M. Chen, Y. Chen, W. Hsiao, S. Wu, C. Hu et al., A scribing laser marking system using DSP controller, Optics and Lasers in Engineering, vol.46, issue.5, pp.410-418, 2008.

M. Chen, Y. Chen, W. Hsiao, S. Wu, C. Hu et al., A scribing laser marking system using DSP controller, Optics and Lasers in Engineering, vol.46, issue.5, pp.410-418, 2008.

W. Hsiao, S. Tseng, C. Chung, P. Chen, and M. Chen, Development of portable laser machining system for laser writing applications, Optical Review, vol.20, issue.2, pp.167-172, 2013.

W. Hsiao, S. Tseng, C. Chung, P. Chen, and M. Chen, Development of portable laser machining system for laser writing applications, Optical Review, vol.20, issue.2, pp.167-172, 2013.

J. Ai, M. Lv, M. Jiang, J. Liu, and X. Zeng, Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns, Optics and Lasers in Engineering, vol.107, pp.335-341, 2018.

S. Cui, X. Zhu, W. Wang, and Y. Xie, Calibration of a laser galvanometric scanning system by adapting a camera model, Applied Optics, vol.48, issue.14, p.2632, 2009.

M. Chen and Y. Chen, Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines, International Journal of Machine Tools and Manufacture, vol.47, issue.7-8, pp.1114-1124, 2007.

J. S. Ehrmann, <title>Optics for vector scanning</title>, Proc. SPIE 1454, pp.245-256, 1991.

K. Godineau, S. Lavernhe, and C. Tournier, Calibration of galvanometric scan heads for additive manufacturing with machine assembly defects consideration, Additive Manufacturing, vol.26, pp.250-257, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02011888

Y. Mao, L. Zeng, J. Jiang, and C. Yu, Plane-constraint-based calibration method for a galvanometric laser scanner, Advances in Mechanical Engineering, vol.10, issue.5, p.168781401877367, 2018.

Y. Mao, L. Zeng, J. Jiang, and C. Yu, Plane-constraint-based calibration method for a galvanometric laser scanner, Advances in Mechanical Engineering, vol.10, issue.5, p.168781401877367, 2018.

S. Yang, L. Yang, G. Zhang, T. Wang, and X. Yang, Modeling and Calibration of the Galvanometric Laser Scanning Three-Dimensional Measurement System, Nanomanufacturing and Metrology, vol.1, issue.3, pp.180-192, 2018.

S. Lüdtke, B. Wagner, R. Bruder, P. Stüber, F. Ernst et al., Calibration of Galvanometric Laser Scanners Using Statistical Learning Methods, Informatik aktuell, pp.467-472, 2015.

S. Lüdtke, B. Wagner, R. Bruder, P. Stüber, F. Ernst et al., Calibration of Galvanometric Laser Scanners Using Statistical Learning Methods, Informatik aktuell, pp.467-472, 2015.

J. Tu and L. Zhang, Effective Data-Driven Calibration for a Galvanometric Laser Scanning System Using Binocular Stereo Vision, Sensors, vol.18, issue.2, p.197, 2018.

J. Tu and L. Zhang, Effective Data-Driven Calibration for a Galvanometric Laser Scanning System Using Binocular Stereo Vision, Sensors, vol.18, issue.2, p.197, 2018.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, Correction of the image distortion for laser galvanometric scanning system, Optics & Laser Technology, vol.37, issue.4, pp.305-311, 2005.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, Correction of the image distortion for laser galvanometric scanning system, Optics & Laser Technology, vol.37, issue.4, pp.305-311, 2005.

A. Manakov and H. S. Ivo, A Mathematical Model and Calibration Procedure for Galvanometric Laser Scanning Systems, Vision, Model. Vis, pp.207-214, 2011.

,

P. Brosens, Scanning Accuracy of the oving-Iron Galvanometer Scanner, Optical Engineering, vol.15, issue.2, 1976.

F. Blais, Control Of Low Inertia Galvanometers For High Precision Laser Scanning Systems, Optical Engineering, vol.27, issue.2, p.27, 1988.

V. P. Bessmeltsev, N. V. Goloshevsky, V. V. Kasterov, Y. A. Kipriyanov, and K. K. Smirnov, Method of Calibration of a Laser-Based Galvanometric Scanning System with Submicron Resolution, Optoelectronics, Instrumentation and Data Processing, vol.54, issue.4, pp.390-396, 2018.

V. P. Bessmeltsev, N. V. Goloshevsky, V. V. Kasterov, Y. A. Kipriyanov, and K. K. Smirnov, Method of Calibration of a Laser-Based Galvanometric Scanning System with Submicron Resolution, Optoelectronics, Instrumentation and Data Processing, vol.54, issue.4, pp.390-396, 2018.

J. R. Weisz, Method for calibrating the time response of a mass air flow sensor by laser trimming selected resistors and without an air flow, Flow Measurement and Instrumentation, vol.7, issue.2, p.119, 1996.

Y. Zhang, J. Y. Fuh, D. Ye, and G. S. Hong, In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches, Additive Manufacturing, vol.25, pp.263-274, 2019.

Y. Zhang, J. Y. Fuh, D. Ye, and G. S. Hong, In-situ monitoring of laser-based PBF via off-axis vision and image processing approaches, Additive Manufacturing, vol.25, pp.263-274, 2019.

H. Hsu, Y. Lo, and M. Lee, Vision-based inspection system for cladding height measurement in Direct Energy Deposition (DED), Additive Manufacturing, vol.27, pp.372-378, 2019.

H. Hsu, Y. Lo, and M. Lee, Vision-based inspection system for cladding height measurement in Direct Energy Deposition (DED), Additive Manufacturing, vol.27, pp.372-378, 2019.

L. Dubreuil, Y. Quinsat, and C. Lartigue, Calibration based on part set-up measurement for on-machine inspection using vision, International Journal on Interactive Design and Manufacturing (IJIDeM), vol.9, issue.4, pp.317-323, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194565

L. Dubreuil, Y. Quinsat, and C. Lartigue, Calibration based on part set-up measurement for on-machine inspection using vision, International Journal on Interactive Design and Manufacturing (IJIDeM), vol.9, issue.4, pp.317-323, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194565

G. Tapia and A. Elwany, A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing, Journal of Manufacturing Science and Engineering, vol.136, issue.6, p.60801, 2014.

Z. Y. Chua, I. H. Ahn, and S. K. Moon, Process monitoring and inspection systems in metal additive manufacturing: Status and applications, International Journal of Precision Engineering and Manufacturing-Green Technology, vol.4, issue.2, pp.235-245, 2017.

M. Grasso and B. M. Colosimo, Process defects andin situmonitoring methods in metal powder bed fusion: a review, Measurement Science and Technology, vol.28, issue.4, p.044005, 2017.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Materials & Design, vol.95, pp.431-445, 2016.

L. Scime and J. Beuth, Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm, Additive Manufacturing, vol.19, pp.114-126, 2018.

L. Scime and J. Beuth, A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process, Additive Manufacturing, vol.24, pp.273-286, 2018.

B. Zhang, J. Ziegert, F. Farahi, and A. Davies, In situ surface topography of laser powder bed fusion using fringe projection, Additive Manufacturing, vol.12, pp.100-107, 2016.

B. Zhang, J. Ziegert, F. Farahi, and A. Davies, In situ surface topography of laser powder bed fusion using fringe projection, Additive Manufacturing, vol.12, pp.100-107, 2016.

M. Adams, Take your next step up to meet the spring term, Primary Teacher Update, vol.2015, issue.41, pp.52-53, 2015.

B. Zhang, J. Ziegert, F. Farahi, and A. Davies, In situ surface topography of laser powder bed fusion using fringe projection, Additive Manufacturing, vol.12, pp.100-107, 2016.

B. Zhang, J. Ziegert, F. Farahi, and A. Davies, In situ surface topography of laser powder bed fusion using fringe projection, Additive Manufacturing, vol.12, pp.100-107, 2016.

Y. Zhang, G. S. Hong, D. Ye, K. Zhu, and J. Y. Fuh, Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring, Materials & Design, vol.156, pp.458-469, 2018.

M. A. Ortega-delgado and A. F. Lasagni, Reducing field distortion for galvanometer scanning system using a vision system, Optics and Lasers in Engineering, vol.86, pp.106-114, 2016.

M. A. Ortega-delgado and A. F. Lasagni, Reducing field distortion for galvanometer scanning system using a vision system, Optics and Lasers in Engineering, vol.86, pp.106-114, 2016.

J. Kruth, S. Dadbakhsh, B. Vrancken, K. Kempen, J. Vleugels et al., Additive Manufacturing of Metals via Selective Laser Melting: Process Aspects and Material Developments, Additive Manufacturing, pp.69-99, 2015.

J. Kruth, S. Dadbakhsh, B. Vrancken, K. Kempen, J. Vleugels et al., Additive Manufacturing of Metals via Selective Laser Melting: Process Aspects and Material Developments, Additive Manufacturing, pp.69-99, 2015.

Y. Quinsat, L. Dubreuil, and C. Lartigue, A novel approach for in-situ detection of machining defects, The International Journal of Advanced Manufacturing Technology, vol.90, issue.5-8, pp.1625-1638, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01374754

J. Heikkila and O. Silven, A four-step camera calibration procedure with implicit image correction, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1106-1112

Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.11, pp.1330-1334, 2000.

R. Usamentiaga, D. F. Garcia, C. Ibarra-castanedo, and X. Maldague, Highly accurate geometric calibration for infrared cameras using inexpensive calibration targets, Measurement, vol.112, pp.105-116, 2017.

Y. Wang, B. Cai, K. Wang, and X. Chen, Out-of-focus color camera calibration with one normal-sized color-coded pattern, Optics and Lasers in Engineering, vol.98, pp.17-22, 2017.

Y. Wang, B. Cai, K. Wang, and X. Chen, Out-of-focus color camera calibration with one normal-sized color-coded pattern, Optics and Lasers in Engineering, vol.98, pp.17-22, 2017.

Q. Sun, Y. Hou, and Q. Tan, A new method of camera calibration based on the segmentation model, Optik (Stuttg), vol.124, pp.6991-6995, 2013.

L. Yu, Y. Han, H. Nie, Q. Ou, and B. Xiong, A calibration method based on virtual large planar target for cameras with large FOV, Optics and Lasers in Engineering, vol.101, pp.67-77, 2018.

L. Yu, Y. Han, H. Nie, Q. Ou, and B. Xiong, A calibration method based on virtual large planar target for cameras with large FOV, Optics and Lasers in Engineering, vol.101, pp.67-77, 2018.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2004.

A. Vyas, M. B. Roopashree, and B. R. Prasad, Centroid Detection by Gaussian Pattern Matching in Adaptive Optics, Int. J. Comput. Appl, vol.1, pp.32-37, 2010.

J. Zhang, Research on the measurement accuracy of different laser spot center location, Third Int. Conf. Photonics Opt. Eng., SPIE, p.38, 2019.

C. Tang, C. Hou, and Z. Song, Defocus map estimation from a single image via spectrum contrast, Opt. Lett, vol.38, p.1706, 2013.

P. Zhou, X. Wang, Q. Huang, and C. Ma, Laser Spot Center Detection Based on Improved Circled Fitting Algorithm, 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC), 2018.

. Autom, Control Conf. IMCEC 2018, pp.316-319, 2018.

P. Zhou, X. Wang, Q. Huang, and C. Ma, Laser Spot Center Detection Based on Improved Circled Fitting Algorithm, 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC), 2018.

S. M. Thomas and Y. T. Chan, A simple approach for the estimation of circular arc center and its radius, Comput. Vision, Graph. Image Process, vol.45, pp.362-370, 1989.

, , pp.90088-90089

F. Qian and X. Zhang, Precision improved spot centroid-locating algorithm based on profile regularization, Proceedings of the 2016 4th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2016), p.4, 2016.

F. Qian and X. Zhang, Precision improved spot centroid-locating algorithm based on profile regularization, Proceedings of the 2016 4th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2016), pp.849-856, 2016.

H. Dong and L. Wang, Non-iterative spot center location algorithm based on Gaussian for fish-eye imaging laser warning system, Optik, vol.123, issue.23, pp.2148-2153, 2012.

,

B. Hou, Charge-coupled devices combined with centroid algorithm for laser beam deviation measurements compared to a position-sensitive device, Opt. Eng, vol.50, 2011.

Z. Liu, B. K. Huang, Y. N. Shang, and G. J. Zhang, A high precision laser spot center location method based on multi-scale image analysis, Adv. Intell. Soft Comput. 133 AISC, pp.1019-1025, 2012.

A. Vázquez-otero, D. Khikhlukha, J. Solano-altamirano, R. Dormido, and N. Duro, Laser Spot Detection Based on Reaction Diffusion, Sensors, vol.16, p.315, 2016.

,

R. Singh, J. M. Hattuniemi, and A. J. Mäkynen, Analysis of accuracy of laser spot centroid estimation, Adv. Laser Technol, vol.7022, p.702216, 2007.

,

S. Thomas, Optimized centroid computing in a Shack-Hartmann sensor, Adv. Adapt. Opt, p.1238, 2004.

A. Stratan, A. Zorila, L. Rusen, and G. Nemes, Measuring effective area of spots from pulsed laser beams, Opt. Eng, vol.53, p.122513, 2014.

F. M. Dickey and T. E. Lizotte, Laser Beam Shaping Applications, 2017.

N. C. Du-preez, A. Forbes, and L. R. Botha, High power infrared super-Gaussian beams: generation, propagation, and application, XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, p.71311, 2008.

I. H. Malitson, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am, vol.55, pp.1205-1208, 1965.

C. Z. Tan, Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids, vol.223, pp.158-163, 1998.