
HAL Id: hal-03000476
https://hal.science/hal-03000476

Submitted on 11 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General methods for suppressing the light shift in
atomic clocks using power modulation

V Yudin, Basalaev Yu, Alexey Taichenachev, Z Newman, Moshe Shuker,
James Wesley Pollock, Azure Hansen, M Hummon, Rodolphe Boudot,

Elizabeth A Donley, et al.

To cite this version:
V Yudin, Basalaev Yu, Alexey Taichenachev, Z Newman, Moshe Shuker, et al.. General methods for
suppressing the light shift in atomic clocks using power modulation. Physical Review Applied, 2020,
14 (024001), pp.8. �hal-03000476�

https://hal.science/hal-03000476
https://hal.archives-ouvertes.fr


General methods for suppressing the light shift in atomic clocks using power

modulation

V. I. Yudin,1, 2, 3, ∗ M. Yu. Basalaev,1,2, 3 A. V. Taichenachev,1, 2 J. W. Pollock,4, 5 Z. L. Newman,4

M. Shuker,4 A. Hansen,4 M. T. Hummon,4 R. Boudot,6 E. A. Donley,4 and J. Kitching4

1Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090, Russia
2Institute of Laser Physics SB RAS, pr. Akademika Lavrent’eva 15B, Novosibirsk, 630090, Russia

3Novosibirsk State Technical University, pr. Karla Marksa 20, Novosibirsk, 630073, Russia
4National Institute of Standards and Technology, Boulder, Colorado 80305, USA

5University of Colorado, Boulder, Colorado 80309-0440, USA
6FEMTO-ST, CNRS, UBFC, ENSMM, 26 rue de l’épitaphe 25030 Besancon, France

We show that the light shift in atomic clocks can be suppressed using time variation of the
interrogation field intensity. By measuring the clock output at two intensity levels, error signals
can be generated that simultaneously stabilize a local oscillator to an atomic transition and correct
for the shift of this transition caused by the interrogating optical field. These methods are suitable
for optical clocks using one- and two-photon transitions, as well as for microwave clocks based on
coherent population trapping or direct interrogation. The proposed methods can be widely used
both for high-precision scientific instruments and for a wide range of commercial clocks, including
chip-scale atomic clocks.
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I. INTRODUCTION

Atomic clocks have had broad impact in both funda-
mental physics and practical applications. They have
enabled, for example, some of the most precise tests of
general relativity [1, 2] and put stringent limits on the
possible variation with time of fundamental constants [3].
In addition, they underlie many aspects of modern tech-
nological infrastructure such as global navigation satellite
systems (GNSS) and high-speed telecommunications sys-
tems. The current state of the art, problems, and some
prospects for the further development of atomic clocks of
various types and purposes are well-presented in reviews
[4–6].

The most important metrological characteristics of an
atomic clock are its long-term stability and accuracy.
One of the main factors limiting these performance met-
rics is the ac Stark shift of atomic levels caused by the
presence of any optical fields used to probe the atoms.
The ac stark shift is particularly problematic for atomic
clocks based on coherent population trapping, and op-
tical clocks, where optical fields are necessarily present
in the interrogation sequence. Understanding, and ulti-
mately suppressing, this light shift is therefore important
in improving the long-term frequency stability of these
types of references. Particular successes in this direction
have been achieved over the past decade for atomic clocks
based on Ramsey spectroscopy. This process was begun
in Ref. [7], where the method of so-called hyper-Ramsey
spectroscopy was developed, which made it possible to
reduce the light shift and its variations for a reference
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atomic resonance by several orders of magnitude [8, 9].
Further development of the hyper-Ramsey approach has
used new phase variants to build an error signal [10–16].
This allows for significant improvement in the efficiency
of suppression of the light shift in atomic clocks.
Auto-balanced Ramsey spectroscopy (ABR) is another

effective approach that was first experimentally demon-
strated in a 171Yb+ ion clock [17]. This approach was
rigorously substantiated and generalized in Ref. [18], and
also recently realized in atomic clocks based on coherent
population trapping (CPT) [19, 20]. In ABR, two Ram-
sey sequences with different Ramsey times are used. A
primary control loop stabilizes the clock frequency as in
conventional Ramsey spectroscopy, while a second loop
controls an adjustable property of the first and/or sec-
ond Ramsey pulses, for example a phase jump of the
local oscillator during the Ramsey sequence. An alterna-
tive method named combined error signal (CES) spec-
troscopy has been recently proposed [21] and demon-
strated [22]. In contrast to the ABR protocol, the
Ramsey-CES method uses a single combined error sig-
nal, constructed by subtracting the error signals obtained
from the two Ramsey sub-sequences with an appropriate
normalization factor (calibration coefficient). This one-
loop method offers light-shift mitigation and reduces the
complexity of implementing the two-loop control system
required for ABR-like protocols at the cost of having to
measure or otherwise establish the normalization factor.
Although successful as laboratory demonstrations,

these new approaches have had no significant effect on
the development and improvement of commercial atomic
clocks, which typically use continuous wave (CW) spec-
troscopy rather than Ramsey spectroscopy. The main
reason is that from the viewpoint of commercial instru-
mentation, reliability and relative simplicity of devices
play a critical role and CW spectroscopy in atomic va-
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por cells is preferred. Moreover, in a number of impor-
tant cases Ramsey spectroscopy is impractical because
of the short lifetime of the excited state. For example,
this is true for modern optical clocks using vapor cells
with alkali atoms, such as for one-photon sub-Doppler
spectroscopy with counterpropagating waves at the S↔P
transition (e.g., see Ref. [23]); two-photon spectroscopy
on the S↔D transition (e.g., see Refs. [24–27]); and
Doppler-free spectroscopy of molecular iodine (e.g., see
Ref. [28]). In addition, in atomic clocks based on Ram-
sey spectroscopy in atomic beams and fountains (e.g., see
in Ref. [29]), the high-efficient ABR and CES methods
developed in Refs. [17, 18, 21] cannot be used, because in
these devices the free evolution time cannot be varied to
form two Ramsey sequences with different Ramsey times.

While CW spectroscopy is more widely used in com-
mercial clocks at present, general methods to mitigate
the light shift in a manner similar to the ABR and CES
protocols has not yet been developed. To date, several
approaches to the problem of the light shift in CW spec-
troscopy are known for various types of clocks. The first
efforts in this direction were made for microwave CPT
clocks, for which the light shift can be suppressed by a
suitable choice of the rf modulation index of the laser
field [30, 31]. Light shifts have also been suppressed in
conventional optically pumped microwave clocks by the
appropriate choice of the frequency ωOP of the optical
pumping field [32]. Recently, a method has been pro-
posed that can suppress the light shift for two-photon
spectroscopy on the transition (5s 2S1/2) ↔ (5d 2D5/2)

in 87Rb through the use of two interrogating laser fields
at different frequencies [33]. Therefore, the development
of new effective and universal methods of suppressing the
light shift for CW spectroscopy of clock transitions is cur-
rently a very relevant research topic.

In this paper, we develop two methods for suppressing
the light shift and its fluctuation in atomic clocks based
on either CW or Ramsey spectroscopy. Both methods use
a power modulation (PM) with sequential alternating op-
erations with two different laser powers P1 and P2. The
first method operates with a single combined error signal
(PM-CES), constructed by subtracting the error signals
obtained from the two sub-sequences (P1 and P2) with an
appropriate normalization factor (calibration coefficient)
dependent on the ratio P1/P2. The second method uses a
two-loop approach to feed back on and stabilize the clock
frequency ω as well as a second (concomitant) parameter
ξ, which determines the value of the artificial “anti-shift”
of the clock transition that actively auto-compensates the
original shift (we refer to this as ACS). The operation of
PM-ACS consists of the correlated stabilization of both
variable parameters ω and ξ, which leads to the light shift
cancelation for the clock frequency ω. Another variant
of PM-ACS using low frequency harmonic power mod-
ulation is also proposed. While the two-loop PM-ACS
is more complicated to implement than the single-loop
PM-CES, it also requires fewer constraints as outlined
below. Both the PM-CES and the PM-ACS methods

FIG. 1: Illustration of characteristic spectroscopic lineshapes.
(a) the resonant lineshape of the spectroscopic signal A(δ) at
the clock transition; (b) the corresponding error signal S(δ).

can be applied in optical clocks using one-photon and
two-photon spectroscopy, as well as in rf clocks based on
CPT resonances and optical pumping clocks.

II. GENERAL DESCRIPTION OF THE LIGHT
SHIFT IN ATOMIC CLOCKS

Let us consider an atomic clock (either optical or mi-
crowave) in which the frequency of the local oscillator
ω is stabilized by a reference atomic transition with an
unperturbed frequency ω0. For this purpose, a resonant
spectroscopic signal with a characteristic linewidth γ [see
Fig. 1(a)] is used, on the basis of which the dispersion-
like error signal S(δ) is generated in some known way
(e.g., by the use of harmonic frequency modulation, fre-
quency jumps, phase jumps) as a function of the detuning
δ = ω− ω0 [see Fig. 1(b)]. The standard operation of an
atomic clock is to use a feedback loop to stabilize the
frequency ω at the zero of the error signal:

S(δ) = 0 , (1)

which, in the ideal case, corresponds to δ = 0, i.e. ω =
ω0.
However, under the influence of a laser field, the reso-

nant atomic transition experiences a light shift ∆P [see
Fig. 1(a)], which also manifests in the error signal [see
Fig. 1(b)]. In this case, the frequency stabilization can
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be mathematically represented as

S(δ −∆P ) = 0 , (2)

which leads to the following result

δ = ∆P ⇒ ω = ω0 +∆P , (3)

describing effects of the light shift on the stabilized fre-
quency. We assume further that the main source of light
shift is the ac Stark shift, which negatively affects not
only the accuracy of atomic clocks, but also their long-
term stability due to temporal variations in the value of
∆P (t) caused by power and frequency fluctuations of the
laser field. Moreover, for rf clocks based on coherent pop-
ulation trapping, additional variations of ∆P (t) can also
occur from fluctuations in the modulation index of the
laser field at the operating rf frequency ω.
Below we consider two methods for suppressing the ac

Stark shift and its variations in atomic clocks. We assume
that the possible uncontrolled variations of the light shift
∆P and the laser power P are sufficiently slow, such that
these variations are negligible during one measurement
cycle used to correct the stabilized frequency ω.

III. COMBINED ERROR SIGNAL AT POWER
MODULATION (PM-CES)

In this section, we describe a method of the combined
error signal (PM-CES). We will assume that the atomic
clock operates in a time-interleaved manner at two dif-
ferent values of the probe laser field power, P1 and P2.
Moreover, we suppose that the following conditions are
fulfilled:
1. The light shift is linear in the optical power:

∆P = cP , (4)

where c is an empirical coefficient.
2. The slope of the error signal in the line center has

a pure power-law dependence on P [see Fig. 1(b)]:

tan ε = bPα , (5)

where b and α can be arbitrary. This assumption im-
plies that the system cannot exhibit saturation or power
broadening of the spectroscopic transition.
3. The light shift is much smaller than the linewidth:

∆P ≪ γ . (6)

Let us consider now the error signals SP1
(δ) and SP2

(δ)
for two values P1 and P2. Because of condition (6), near
the zero of the error signals, the linear approximation can
be used with good accuracy, as shown in Fig. 2(a). Using
well-known trigonometric formulas, we find the ratio of
the segments 0A2 and 0A1 in Fig. 2(a):

0A2

0A1
=

∆P2
tan ε2

∆P1
tan ε1

=

(

P2

P1

)α+1

, (7)

FIG. 2: Illustration of error signals. (a) linear central sections
of the error signals SP1

(δ) (red line) and SP2
(δ) (green line)

taking into account light shifts ∆P1
and ∆P2

; (b) transforma-
tion of the upper figure (a) when instead of the dependence
SP2

(δ), the product βcalSP2
(δ) is presented (green line), in

which the calibration coefficient βcal [see Eq. (8)] is used.

where we used expressions (4) and (5). If we multiply
the error signal SP2

(δ) by the calibration coefficient βcal,
which is inverse to the ratio (7):

βcal =

(

P1

P2

)α+1

, (8)

then the dependence βcalSP2
(δ) will cross the other error

signal SP1
(δ) at the point A1 [as shown in Fig. 2(b)],

which is located on the vertical axis corresponding to the
unshifted frequency, δ = 0. As a result, if we construct a
combined error signal (PM-CES) as

SCES(δ) = SP1
(δ)− βcalSP2

(δ) , (9)

then the dependence SCES(δ) will cross the horizontal
axis at the point δ = 0, as shown in Fig. 3. Thus, if we
use PM-CES (9) to stabilize the frequency ω, as a result
we get:

SCES(δ) = 0 ⇒ δ = 0 ⇒ ω = ω0 , (10)

which means that the atomic clock light shift and its
variations are suppressed.
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FIG. 3: Illustration showing the absence of a light shift for
the combined error signal SCES(δ) (black solid line), while the
common error signals SP1

(δ) (red dashed line) and SP2
(green

dashed line) experience light shifts.

Note that the above result is independent of whether
P2 > P1 or P2 < P1. Indeed, the clock stability depends
on the signal-to-noise ratio, which in our case is deter-
mined as

| tan εCES|

NCES
=

| tan ε1 − βcal tan ε2|
√

N2
P1

+ β2
calN

2
P2

=
| tan ε1 − (P1/P2)

α+1 tan ε2|
√

N2
P1

+ (P1/P2)2(α+1)N2
P2

, (11)

where tan εCES is the slope of the combined error signal
(9); NP1

and NP2
are noises for P1 and P2, respectively.

It can be easy shown that this ratio does not change with
the permutation P1 → P2 and P2 → P1. In addition, by
maximizing the signal-to-noise ratio (11), we can deter-
mine the optimal power ratio, P2/P1. However, such
an optimization will depend on the type of spectroscopy
(transmission, fluorescence, etc.) as well as on the nature
of the dominating noise (e.g., shot noise, classical noise,
laser noise, etc.), and therefore it should be considered
individually for various experimental conditions.
A potential experimental implementation of PM-CES

is presented in Fig. 4. The power modulator creates an
alternating sequence of two different powers P1 and P2

of the laser. The frequency of power modulation is much
slower than fmod, the modulation frequency used to gen-
erate the error signals SP1,2

(see Fig. 4, lock-in-amplifier).
Note that, for example, an acousto-optical modulator or
a liquid crystal waveplate followed by a polarizer can
be used as the power modulator. Next, before entering
the atomic cell, a beam-splitter is installed, which splits
the laser beam into two. One beam passes through the
atomic cell and forms a spectroscopic signal and error
signals SP1

(δ) and SP2
(δ) using the first photodetector

PD1. In the case of one-photon spectroscopy, this can
be a transmission signal, while in the case of two-photon
spectroscopy, this can be a fluorescence signal. The sec-

FIG. 4: The general scheme of the experimental implemen-
tation of the PM-CES method. INT, integrator; LIA, lock-in
amplifier; PD, photodetector.

ond beam is incident on photodetector PD2 and is used
to calculate the ratio P1/P2, i.e., to determine the cal-
ibration coefficient βcal [see Eq. (8)]. The digital block
“N -box” based on data from the photodetectors PD1 and
PD2 generates the combined error signal SCES(δ) [see
Eq. (9)], which is then used to stabilize the frequency ω
of the local oscillator (LO) by the condition SCES(δ) = 0.
PM-CES is a quite general method suitable for various

types of spectroscopy. For example, for one-photon spec-
troscopy in counterpropagating waves and in the weak
saturation regime of the clock transition, the signal size
is linear in power and we have α = 1. In this case, the
calibration coefficient is:

β
(1-ph)
cal =

(

P1

P2

)2

. (12)

In the case of a fluorescence signal for two-photon spec-
troscopy, where the signal size scales with the power
squared, α = 2, the calibration coefficient is:

β
(2-ph)
cal =

(

P1

P2

)3

. (13)

PM-CES can also be used in CPT clocks as well as for
optical pumping clocks. In general, the success of the
PM-CES method is directly related to how accurately
the basic conditions in Eqs. (4)-(6) are fulfilled in exper-
iments.
In addition, in some cases, to obtain information about

the laser power P , we can also use the first photodetector
PD1. In this case, the presence of a second photodetector
PD2 is optional, which provides some technical simplifi-
cation. Note also that the PM-CES method presented
above can be considered as a PM analog of the Ramsey-
CES method developed in Ref. [21].

IV. AUTO-COMPENSATION OF THE LIGHT
SHIFT (PM-ACS)

In this section, we develop a method to auto-
compensate the light shift (ACS) in spectroscopy us-
ing a power modulation (PM-ACS). Unlike the PM-CES
method developed in the previous section, PM-ACS only
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requires the linearity of the light shift Eq. (4), while the
other two conditions Eqs. (5) and (6) do not matter. In
PM-ACS, we assume the use of an additional frequency
shifter, which for any laser power P allows us to shift the
frequency of the local oscillator ω by the value ξP , where
ξ is a well-controlled and variable parameter. This shift

∆ACS = ξP (14)

plays the role of an artificial anti-shift, which allows us to
completely compensate for the actual light shift ∆P = cP
and its fluctuations. Indeed, taking into account the ac-
tual shift ∆P and the artificial anti-shift ∆ACS, the result
of the frequency stabilization with the use of the error
signal can be represented as a solution of the equation

SP (δ, ξ) = SP (δ +∆ACS −∆P ) = SP (δ + ξP − cP ) = 0
(15)

for an unknown δ. Then, for ξ = c we get δ = 0, i.e.
ω = ω0.
Below we present the implementation of the PM-ACS

method in two different modifications: for stepwise and
harmonic modulations of the laser power.

a) PM-ACS for stepwise modulation of power

We will assume that the atomic clock operates at two
different values of the probe laser field power P1 and P2.
The PM-ACS method consists of the following repeating
cycles. For interrogation with the laser power P1, the pa-
rameter ξ is fixed, and we stabilize the variable detuning
δ (i.e., LO frequency ω) at the zero point of the error sig-
nal: SP1

(δ, ξfixed) = 0. The operation of this servo loop
can be presented as the following recurrent sequence:

δn = δn−1 + rSP1
(δn−1, ξfixed) , (16)

where r is a feedback factor for the frequency loop, and n
is the step index counter for the sequence. After this pro-
cedure, we switch to interrogation with power P2, where
we fix the previously-obtained detuning δ and stabilize
the variable parameter ξ at the zero point of the second
error signal: SP2

(δfixed, ξ) = 0. The operation of this
second servo loop can be presented as another recurrent
sequence:

ξm = ξm−1 + qSP2
(δfixed, ξm−1) , (17)

where q is a feedback factor for ξ-loop, and m the step
index counter for the second servo loop.
If we continue these cycles, then the final result consists

of the stabilization of both parameters, δ = δ̄clock and
ξ = ξ̄, which corresponds to the solution of a system of
two equations:

SP1
(δ, ξ) = SP1

(δ + ξP1 − cP1) = 0 ,

SP2
(δ, ξ) = SP2

(δ + ξP2 − cP2) = 0 , (18)

for two unknowns δ and ξ. The value δ̄clock describes the
frequency shift of the atomic clock. Assuming SP (x) ∝ x

FIG. 5: The general scheme of the experimental implemen-
tation of the CW-ACS method for stepwise modulation of
power. INT, integrator; LIA, lock-in amplifier; PD, photode-
tector.

for x ≈ 0, the Eqs. (18) are equivalent to the system given
by

δ + (ξ − c)P1 = 0 ,

δ + (ξ − c)P2 = 0 , (19)

which has the solution

δ = 0 , ξ = c . (20)

Thus, we have shown that the PM-ACS method always
leads to zero shift of the stabilized frequency ω in an
atomic clock, δ̄clock = 0.
Note that in the general case, the convergence of the

joint iterative procedures (16) and (17) to the values (20)
depends on the initial values δ0 and ξ0 as well as on the
feedback coefficients r and q. For the initial conditions
|δ0| ≪ min{γP1

, γP2
} and |ξ0− c|P1,2 ≪ γP1,2

, the fastest

convergence of iterations (16) and (17) is carried out for
the following feedback coefficients

r = −
[

∂δSP1
(δ, ξ)|δ=0, ξ=c

]

−1
,

q = −
[

∂ξSP2
(δ, ξ)|δ=0, ξ=c

]

−1
, (21)

where ∂δ and ∂ξ denote the differential operators ∂δ =
∂/∂δ and ∂ξ = ∂/∂ξ, respectively; γPj

is the linewidth for

the power Pj (j = 1.2). In practice, the optimal values
δ0, ξ0, r and q are determined experimentally.
Fig. 5 shows a schematic diagram of the implemen-

tation of the PM-ACS method, which has two feedback
loops: a main loop to stabilize the local oscillator detun-
ing δ, and an auxiliary loop to stabilize the scale factor
ξ for the artificial anti-shift ∆ACS. The circuit element
labeled “N-box” in Fig. 5 is a multiplier that implements
the product ξP . In the absence of the auxiliary loop
(ξ = 0), the main loop locks the local oscillator to the
light shifted atomic resonance, ω0 + cP1,2. When the
auxiliary loop is enabled, feedback from the error signal
SP2

(δ, ξ) drives the scale factor ξ to be non-zero, and cor-
respondingly causes the probe frequency ωp = ω+ξP2 to
be locked to the light shifted resonance, ω0 + cP2. This
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condition, when applied to both operating powers, P1

and P2, is equivalent to Eqs. (19)-(20).
Note that the continuous use of two feedback loops (for

P1 and P2) will lead to some decrease of the short-term
stability, because it increases the length of each cycle of
frequency stabilization. This can be remedied in the fol-
lowing way. In the initial period of frequency stabiliza-
tion, we use the two-loop PM-ACS method. This step
allows us to determine the value of the concomitant pa-
rameter ξ̄ with satisfactory accuracy. Then the procedure
of long-term frequency stabilization can be done by only
one feedback loop for the error signal SP1

(δ, ξ̄) using the
previously-determined parameter ξ̄. Moreover, we can
regularly (but rarely) use the two-loop PM-ACS again to
remeasure ξ̄ and correct any long-term drift. On the one
hand, this approach allows for the regular adjustment
of the parameter ξ̄ (to eliminate, for example, an influ-
ence of possible slow variations of the characteristics of
the second photodetector PD2). On the other hand, be-
cause the measurement is intermittent, it will not lead to
significant reduction of the signal-to-noise ratio and cor-
responding degradation of the long-term frequency sta-
bility. The choice of the ratio of P1 to P2 is an additional
control that can be used to optimize the process.
PM-ACS is a general method useful for a variety of

clocks laser spectroscopy, including optical clocks using
one-photon and two-photon spectroscopy and microwave
clocks based on optical pumping or CPT. We stress that
the amount the light shift can be suppressed using the
PM-ACS method is directly related to how accurately
the linearity condition in Eq. (4) is met, although this
method can be adapted, in principle, to the case of an
arbitrary nonlinear dependence of the actual shift ∆P on
the power P . A detailed study of light shifts for various
atomic clocks would therefore be useful in order to deter-
mine the operating modes in which the linearity ∆P ∝ P
is best fulfilled, because this regime is most suitable from
a practical viewpoint (e.g., in the case of commercial pro-
duction of atomic clocks using the PM-ACS method).
We also note that the PM-ACS method can be con-

sidered conceptually as a PM analog of one of the vari-
ants of generalized auto-balanced Ramsey spectroscopy
Ref. [18, 20], in which an additional frequency shift was
used as the concomitant parameter.

b) PM-ACS for low frequency harmonic modulation
of power

Fig. 6 shows a schematic diagram of the implementa-
tion of another version of PM-ACS using low-frequency
harmonic modulation of the laser power:

P (t) = P0 [1 +M sin(νt)] , (22)

where M < 1. In this case, both the actual shift ∆P (t) =
cP (t) and the artificial anti-shift ∆ACS(t) = ξP (t) be-
come time-dependent according to a harmonic law with
a frequency ν. Note that the power modulation frequency

FIG. 6: The general scheme of the experimental implemen-
tation of the PM-ACS method for low-frequency harmonic
modulation of laser power (22). INT, integrator; LIA, lock-in
amplifier; PD, photodetector.

ν is much lower than the frequency fmod of the frequency
deviation used to generate the error signal S(δ), as in
Ref. [31] for a CPT clock. Additionally we require that
the bandwidth of the feedback to the local oscillator be
much lower than the power modulation frequency ν.
The operation of the scheme in Fig. 6 is the following.

The effect of power modulation in Eq. (22) is monitored
as modulation on the error signal S(δ, t) at the frequency
ν. This low-frequency modulation is observed on the
error signal because a change in the total optical power
produces a corresponding change in the atomic resonance
frequency due to both the actual light shift ∆P (t) and
the artificial anti-shift ∆ACS(t):

∆P (t)−∆ACS(t) = (c− ξ)P (t) . (23)

Then, the condition ξ = c at which the power shift con-
tribution in Eq. (23) becomes zero occurs when the ν-
frequency modulation on the error signal vanishes.

V. CONCLUSION

We have described two different methods for suppress-
ing the light shift and its variation in atomic clocks based
on either CW or Ramsey spectroscopy. The first method,
PM-CES, uses only one feedback loop to stabilize the
LO frequency but requires the measurement of a calibra-
tion factor to create a suitable error signal. The second
method (PM-ACS) requires two loops but has fewer re-
strictions on the size of the light sift and nature of the
error signal. These methods are general in that they can
be applied to optical clocks using one-photon and two-
photon spectroscopy, as well as microwave clocks based
on CPT resonances and optical pumping. The implemen-
tation of the PM-CES and PM-ACS techniques can in
principle lead to significant improvement of the accuracy
and long-term stability for high-precision and commercial
atomic clocks.
In addition, although the schemes depicted in Figs. 4

and 5 are more related to the CW spectroscopy, we be-
lieve that the corresponding schemes for Ramsey spec-
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troscopy (in an atomic beam or fountain) will not cause
difficulties.
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