V. Agarwal, G. W. Bell, J. W. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, eLife, vol.4, p.5005, 2015.

D. P. Bartel, MicroRNAs, Cell, vol.116, issue.2, pp.281-297, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00369966

D. P. Bartel, MicroRNAs: Target Recognition and Regulatory Functions, Cell, vol.136, issue.2, pp.215-233, 2009.

D. P. Bartel, Metazoan MicroRNAs, Cell, vol.173, issue.1, pp.20-51, 2018.

Y. Chen and X. Wang, miRDB: an online database for prediction of functional microRNA targets, Nucleic Acids Research, vol.48, issue.D1, pp.D127-D131, 2019.

C. H. Chou, S. Shrestha, C. D. Yang, N. W. Chang, Y. L. Lin et al., miRTarBase update 2018: a resource for experimentally validated microRNAtarget interactions, Nucleic Acids Res, vol.46, issue.D1, pp.296-302, 2018.

D. De-rie, I. Abugessaisa, T. Alam, E. Arner, P. Arner et al., An integrated expression atlas of miRNAs and their promoters in human and mouse, Nature Biotechnology, vol.35, issue.9, pp.872-878, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02106433

S. Djuranovic, A. Nahvi, and R. Green, miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay, Science, vol.336, issue.6078, pp.237-240, 2012.

S. W. Eichhorn, H. Guo, S. E. Mcgeary, R. A. Rodriguez-mias, C. Shin et al., mRNA Destabilization Is the Dominant Effect of Mammalian MicroRNAs by the Time Substantial Repression Ensues, Molecular Cell, vol.56, issue.1, pp.104-115, 2014.

M. R. Fabian and N. Sonenberg, The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC, Nature Structural & Molecular Biology, vol.19, issue.6, pp.586-593, 2012.

G. S. França, M. D. Vibranovski, and P. A. Galante, Host gene constraints and genomic context impact the expression and evolution of human microRNAs, Nature Communications, vol.7, issue.1, 2016.

A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic et al., STRING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Research, vol.41, issue.D1, pp.D808-D815, 2012.

R. C. Friedman, N. H. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Research, vol.19, issue.1, pp.92-105, 2008.

V. A. Gennarino, M. Sardiello, R. Avellino, N. Meola, V. Maselli et al., MicroRNA target prediction by expression analysis of host genes, Genome Research, vol.19, issue.3, pp.481-490, 2008.

H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, vol.466, issue.7308, pp.835-840, 2010.

L. He and G. J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation, Nature Reviews Genetics, vol.5, issue.7, pp.522-531, 2004.

C. He, Z. Li, P. Chen, H. Huang, L. D. Hurst et al., Young intragenic miRNAs are less coexpressed with host genes than old ones: implications of miRNA?host gene coevolution, Nucleic Acids Research, vol.40, issue.9, pp.4002-4012, 2012.

A. Helwak, G. Kudla, T. Dudnakova, and D. Tollervey, Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding, Cell, vol.153, issue.3, pp.654-665, 2013.

V. Huang, R. F. Place, V. Portnoy, J. Wang, Z. Qi et al., Upregulation of Cyclin B1 by miRNA and its implications in cancer, Nucleic Acids Research, vol.40, issue.4, pp.1695-1707, 2011.

M. Khorshid, J. Hausser, M. Zavolan, and E. Van-nimwegen, A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets, Nature Methods, vol.10, issue.3, pp.253-255, 2013.

A. Kozomara and S. Griffiths-jones, miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Research, vol.42, issue.D1, pp.D68-D73, 2013.

D. E. Kuhn, M. M. Martin, D. S. Feldman, A. V. Terry, G. J. Nuovo et al., Experimental validation of miRNA targets, Methods, vol.44, issue.1, pp.47-54, 2008.

P. Lee, . Lim, N. C. Lau, E. G. Weinstein, A. Abdelhakim et al., The microRNAs of Caenorhabditis elegans, Genes Dev, vol.17, pp.991-1008, 2003.

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets, Cell, vol.120, issue.1, pp.15-20, 2005.

J. Y. Liao, L. M. Ma, Y. H. Guo, Y. C. Zhang, H. Zhou et al., Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3? Trailers, PLoS ONE, vol.5, issue.5, p.e10563, 2010.

L. P. Lim, M. E. Glasner, S. Yekta, C. B. Burge, and D. P. Bartel, Vertebrate MicroRNA Genes, Science, vol.299, issue.5612, pp.1540-1540, 2003.

W. Liu and X. Wang, Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data, Genome Biology, vol.20, issue.1, pp.1-10, 2019.

J. Liu, M. A. Carmell, F. V. Rivas, C. G. Marsden, J. M. Thomson et al., Argonaute2 Is the Catalytic Engine of Mammalian RNAi, Science, vol.305, issue.5689, pp.1437-1441, 2004.

S. Majid, A. A. Dar, S. Saini, S. Yamamura, H. Hirata et al., MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer, Cancer, vol.116, issue.24, pp.5637-5649, 2010.

A. M. Monteys, R. M. Spengler, J. Wan, L. Tecedor, K. A. Lennox et al., Structure and activity of putative intronic miRNA promoters, RNA, vol.16, issue.3, pp.495-505, 2010.

Y. Moran, M. Agron, D. Praher, and U. Technau, The evolutionary origin of plant and animal microRNAs, Nature Ecology & Evolution, vol.1, issue.3, 2017.

F. Ozsolak, L. L. Poling, Z. Wang, H. Liu, X. S. Liu et al., Chromatin structure analyses identify miRNA promoters, Genes & Development, vol.22, issue.22, pp.3172-3183, 2008.

R. F. Place, L. C. Li, D. Pookot, E. J. Noonan, and R. Dahiya, MicroRNA-373 induces expression of genes with complementary promoter sequences, Proceedings of the National Academy of Sciences, vol.105, issue.5, pp.1608-1613, 2008.

M. Quévillon-huberdeau and M. J. Simard, A guide to microRNA?mediated gene silencing, The FEBS Journal, vol.286, issue.4, pp.642-652, 2018.

H. Seok, J. Ham, E. S. Jang, and S. W. Chi, MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions, Molecules and Cells, vol.39, issue.5, pp.375-381, 2016.

N. K. Singh, miRNAs target databases: developmental methods and target identification techniques with functional annotations, Cellular and Molecular Life Sciences, vol.74, issue.12, pp.2239-2261, 2017.

N. M. Snead and J. J. Rossi, RNA Interference Trigger Variants: Getting the Most Out of RNA for RNA Interference-Based Therapeutics, Nucleic Acid Therapeutics, vol.22, issue.3, pp.139-146, 2012.

N. M. Snead, X. Wu, A. Li, Q. Cui, K. Sakurai et al., Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants, Nucleic Acids Research, vol.41, issue.12, pp.6209-6221, 2013.

S. A. Stanhope, S. Sengupta, J. Den-boon, P. Ahlquist, and M. A. Newton, Statistical Use of Argonaute Expression and RISC Assembly in microRNA Target Identification, PLoS Computational Biology, vol.5, issue.9, p.e1000516, 2009.

H. Tan, S. Huang, Z. Zhang, X. Qian, P. Sun et al., Pan-cancer analysis on microRNA-associated gene activation, EBioMedicine, vol.43, pp.82-97, 2019.

S. Tarang and M. D. Weston, Macros in microRNA target identification, RNA Biology, vol.11, issue.4, pp.324-333, 2014.

L. Weinmann, J. Höck, T. Ivacevic, T. Ohrt, J. Mütze et al., Importin 8 Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs, Cell, vol.136, issue.3, pp.496-507, 2009.