ON REGULARIZABLE BIRATIONAL MAPS

Julie Déserti

To cite this version:

Julie Déserti. ON REGULARIZABLE BIRATIONAL MAPS. Journal of Mathematical Sciences the University of Tokyo, 2021, 28 (4), pp.583-591. hal-03000555

HAL Id: hal-03000555

https://hal.science/hal-03000555

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON REGULARIZABLE BIRATIONAL MAPS

JULIE DÉSERTI

Abstract

Bedford asked if there exists a birational self map f of the complex projective plane such that for any automorphism A of the complex projective plane $A \circ f$ is not conjugate to an automorphism. In [3] BLANC gave such a f of degree 6 and asked if there exists an example of smaller degree. In this article we give an example of degree 5 .

1. Introduction

Denote by $\operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$ the group of all birational self maps of $\mathbb{P}_{\mathbb{C}}^{k}$, also called the k-dimensional Cremona group. Let $\operatorname{Bir}_{d}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$ be the algebraic variety of all birational self maps of $\mathbb{P}_{\mathbb{C}}^{k}$ of degree d. When $k=2$ and $d \geq 2$ these varieties have many distinct components, of various dimensions $([6], 2])$. The group $\operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)=\operatorname{PGL}(k+1, \mathbb{C})$ acts by left translations, by right translations, and by conjugacy on $\operatorname{Bir}_{d}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$. Since this group is connected, these actions preserve each connected component.

A birational map $f: \mathbb{P}_{\mathbb{C}}^{k} \longrightarrow \mathbb{P}_{\mathbb{C}}^{k}$ is regularizable if there there exist a smooth projective variety V and a birational map $g: V \rightarrow \mathbb{P}_{\mathbb{C}}^{k}$ such that $g^{-1} \circ f \circ g$ is an automorphism of V. To any element f of $\operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$ we associate the set $\operatorname{Reg}(f)$ defined by

$$
\operatorname{Reg}(f):=\left\{A \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{k}\right) \mid A \circ f \text { is regularizable }\right\}
$$

DOLGACHEV asked whether there exists a birational self map of $\mathbb{P}_{\mathbb{C}}^{k}$ of degree >1 such that $\operatorname{Reg}(f)=\operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{k}\right)$. In [5] we give a negative answer to this question. More precisely we prove

Theorem 1.1 ([5]). Let f be a birational self map of $\mathbb{P}_{\mathbb{C}}^{k}$ of degree $d \geq 2$.
The set of automorphisms A of $\mathbb{P}_{\mathbb{C}}^{k}$ such that $\operatorname{deg}\left((A \circ f)^{n}\right) \neq(\operatorname{deg}(A \circ f))^{n}$ for some $n>0$ is a countable union of proper ZARISKI closed subsets of $\operatorname{PGL}(k+1, \mathbb{C})$.

In particular there exists an automorphism A of $\mathbb{P}_{\mathbb{C}}^{k}$ such that $A \circ f$ is not regularizable.
BEDFORD asked: does there exist a birational map f of $\mathbb{P}_{\mathbb{C}}^{k}$ such that $\operatorname{Reg}(f)=\emptyset$? We will focus on the case $k=2$. According to [1, 7] if $\operatorname{deg} f=2$, then $\operatorname{Reg}(f) \neq \emptyset$. What about birational

[^0]maps of degree 3 ? BLANC proves that the set
$$
\left\{f \in \operatorname{Bir}_{3}\left(\mathbb{P}_{\mathbb{C}}^{2}\right) \mid \operatorname{Reg}(f) \neq \emptyset, \lim _{n \rightarrow+\infty}\left(\operatorname{deg}\left(f^{n}\right)\right)^{1 / n}>1\right\}
$$
is dense in $\operatorname{Bir}_{3}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ and that its complement has codimension 1 (see [3]). BLANC also gives a positive answer to BEDFORD question in dimension 2: if $\chi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ is the birational map given by
$$
\chi:(x: y: z) \rightarrow\left(x z^{5}+\left(y z^{2}+x^{3}\right)^{2}: y z^{5}+x^{3} z^{3}: z^{6}\right)
$$
then $\operatorname{Reg}(\chi)=\emptyset$.
Remark 1.2. Note that $\chi=\left(x+y^{2}, y\right) \circ\left(x, y+x^{3}\right)$ in the affine chart $z=1$. Indeed BLANC example can be generalized as follows: the birational map given in the affine chart $z=1$ by
$$
\chi_{n, p}=\left(x+y^{n}, y\right) \circ\left(x, y+x^{p}\right)=\left(x+\left(y+x^{p}\right)^{n}, y+x^{p}\right)
$$
satisfies $\operatorname{Reg}\left(\chi_{n, p}\right)=\emptyset($ see § $\sqrt[3]{ })$.
Then Blanc asked: does there exist $f \in \operatorname{Bir}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$ such that $\operatorname{deg}<6$ and $\operatorname{Reg}(f)=\emptyset$? The following statement gives a positive answer to this question:

Theorem A. If $\varphi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ is the birational map given by

$$
\varphi:(x: y: z) \rightarrow\left(y^{3}\left(z^{2}-x y\right): z^{5}-y^{5}-x y z^{3}: y^{2} z\left(z^{2}-x y\right)\right),
$$

then $\operatorname{Reg}(\varphi)=\emptyset$.
Acknowledgements. I would like to thank Serge Cantat for many interesting discussions.

2. Proof of Theorem A

Let S be a smooth projective surface. Let $\phi: S \rightarrow S$ be a birational map. This map admits a resolution

where $\pi_{1}: Z \rightarrow S$ and $\pi_{2}: Z \rightarrow S$ are finite sequences of blow-ups. The resolution is minimal if and only if no (-1)-curve of Z is contracted by both π_{1} and π_{2}. The base-points Base (ϕ) of ϕ are the points blown-up by π_{1}, which can be points of S or infinitely near points. The proper basepoints of ϕ are called indeterminacy points of ϕ and form a set denoted $\operatorname{Ind}(\phi)$. Finally we denote by $\operatorname{Exc}(\phi)$ the set of curves contracted by ϕ.

Denote by $\mathfrak{b}(\phi)$ the number of base-points of ϕ; note that $\mathfrak{b}(\phi)$ is equal to the difference of the ranks of $\operatorname{Pic}(Z)$ and $\operatorname{Pic}(S)$ and thus equal to $\mathfrak{b}\left(\phi^{-1}\right)$. Let us introduce the dynamical number of the base-points of ϕ. Since $\mathfrak{b}(\phi \circ \psi) \leq \mathfrak{b}(\phi)+\mathfrak{b}(\psi)$ for any birational self map ψ of $S, \mu(\phi)$ is a
non-negative real number. As $\mathfrak{b}(\phi)=\mathfrak{b}\left(\phi^{-1}\right)$ one gets $\mu\left(\phi^{k}\right)=|k \mu(\phi)|$ for any $k \in \mathbb{Z}$. Furthermore if Z is a smooth projective surface and $\psi: S \rightarrow Z$ a birational map, then for all $n \in \mathbb{Z}$

$$
-2 \mathfrak{b}(\psi)+\mathfrak{b}\left(\phi^{n}\right) \leq \mathfrak{b}\left(\psi \circ \varphi^{n} \circ \psi^{-1}\right) \leq 2 \mathfrak{b}(\psi)+\mathfrak{b}\left(\phi^{n}\right)
$$

hence $\mu(\phi)=\mu\left(\psi \circ \phi \circ \psi^{-1}\right)$. One can thus state the following result:
Lemma 2.1 ([4]). The dynamical number of base-points is an invariant of conjugation. In particular if ϕ is a regularizable birational self map of a smooth projective surface, then $\mu(\phi)=0$.

A base-point p of ϕ is a persistent base-point if there exists an integer N such that for any $k \geq N$

$$
\left\{\begin{array}{l}
p \in \operatorname{Base}\left(\phi^{k}\right) \\
p \notin \operatorname{Base}\left(\phi^{-k}\right)
\end{array}\right.
$$

Let p be a point of S or a point infinitely near S such that $p \notin \operatorname{Base}(\phi)$. Consider a minimal resolution of ϕ

Because p is not a base-point of ϕ it corresponds via π_{1} to a point of Z or infinitely near; using π_{2} we view this point on S again maybe infinitely near and denote it $\phi^{\bullet}(p)$. For instance if $S=\mathbb{P}_{\mathbb{C}}^{2}$, $p=(1: 0: 0)$ and f is the birational self map of $\mathbb{P}_{\mathbb{C}}^{2}$ given by

$$
\left(z_{0}: z_{1}: z_{2}\right) \longrightarrow\left(z_{1} z_{2}+z_{0}^{2}: z_{0} z_{2}: z_{2}^{2}\right)
$$

the point $f^{\bullet}(p)$ is not equal to $p=f(p)$ but is infinitely near to it. Note that if ψ is a birational self map of S and p is a point of S such that $p \notin \operatorname{Base}(\phi), \phi(p) \notin \operatorname{Base}(\psi)$, then $(\psi \circ \phi)^{\bullet}(p)=$ $\psi^{\bullet}\left(\phi^{\bullet}(p)\right)$. One can put an equivalence relation on the set of points of S or infinitely near S : the point p is equivalent to the point q if there exists an integer k such that $\left(\phi^{k}\right)^{\bullet}(p)=q$; in particular $p \notin \operatorname{Base}\left(\phi^{k}\right)$ and $q \notin \operatorname{Base}\left(\phi^{-k}\right)$. Remark that the equivalence class is the generalization of set of orbits for birational maps.

Let us give the relationship between the dynamical number of base-points and the equivalence classes of persistent base-points:

Proposition $2.2([4])$. Let S be a smooth projective surface. Let ϕ be a birational self map of S.
Then $\mu(\phi)$ coincides with the number of equivalence classes of persistent base-points of ϕ. In particular $\mu(\phi)$ is an integer.

This interpretation of the dynamical number of base-points allows to prove the following result that gives a characterization of regularizable birational maps:

Theorem 2.3 ([4]). Let ϕ be a birational self map of a smooth projective surface. Then ϕ is regularizable if and only if $\mu(\phi)=0$.

The birational map

$$
\varphi:(x: y: z) \rightarrow\left(y^{3}\left(z^{2}-x y\right): z^{5}-y^{5}-x y z^{3}: y^{2} z\left(z^{2}-x y\right)\right)
$$

blows down the conic \mathcal{C} given by $z^{2}-x y=0$ onto the point $p=(0: 1: 0)$ and the line L_{y} defined by $y=0$ onto p. Furthermore φ has only one point of indeterminacy which is $q=(1: 0: 0)=L_{y} \cap \mathcal{C}$. The inverse of φ is the map

$$
\varphi^{-1}:(x: y: z) \rightarrow\left(x^{2} y z^{2}-z^{5}+x^{5}: x^{2}\left(x^{2} y-z^{3}\right): x z\left(x^{2} y-z^{3}\right)\right)
$$

which blows down \mathcal{C}^{\prime} given by $x^{2} y-z^{3}=0$ onto q and the line L_{x} defined by $x=0$ onto q. Moreover $\operatorname{Ind}\left(\varphi^{-1}\right)=\mathcal{C}^{\prime} \cap L_{x}=\{p\}$.

If A is an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$ let us set $\varphi_{A}=A \circ \varphi$. We will prove the two following statements:
Lemma 2.4. The positive orbit of any point $p_{i}^{(1)} \in \operatorname{Base}\left(\varphi_{A}^{-1}\right)$ is infinite.
Lemma 2.5. The negative orbit of any point $q_{i} \in \operatorname{Base}\left(\varphi_{A}\right)$ is infinite.
Lemmas 2.4 and 2.5imply that $\mu\left(\varphi_{A}\right)=0$; Theorem Athus follows from Theorem 2.3. We will now prove Lemmas 2.4 and 2.5

The set of base points of φ is

$$
\operatorname{Base}(\varphi)=\left\{q, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, q_{8}\right\}
$$

and the set of base points of φ^{-1} is

$$
\operatorname{Base}\left(\varphi^{-1}\right)=\left\{p, p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}, p_{8}\right\}
$$

We have

$$
\operatorname{Base}\left(\varphi_{A}\right)=\operatorname{Base}(\varphi), \quad \operatorname{Exc}\left(\varphi_{A}\right)=\operatorname{Exc}(\varphi)
$$

However

$$
\operatorname{Base}\left(\varphi_{A}^{-1}\right)=\left\{p^{(1)}, p_{1}^{(1)}, p_{2}^{(1)}, p_{3}^{(1)}, p_{4}^{(1)}, p_{5}^{(1)}, p_{6}^{(1)}, p_{7}^{(1)}, p_{8}^{(1)}\right\}
$$

where $p^{(1)}=A(p)$ and $p_{j}^{(1)}=A\left(p_{j}\right)$. Moreover

$$
\operatorname{Exc}\left(\varphi_{A}^{-1}\right)=\left\{A\left(L_{x}\right), A\left(C^{\prime}\right)\right\}
$$

The map φ_{A} (resp. φ_{A}^{-1}) has only one proper base point, and all its base points are in tower, that is q_{i} (resp. p_{i}) is infinitely near to q_{i-1} (resp. p_{i-1}) for $i=2, \ldots, 8$. We denote by $\pi_{1}: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ (resp. $\pi_{2}: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$) the blow-up of the 8 base points of $\varphi_{A}\left(\right.$ resp. $\left.\varphi_{A}^{-1}\right)$. We have

We still denote by L_{y} and \mathcal{C} (resp. L_{x} and \mathcal{C}^{\prime}) the strict transform of L_{y} and \mathcal{C} (resp. L_{x} and \mathcal{C}^{\prime}). Let $\mathrm{E}_{i} \subset V_{1}$ (resp. $\mathrm{F}_{i} \subset V_{2}$) be the strict transform of the curve obtained by blowing up q_{i} (resp. p_{i}). The configuration of the curves $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{8}, \mathcal{C}$ and L_{y} on S is

where two curves are connected by an edge if their intersection is positive. We will denote by \mathcal{T}^{\prime} this tree. The configuration of the curves $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{8}, C^{\prime}$ and L_{x} on S is:

Let us denote by \mathcal{T} this tree.
Because of the order of the curves contracted by π_{2} we get equalities between $\mathcal{C}, \mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{9}$ and $\mathcal{C}^{\prime}, \mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{9}$ according to the following figure:

Furthermore φ sends

L_{y} to F_{9}	E_{1} to C^{\prime}	E_{2} to F_{8}	E_{3} to F_{7}
E_{4} to F_{6}	E_{5} to F_{5}	E_{6} to F_{4}	E_{7} to F_{3}
E_{8} to F_{2}	E_{9} to L_{x}	C to F_{1}	

Let us study the positive orbits of the base points of $\operatorname{Base}\left(\varphi_{A}^{-1}\right)$. Set $p^{(k)}=\varphi_{A}^{k}\left(p^{(1)}\right)$ and $p_{i}^{(k)}=$ $\varphi_{A}^{k}\left(p_{i}^{(1)}\right)$. As soon as $p^{(\ell)}$ belongs to $\mathbb{P}_{\mathbb{C}}^{2} \backslash\left\{L_{y}, \mathcal{C}\right\}, \varphi_{A}$ sends the tree

onto the tree

We will denote by $\mathcal{T}^{(\ell)}$ (resp. $\mathcal{T}^{\prime}(\ell)$) the tree above $p^{(\ell)}$ (resp. $q^{(\ell)}$) and we will say that φ_{A} sends $\left(p^{(\ell)}, \mathcal{T}^{(\ell)}\right)$ onto $\left(p^{(\ell+1)}, \mathcal{T}^{(\ell+1)}\right)$.

The orbit of $p^{(1)}$ is finite if there exists an integer ℓ such that

- either $p^{(\ell+1)}$ lies on $L_{y} \backslash\{q\}$
- or $p^{(\ell+1)}$ belongs to $C \backslash\{q\}$;
- or $p^{(\ell+1)}=q$.

Proof of Lemma 2.4 (1) Let us first assume that $p^{(\ell+1)}$ lies on $L_{y} \backslash\{q\}$ or on $\mathcal{C} \backslash\{q\}$. Then φ_{A} sends $\left(p^{(\ell)}, \mathcal{T}^{(\ell)}\right)$ onto $\left(p^{(\ell+1)}, \mathcal{T}^{(\ell+1)}\right)$ and $\left(p^{(\ell+1)}, \mathcal{T}^{(\ell+1)}\right)$ onto

(2) Suppose finally that $p^{(\ell+1)}=q$. Since φ_{A} is a local diffeomorphism at $p^{(\ell)}$ the map φ_{A} sends $\left(p^{(\ell)}, \mathcal{T}^{(\ell)}\right)$ onto $\left(q=p^{(\ell+1)}, \mathcal{T}^{\prime}\right)$.

The curve $\mathrm{F}_{1}^{(\ell)}$ has to be sent onto E_{1} since $\mathrm{F}_{1}^{(\ell)}$ is the exceptional divisor obtained from the first blow up of $p^{(\ell)}$. Then

- either $\mathrm{F}_{2}^{(\ell)}$ is sent onto E_{2},
- or not.

If $\mathrm{F}_{2}^{(\ell)}$ is sent onto E_{2}, then φ_{A} sends the tree

onto the tree

$$
\text { - } p^{(\ell+2)}=p^{(1)}
$$

If $\mathrm{F}_{2}^{(\ell)}$ is not sent onto E_{2}, then φ_{A} sends the tree

onto the tree

$$
\begin{aligned}
& \text { - } p^{(\ell+2)}=p^{(1)}
\end{aligned}
$$

Similarly the study of the positive orbits of the base points of $\operatorname{Base}\left(\varphi_{A}^{-1}\right)$ allows to prove Lemma 2.5, Let us denote by $\left\{q^{(i)}\right\}$ the orbit of q under the action of φ_{A}^{-1}. As soon as $q^{(\ell)}$ belongs to $\mathbb{P}_{\mathbb{C}}^{2} \backslash\left\{A\left(L_{x}\right), A(\mathcal{C})\right\}$ the map φ_{A}^{-1} sends $\left(q^{(\ell)}, \mathcal{T}^{\prime(\ell)}\right)$ onto $\left(q^{(\ell+1)}, \mathcal{T}^{\prime}(\ell+1)\right)$.

The orbit of q is finite if one of the following holds

- $q^{(\ell+1)}$ lies on $A\left(L_{x}\right) \backslash\left\{p^{(1)}\right\}$;
- $q^{(\ell+1)}$ belongs to $A(C) \backslash\left\{p^{(1)}\right\}$;
- $q^{(\ell+1)}=p^{(1)}$.

Proof of Lemma 2.5 (1) Let us first assume that $q^{(\ell+1)}$ belongs to $A\left(L_{x}\right) \backslash\left\{p^{(1)}\right\}$ or to $A(C) \backslash$ $\left\{p^{(1)}\right\}$. Then φ_{A}^{-1} sends $\left(q^{(\ell)}, \mathcal{T}^{\prime}(\ell)\right)$ onto $\left(q^{(\ell+1)}, \mathcal{T}^{\prime(\ell+1)}\right)$ and $\left(q^{(\ell+1)}, \mathcal{T}^{\prime}(\ell+1)\right)$ onto the tree

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\mathrm{E}_{9}^{(\ell+2)} \\
\mathrm{E}_{8}^{(\ell+2)} \\
\mathrm{E}_{7}^{(\ell+2)} \\
\mathrm{E}_{6}^{(\ell+2)} \\
\mathrm{E}_{5}^{(\ell+2)} \\
\mathrm{E}_{1}^{(\ell+2)}
\end{array}\right. \\
\mathrm{E}_{4}^{(\ell+2)} \\
\mathrm{E}_{3}^{(\ell+2)} \\
\mathrm{E}_{2}^{(\ell+2)} \\
\mathrm{E}_{9} \\
\mathrm{E}_{8} \\
\mathrm{E}_{7} \\
\mathrm{E}_{6} \\
\mathrm{E}_{5} \\
\mathrm{E}_{4} \\
\mathrm{E}_{3} \\
\mathrm{E}_{2} \\
\mathrm{E}_{1}
\end{array}\right.
$$

(2) Suppose finally that $q^{(\ell+1)}=p^{(1)}$. The curve $\mathrm{E}_{1}^{(\ell)}$ has to be sent onto F_{1} since $\mathrm{E}_{1}^{(\ell)}$ is the exceptional divisor obtained from the first blow up of $q^{(\ell)}$. Then

- either $\mathrm{E}_{2}^{(\ell)}$ is sent onto F_{2},
- or not.

If $\mathrm{E}_{2}^{(\ell)}$ is sent onto F_{2}, then φ_{A}^{-1} sends

onto

- $q^{(l+2)}=q$

If $\mathrm{E}_{2}^{(\ell)}$ is not sent onto F_{2}, then φ_{A}^{-1} sends

onto the tree

$$
\begin{aligned}
& \mathrm{E}_{1} \text { : } \\
& \text { - } q=q^{(\ell+2)}
\end{aligned}
$$

3. BLANC EXAMPLE IN HIGHER DEGREE

Let us deal with Remark 1.2 .
In [3] BLANC consider the birational map $\chi_{23}=\varphi_{2} \circ \psi_{3}$ with

$$
\varphi_{2}:(x: y: z) \longrightarrow\left(x z+y^{2}: y z: z^{2}\right), \quad \quad \psi_{3}:(x: y: z) \rightarrow\left(x z^{2}: y z^{2}+x^{3}: z^{3}\right)
$$

BLANC proves that for any $A \in \operatorname{PGL}(3, \mathbb{C})$

- the positive orbit of any point of $\operatorname{Base}\left(\left(A \circ \chi_{23}\right)^{-1}\right)$ is infinite,
- the negative orbit of any point of $\operatorname{Base}\left(A \circ \chi_{23}\right)$ is infinite.

This implies that $A \circ \chi_{23}$ is not regularizable, and so $\operatorname{Reg}\left(\chi_{23}\right)=\emptyset$. It can be generalize in higher degree. Let us set

$$
\varphi_{n}:(x: y: z) \longrightarrow\left(x z^{n-1}+y^{n}: y z^{n-1}: z^{n}\right), \quad \psi_{p}:(x: y: z) \rightarrow\left(x z^{p-1}: y z^{p-1}+x^{p}: z^{p}\right)
$$

The tree of rational curves obtained by solving the indeterminacy of φ_{n} is

The tree of rational curves obtained by solving the indeterminacy of φ_{n}^{-1} is

The tree of rational curves obtained by solving the indeterminacy of ψ_{p} is

The tree of rational curves obtained by solving the indeterminacy of ψ_{p}^{-1} is

Let us now consider $\chi_{n, p}=\varphi_{n} \circ \psi_{p}$.
The tree of rational curves obtained by solving the indeterminacy of $\chi_{n, p}$ is

The tree of rational curves obtained by solving the indeterminacy of $\chi_{n, p}^{-1}$ is

Furthermore $\chi_{n, p}$ sends

L_{z} to $\mathrm{F}_{2 p+2 n-2}$	E_{1} to F_{p}	$\mathrm{E}_{2 n}$ to F_{1}	$\mathrm{E}_{2 p+2 n-2}$ to L_{z}
E_{2} to $\mathrm{F}_{2 p+2 n-3}$	E_{3} to $\mathrm{F}_{2 p+2 n-4}$	\ldots	E_{n-1} to $\mathrm{F}_{2 p+n}$
E_{n} to $\mathrm{F}_{2 p+n-1}$	E_{n+1} to $\mathrm{F}_{2 p+n-2}$	\ldots	$\mathrm{E}_{2 n+p-2}$ to F_{p+1}
$\mathrm{E}_{p+2 n-1}$ to F_{p}	$\mathrm{E}_{p+2 n}$ to F_{p-1}	\ldots	$\mathrm{E}_{2 p+2 n-1}$ to F_{2}

As a result using [3] we can state:

Theorem 3.1. If

$$
\varphi_{n}:(x: y: z) \mapsto\left(x z^{n-1}+y^{n}: y z^{n-1}: z^{n}\right) \quad \psi_{p}:(x: y: z) \mapsto\left(x z^{p-1}: y z^{p-1}+x^{p}: z^{p}\right)
$$

and $\chi_{n, p}=\varphi_{n} \circ \psi_{p}$, then $\operatorname{Reg}\left(\chi_{n, p}\right)=\emptyset$.

References

[1] E. Bedford and K. Kim. Dynamics of rational surface automorphisms: linear fractional recurrences. J. Geom. Anal., 19(3):553-583, 2009.
[2] C. Bisi, A. Calabri, and M. Mella. On plane Cremona transformations of fixed degree. J. Geom. Anal., 25(2):11081131, 2015.
[3] J. Blanc. Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces. Indiana Univ. Math. J., 62(4):1143-1164, 2013.
[4] J. Blanc and J. Déserti. Degree growth of birational maps of the plane. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14(2):507-533, 2015.
[5] S. Cantat, J. Déserti, and J. Xie. In preparation.
[6] D. Cerveau and J. Déserti. Transformations birationnelles de petit degré, volume 19 of Cours Spécialisés. Société Mathématique de France, Paris, 2013.
[7] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J., 60(2):409-440, 2011. With an appendix by Igor Dolgachev.

Université Côte d’Azur, Laboratoire J.-A. Dieudonné, UMR 7351, Nice, France
E-mail address: deserti@math.cnrs.fr

[^0]: 2010 Mathematics Subject Classification. 14E07, 14J50.
 Key words and phrases. Cremona group, birational map, automorphisms of surfaces, regularization.
 The author was partially supported by the ANR grant Fatou ANR-17-CE40-0002-01 and the ANR grant Foliage ANR-16-CE40-0008-01.

