE (green dots) or the absence of obligate symbiont (blue dots). **B** MDS plot of the microbial diversity depending on the presence (red dots) / absence (blue dots) of *Rickettsia*. **C** MDS plot of the microbial diversity depending on the association / no association between the three symbionts (*Coxiella*-LE, *Francisella*-LE and *Rickettsia*): C_R (red dots) correspond to *Amblyomma* specimens co-infected by *Coxiella*-LE and *Rickettsia*; C (brownish dots) to specimens only infected by *Coxiella*-LE; F (green dots) to specimens only infected by *Francisella*-LE; F_R to specimens co-infected by *Francisella*-LE and *Rickettsia*; C_F_R (light blue dots) to specimens multi-infected by *Coxiella*-LE, *Francisella*-LE and *Rickettsia*; dark blue dots to specimens not infected by these symbionts. Each MDS plot is based on the generalized Unifrac ($\alpha = 0.5$) distance matrix and all confidence ellipses are been drawn with the confidence level of 0.95.

Figure 4 Evolutionary histories between *Amblyomma* and their nutritional symbionts. **A** Cophylogeny between the phylogenies of *Amblyomma* (on the left) and *Coxiella*-LE (on the right): The tick phylogeny is based on 3312-bp nuclear rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA; best-fit approximation for the evolutionary model: GTR+G+I); the *Coxiella*-LE phylogeny was reconstructed using a concatenated gene sequence (16S rRNA, *rpoB* and *groEL* concatenated sequences, 2045 unambiguously aligned base pairs; best-fit approximation for the evolutionary model: GTR+G+I). **B** Cophylogeny between the phylogenies of *Amblyomma* (on the left) and *Francisella*-LE (on the right): The tick
phylogeny is based on 3312-bp nuclear rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA; best-fit approximation for the evolutionary model: GTR+G+I); the *Francisella*-LE phylogeny was reconstructed using a concatenated gene sequence (16S rRNA, *rpoB*, *groEL*, *ftsZ* and *gyrB* concatenated sequences, 3506 unambiguously aligned base pairs; best-fit approximation for the evolutionary model: GTR+G+I). Each phylogeny was reconstructed using BI and node numbers are the posterior probabilities (only values >70 are shown). White circles, *Amblyomma* African group (AF); black circles, New Word group (NW).