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ON REGULARIZABLE BIRATIONAL MAPS

JULIE DÉSERTI

ABSTRACT. BEDFORD asked if there exists a birational self map f of the complex projective
plane such that for any automorphism A of the complex projective plane A ◦ f is not conjugate to
an automorphism. In [3] BLANC gave such a f of degree 6 and asked if there exists an example of
smaller degree. In this article we give an example of degree 5.

1. INTRODUCTION

Denote by Bir(Pk
C
) the group of all birational self maps of Pk

C
, also called the k-dimensional

CREMONA group. Let Bird(P
k
C
) be the algebraic variety of all birational self maps of P

k
C

of

degree d. When k = 2 and d ≥ 2 these varieties have many distinct components, of various dimen-

sions ([6, 2]). The group Aut(Pk
C
) = PGL(k+1,C) acts by left translations, by right translations,

and by conjugacy on Bird(P
k
C
). Since this group is connected, these actions preserve each con-

nected component.

A birational map f : Pk
C
99K Pk

C
is regularizable if there there exist a smooth projective variety V

and a birational map g : V 99K P
k
C

such that g−1 ◦ f ◦g is an automorphism of V . To any element f

of Bir(Pk
C
) we associate the set Reg( f ) defined by

Reg( f ) :=
{

A ∈ Aut(Pk
C) | A◦ f is regularizable

}

.

DOLGACHEV asked whether there exists a birational self map of Pk
C

of degree > 1 such that

Reg( f ) = Aut(Pk
C
). In [5] we give a negative answer to this question. More precisely we prove

Theorem 1.1 ([5]). Let f be a birational self map of Pk
C

of degree d ≥ 2.

The set of automorphisms A of Pk
C

such that deg
(

(A◦ f )n
)

6=
(

deg(A◦ f )
)n

for some n > 0 is a

countable union of proper ZARISKI closed subsets of PGL(k+1,C).

In particular there exists an automorphism A of Pk
C

such that A◦ f is not regularizable.

BEDFORD asked: does there exist a birational map f of Pk
C

such that Reg( f ) = /0 ? We will

focus on the case k = 2. According to [1, 7] if deg f = 2, then Reg( f ) 6= /0. What about birational
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maps of degree 3 ? BLANC proves that the set
{

f ∈ Bir3(P
2
C) |Reg( f ) 6= /0, lim

n→+∞
(deg( f n))1/n > 1

}

is dense in Bir3(P
2
C
) and that its complement has codimension 1 (see [3]). BLANC also gives a

positive answer to BEDFORD question in dimension 2: if χ : P2
C
99K P2

C
is the birational map given

by

χ : (x : y : z) 99K
(

xz5 +(yz2 + x3)2 : yz5 + x3z3 : z6)

then Reg(χ) = /0.

Remark 1.2. Note that χ=(x+y2,y)◦(x,y+x3) in the affine chart z= 1. Indeed BLANC example

can be generalized as follows: the birational map given in the affine chart z = 1 by

χn,p = (x+ yn,y)◦ (x,y+ xp) =
(

x+(y+ xp)n,y+ xp
)

satisfies Reg(χn,p) = /0 (see §3).

Then BLANC asked: does there exist f ∈ Bir(P2
C
) such that deg < 6 and Reg( f ) = /0 ? The

following statement gives a positive answer to this question:

Theorem A. If ϕ : P2
C
99K P2

C
is the birational map given by

ϕ : (x : y : z) 99K
(

y3(z2 − xy) : z5 − y5 − xyz3 : y2z(z2 − xy)
)

,

then Reg(ϕ) = /0.

Acknowledgements. I would like to thank Serge CANTAT for many interesting discussions.

2. PROOF OF THEOREM A

Let S be a smooth projective surface. Let φ : S 99K S be a birational map. This map admits a

resolution

Z
π2

��
❃❃

❃❃
❃❃

❃❃
π1

����
��
��
��

S
φ

//❴❴❴❴❴❴❴ S

where π1 : Z → S and π2 : Z → S are finite sequences of blow-ups. The resolution is minimal if

and only if no (−1)-curve of Z is contracted by both π1 and π2. The base-points Base(φ) of φ are

the points blown-up by π1, which can be points of S or infinitely near points. The proper base-

points of φ are called indeterminacy points of φ and form a set denoted Ind(φ). Finally we denote

by Exc(φ) the set of curves contracted by φ.

Denote by b(φ) the number of base-points of φ; note that b(φ) is equal to the difference of the

ranks of Pic(Z) and Pic(S) and thus equal to b(φ−1). Let us introduce the dynamical number of
the base-points of φ. Since b(φ ◦ψ) ≤ b(φ)+ b(ψ) for any birational self map ψ of S, µ(φ) is a
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non-negative real number. As b(φ) = b(φ−1) one gets µ(φk) = |k µ(φ)| for any k ∈ Z. Furthermore

if Z is a smooth projective surface and ψ : S 99K Z a birational map, then for all n ∈ Z

−2b(ψ)+b(φn)≤ b(ψ◦ϕn ◦ψ−1)≤ 2b(ψ)+b(φn);

hence µ(φ) = µ(ψ◦φ◦ψ−1). One can thus state the following result:

Lemma 2.1 ([4]). The dynamical number of base-points is an invariant of conjugation. In parti-

cular if φ is a regularizable birational self map of a smooth projective surface, then µ(φ) = 0.

A base-point p of φ is a persistent base-point if there exists an integer N such that for any k ≥ N
{

p ∈ Base(φk)
p 6∈ Base(φ−k)

Let p be a point of S or a point infinitely near S such that p 6∈ Base(φ). Consider a minimal

resolution of φ

Z
π1

��
❃❃

❃❃
❃❃

❃❃
π2

����
��
��
��

S
φ

//❴❴❴❴❴❴❴ S

Because p is not a base-point of φ it corresponds via π1 to a point of Z or infinitely near; using π2

we view this point on S again maybe infinitely near and denote it φ•(p). For instance if S = P2
C

,

p = (1 : 0 : 0) and f is the birational self map of P2
C

given by

(z0 : z1 : z2) 99K (z1z2 + z2
0 : z0z2 : z2

2)

the point f •(p) is not equal to p = f (p) but is infinitely near to it. Note that if ψ is a birational

self map of S and p is a point of S such that p 6∈ Base(φ), φ(p) 6∈ Base(ψ), then (ψ ◦ φ)•(p) =

ψ•(φ•(p)). One can put an equivalence relation on the set of points of S or infinitely near S: the

point p is equivalent to the point q if there exists an integer k such that (φk)•(p) = q; in particular

p 6∈ Base(φk) and q 6∈ Base(φ−k). Remark that the equivalence class is the generalization of set of

orbits for birational maps.

Let us give the relationship between the dynamical number of base-points and the equivalence

classes of persistent base-points:

Proposition 2.2 ([4]). Let S be a smooth projective surface. Let φ be a birational self map of S.

Then µ(φ) coincides with the number of equivalence classes of persistent base-points of φ. In

particular µ(φ) is an integer.

This interpretation of the dynamical number of base-points allows to prove the following result

that gives a characterization of regularizable birational maps:

Theorem 2.3 ([4]). Let φ be a birational self map of a smooth projective surface. Then φ is

regularizable if and only if µ(φ) = 0.
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The birational map

ϕ : (x : y : z) 99K
(

y3(z2 − xy) : z5 − y5 − xyz3 : y2z(z2 − xy)
)

blows down the conic C given by z2−xy= 0 onto the point p= (0 : 1 : 0) and the line Ly defined by

y = 0 onto p. Furthermore ϕ has only one point of indeterminacy which is q = (1 : 0 : 0) = Ly∩C .

The inverse of ϕ is the map

ϕ−1 : (x : y : z) 99K
(

x2yz2 − z5 + x5 : x2(x2y− z3) : xz(x2y− z3)
)

which blows down C ′ given by x2y− z3 = 0 onto q and the line Lx defined by x = 0 onto q.

Moreover Ind(ϕ−1) = C ′∩Lx = {p}.

If A is an automorphism of P2
C

let us set ϕA =A◦ϕ. We will prove the two following statements:

Lemma 2.4. The positive orbit of any point p
(1)
i ∈ Base(ϕ−1

A ) is infinite.

Lemma 2.5. The negative orbit of any point qi ∈ Base(ϕA) is infinite.

Lemmas 2.4 and 2.5 imply that µ(ϕA) = 0; Theorem A thus follows from Theorem 2.3. We will

now prove Lemmas 2.4 and 2.5.

The set of base points of ϕ is

Base(ϕ) =
{

q, q1, q2, q3, q4, q5, q6, q7, q8}

and the set of base points of ϕ−1 is

Base(ϕ−1) =
{

p, p1, p2, p3, p4, p5, p6, p7, p8}.

We have

Base(ϕA) = Base(ϕ), Exc(ϕA) = Exc(ϕ).

However

Base(ϕ−1
A ) =

{

p(1), p
(1)
1 , p

(1)
2 , p

(1)
3 , p

(1)
4 , p

(1)
5 , p

(1)
6 , p

(1)
7 , p

(1)
8 }

where p(1) = A(p) and p
(1)
j = A(p j). Moreover

Exc(ϕ−1
A ) =

{

A(Lx),A(C
′)
}

.

The map ϕA (resp. ϕ−1
A ) has only one proper base point, and all its base points are in tower, that

is qi (resp. pi) is infinitely near to qi−1 (resp. pi−1) for i = 2, . . ., 8. We denote by π1 : S → P
2
C

(resp. π2 : S → P
2
C

) the blow-up of the 8 base points of ϕA (resp. ϕ−1
A ). We have

S

π2

��
❅❅

❅❅
❅❅

❅❅

π1

����
��
��
�

P2
C ϕA

//❴❴❴❴❴❴❴ P2
C
,
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We still denote by Ly and C (resp. Lx and C ′) the strict transform of Ly and C (resp. Lx and C ′).

Let Ei ⊂V1 (resp. Fi ⊂V2) be the strict transform of the curve obtained by blowing up qi (resp. pi).

The configuration of the curves E1, E2, . . ., E8, C and Ly on S is

r

Ly

rE2❅❅
r

E1 rE3

rE4

rE5

rE6

rE7

❅❅
r

C

rE8

rE9

where two curves are connected by an edge if their intersection is positive. We will denote by T ′

this tree. The configuration of the curves F1, F2, . . ., F8, C ′ and Lx on S is:

r

Lx

rF2

❅❅
r

F1

rF3

rF4

rF5

rF6

rF7

❅❅
r

C ′

rF8

rF9
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Let us denote by T this tree.

Because of the order of the curves contracted by π2 we get equalities between C , E1, E2, . . ., E9

and C ′, F1, F2, . . ., F9 according to the following figure:

r

Ly = F9

rE2 = F8❅❅
r

C ′ = E1 rE3 = F7

rE4 = F6

rE5 = F5

rE6 = F4

rE7 = F3❅❅
r

C = F1 rE8 = F2

rE9 = Lx

Furthermore ϕ sends

Ly to F9 E1 to C
′ E2 to F8 E3 to F7

E4 to F6 E5 to F5 E6 to F4 E7 to F3

E8 to F2 E9 to Lx C to F1

Let us study the positive orbits of the base points of Base(ϕ−1
A ). Set p(k) = ϕk

A(p(1)) and p
(k)
i =

ϕk
A(p

(1)
i ). As soon as p(ℓ) belongs to P2

C
r{Ly, C}, ϕA sends the tree

r

Lx

rF(ℓ)
2

❅❅
r

F(ℓ)
1

rF(ℓ)
3

rF(ℓ)
4

rF(ℓ)
5

rF(ℓ)
6

rF(ℓ)
7

❅❅
r

C
′(ℓ)

rF(ℓ)
8

rF(ℓ)
9
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onto the tree

r

Lx

rF(ℓ+1)
2

❅❅
r

F(ℓ+1)
1

rF(ℓ+1)
3

rF(ℓ+1)
4

rF(ℓ+1)
5

rF(ℓ+1)
6

rF(ℓ+1)
7

❅❅
r

C
′(ℓ+1)

rF(ℓ+1)
8

rF(ℓ+1)
9

We will denote by T (ℓ) (resp. T
′(ℓ)) the tree above p(ℓ) (resp. q(ℓ)) and we will say that ϕA

sends (p(ℓ),T (ℓ)) onto (p(ℓ+1),T (ℓ+1)).

The orbit of p(1) is finite if there exists an integer ℓ such that

• either p(ℓ+1) lies on Ly r{q}

• or p(ℓ+1) belongs to C r{q};

• or p(ℓ+1) = q.

Proof of Lemma 2.4. (1) Let us first assume that p(ℓ+1) lies on Lyr{q} or on C r{q}. Then ϕA

sends (p(ℓ),T (ℓ)) onto (p(ℓ+1),T (ℓ+1)) and (p(ℓ+1),T (ℓ+1)) onto
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r p(ℓ+2) = p(1)

rF2

❅❅
r

F1

rF3

rF4

rF5

rF6

rF7

❅❅
r

C ′

rF8

rF9

rF(ℓ+2)
2

❅❅
r

F(ℓ+2)
1

rF(ℓ+2)
3

rF(ℓ+2)
4

rF(ℓ+2)
5

rF(ℓ+2)
6

rF(ℓ+2)
7

❅❅
r

C
′(ℓ+2)

rF(ℓ+2)
8

rF(ℓ+2)
9

(2) Suppose finally that p(ℓ+1) = q. Since ϕA is a local diffeomorphism at p(ℓ) the map ϕA

sends (p(ℓ),T (ℓ)) onto (q = p(ℓ+1),T ′).

The curve F(ℓ)
1 has to be sent onto E1 since F(ℓ)

1 is the exceptional divisor obtained from

the first blow up of p(ℓ). Then

• either F(ℓ)
2 is sent onto E2,

• or not.

If F(ℓ)
2 is sent onto E2, then ϕA sends the tree
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r

p(ℓ+1) = q

r

F(ℓ+1)
3

❍❍❍❍
r

E2 = F(ℓ+1)
2

rE3

rE4

rE5

rE6

❍❍r
C

rE7

rE8

rE9

r

F(ℓ+1)
4

✟✟✟✟
r

E1 = F(ℓ+1)
1

r F(ℓ+1)
5

r F(ℓ+1)
6

r

F(ℓ+1)
7

r

F(ℓ+1)
8

✟✟r
C

′(ℓ+1)
r F(ℓ+1)

9

onto the tree

r p(ℓ+2) = p(1)

r F2

�
�
r F1

rF3

rF4

rF5

rF6

rF7

�
�
r F(ℓ+2)

3

r C ′ = F(ℓ+2)
1rF8 = F(ℓ+2)

2

rF9

r F(ℓ+2)
4

r F(ℓ+2)
5

r F(ℓ+2)
6

r F(ℓ+2)
7

r F(ℓ+2)
8❅

❅
r

C
′(ℓ+2)

r F(ℓ+2)
9

If F(ℓ)
2 is not sent onto E2, then ϕA sends the tree
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❍❍❍❍
rE2

rE3

rE4

rE5

rE6

�
�
r

C

rE7

rE8

rE9

r

p(ℓ+1) = q

r

E1 = F(ℓ+1)
1

�
�
r F(ℓ+1)

2

r

F(ℓ+1)
3

r
F(ℓ+1)

4

r F(ℓ+1)
5

r F(ℓ+1)
6

�
�
r

C
′(ℓ+1)

r F(ℓ+1)
7

r F(ℓ+1)
8

r

F(ℓ+1)
9

onto the tree

r p(ℓ+2) = p(1)

r F2

�
�

r F1

rF3

rF4

rF5

rF6

rF7

�
�
r C ′ = F(ℓ+2)

1

rF8

rF9

r F(ℓ+2)
3❅

❅
r

F(ℓ+2)
2

r F(ℓ+2)
4

r F(ℓ+2)
5

r F(ℓ+2)
6

r F(ℓ+2)
7

❅
❅
r

C
′(ℓ+2)

r F(ℓ+2)
8

r F(ℓ+2)
9

�
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Similarly the study of the positive orbits of the base points of Base(ϕ−1
A ) allows to prove

Lemma 2.5. Let us denote by {q(i)} the orbit of q under the action of ϕ−1
A . As soon as q(ℓ)

belongs to P2
C
r{A(Lx),A(C )} the map ϕ−1

A sends (q(ℓ),T
′(ℓ)) onto (q(ℓ+1),T

′(ℓ+1)).

The orbit of q is finite if one of the following holds

• q(ℓ+1) lies on A(Lx)r{p(1)};

• q(ℓ+1) belongs to A(C )r{p(1)};

• q(ℓ+1) = p(1).

Proof of Lemma 2.5. (1) Let us first assume that q(ℓ+1) belongs to A(Lx)r{p(1)} or to A(C )r

{p(1)}. Then ϕ−1
A sends (q(ℓ),T

′(ℓ)) onto (q(ℓ+1),T
′(ℓ+1)) and (q(ℓ+1),T

′(ℓ+1)) onto the

tree

r q = q(ℓ+2)

rE1

rE2

rE3

rE4

rE5

rE6

rE7❅❅
r

C rE8

rE9

rE(ℓ+2)
2❅❅

r

E(ℓ+2)
1 rE(ℓ+2)

3

rE(ℓ+2)
4

rE(ℓ+2)
5

rE(ℓ+2)
6

rE(ℓ+2)
7❅❅

r

C (ℓ+2)
rE(ℓ+2)

8

rE(ℓ+2)
9

(2) Suppose finally that q(ℓ+1) = p(1). The curve E(ℓ)
1 has to be sent onto F1 since E(ℓ)

1 is the

exceptional divisor obtained from the first blow up of q(ℓ). Then
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• either E(ℓ)
2 is sent onto F2,

• or not.

If E(ℓ)
2 is sent onto F2, then ϕ−1

A sends

r q(ℓ+1) = p(1)

r F2 = E(ℓ+1)
2❍❍❍❍

rE(ℓ+1)
3

rE(ℓ+1)
4

rE(ℓ+1)
5

rE(ℓ+1)
6

rE(ℓ+1)
7 �

�
r

C (ℓ+1)
rE(ℓ+1)

8

rE(ℓ+1)
9

r

F3
�
�
r F1 = E(ℓ+1)

1r F4

r F5

r F6

r F7

�
�
r C ′

r

F8

r F9

onto

r q(ℓ+2) = q

r E1

r E2

❍❍❍❍
rE(ℓ+2)

3

rE(ℓ+2)
4

rE(ℓ+2)
5

rE(ℓ+2)
6

rE(ℓ+2)
7❍❍r

C (ℓ+2) rE(ℓ+2)
8

rE(ℓ+2)
9

r E3

r E4

r E5

r E6

r E7❍❍r
C = E(ℓ+2)

1
r E8 = E(ℓ+2)

2

r E9
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If E(ℓ)
2 is not sent onto F2, then ϕ−1

A sends

r p(1) = q(ℓ+1)

r F2

�
��

r F1 = E(ℓ+1)
1

rF3

rF4

rF5

rF6

rF7

❅❅
rC ′

rF8

r F9

r E(ℓ+1)
2

r E(ℓ+1)
3

r E(ℓ+1)
4

r E(ℓ+1)
5

r E(ℓ+1)
6

r E(ℓ+1)
7❅❅

r

C (ℓ+1)
r E(ℓ+1)

8

r E(ℓ+1)
9

onto the tree

r q = q(ℓ+2)

r E2❅
❅
rE1 r E3

r E4

r E5

r E6

rE7 �
�
r C = E(ℓ+2)

1rE8

rE9 r E(ℓ+2)
2

r E(ℓ+2)
3

r E(ℓ+1)
4

r E(ℓ+1)
5

r E(ℓ+1)
6

r E(ℓ+1)
7❅

❅
r

C (ℓ+1)
r E(ℓ+1)

8

r E(ℓ+1)
9
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�

3. BLANC EXAMPLE IN HIGHER DEGREE

Let us deal with Remark 1.2.

In [3] BLANC consider the birational map χ23 = ϕ2 ◦ψ3 with

ϕ2 : (x : y : z) 99K (xz+ y2 : yz : z2), ψ3 : (x : y : z) 99K (xz2 : yz2 + x3 : z3).

BLANC proves that for any A ∈ PGL(3,C)

• the positive orbit of any point of Base((A◦χ23)
−1) is infinite,

• the negative orbit of any point of Base(A◦χ23) is infinite.

This implies that A◦χ23 is not regularizable, and so Reg(χ23) = /0. It can be generalize in higher

degree. Let us set

ϕn : (x : y : z) 99K (xzn−1 + yn : yzn−1 : zn), ψp : (x : y : z) 99K (xzp−1 : yzp−1 + xp : zp).

The tree of rational curves obtained by solving the indeterminacy of ϕn is

r

Lz

rE2

rE3
♣

♣

♣

rEn−1

rEn❅❅
r

E1 rEn+1

rEn+2
♣

♣

♣

rE2n−2

rE2n−1

The tree of rational curves obtained by solving the indeterminacy of ϕ−1
n is
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r

Lz

rF2

rF3
♣

♣

♣

rFn−1

rFn❅❅
r

F1 rFn+1

rFn+2
♣

♣

♣

rF2n−2

rF2n−1

The tree of rational curves obtained by solving the indeterminacy of ψp is

r

Lz

rE2

rE3
♣

♣

♣

rEp−1

rEp❅❅
r

E1 rEp+1

rEp+2
♣

♣

♣

rE2p−2

rE2p−1

The tree of rational curves obtained by solving the indeterminacy of ψ−1
p is
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rLz

rF2

rF3
♣

♣

♣

♣

rFp−1

rFp❅
❅
r

F1

rFp+1

rFp+2
♣

♣

♣

♣

rF2p−2

rF2p−1

Let us now consider χn,p = ϕn ◦ψp.

The tree of rational curves obtained by solving the indeterminacy of χn,p is

rLz

rE2

rE3
♣

♣

♣

♣

rEn−1

rEn❅
❅
r

E1
rEn+1

rEn+2
♣

♣

♣

♣

rE2n−2

rE2n−1

rE2n+1

rE2n+2
♣

♣

♣

♣

rE2n+p−2

rE2n+p−1❅
❅
r

E2n
rE2n+p

rE2n+p+1
♣

♣

♣

♣

rE2n+2p−2
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The tree of rational curves obtained by solving the indeterminacy of χ−1
n,p is

r

Lz

rF2

rF3
♣

♣

♣

rFn−1

rFn❅❅
r

F1 rFn+1

rFn+2
♣

♣

♣

rF2n−2

rF2n−1

rF2n+1

rF2n+2
♣

♣

♣

rF2n+p−2

rF2n+p−1❅❅
r

F2n rF2n+p

rF2n+p+1
♣

♣

♣

rF2n+2p−2

Furthermore χn,p sends

Lz to F2p+2n−2 E1 to Fp E2n to F1 E2p+2n−2 to Lz

E2 to F2p+2n−3 E3 to F2p+2n−4 . . . En−1 to F2p+n

En to F2p+n−1 En+1 to F2p+n−2 . . . E2n+p−2 to Fp+1

Ep+2n−1 to Fp Ep+2n to Fp−1 . . . E2p+2n−1 to F2

As a result using [3] we can state:
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Theorem 3.1. If

ϕn : (x : y : z) 7→ (xzn−1 + yn : yzn−1 : zn) ψp : (x : y : z) 7→ (xzp−1 : yzp−1 + xp : zp)

and χn,p = ϕn ◦ψp, then Reg(χn,p) = /0.
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