I. Abreu, Á. Saéz, R. Castro-rodríguez, V. Escudero, B. Rodríguez-haas et al., Medicago truncatulaZinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells, Plant, Cell & Environment, vol.40, issue.11, pp.2706-2719, 2017.

S. Andaluz, J. Rodríguez-celma, A. Abadía, J. Abadía, and A. López-millán, Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency, Plant Physiology and Biochemistry, vol.47, issue.11-12, pp.1082-1088, 2009.

C. A. Appleby, Leghemoglobin and Rhizobium Respiration, Annual Review of Plant Physiology, vol.35, issue.1, pp.443-478, 1984.

U. Avenhaus, R. A. Cabeza, R. Liese, A. Lingner, K. Dittert et al., Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration, Frontiers in Plant Science, vol.6, p.1012, 2016.

A. Boisson-dernier, M. Chabaud, F. Garcia, G. Bécard, C. Rosenberg et al., Agrobacterium rhizogenes-Transformed Roots of Medicago truncatula for the Study of Nitrogen-Fixing and Endomycorrhizal Symbiotic Associations, Molecular Plant-Microbe Interactions®, vol.14, issue.6, pp.695-700, 2001.

E. S. Boyd and J. W. Peters, New insights into the evolutionary history of biological nitrogen fixation, Frontiers in Microbiology, vol.4, 2013.

E. M. Brear, D. A. Day, and P. M. Smith, Iron: an essential micronutrient for the legume-rhizobium symbiosis, Frontiers in Plant Science, vol.4, p.359, 2013.

N. J. Brewin, Development of the Legume Root Nodule, Annual Review of Cell Biology, vol.7, issue.1, pp.191-226, 1991.

B. Brito, J. M. Palacios, E. Hidalgo, J. Imperial, and T. Ruiz-argüeso, Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits., Journal of Bacteriology, vol.176, issue.17, pp.5297-5303, 1994.

B. K. Burgess and D. J. Lowe, Mechanism of Molybdenum Nitrogenase, Chemical Reviews, vol.96, issue.7, pp.2983-3012, 1996.

D. Burk, Azotase and nitrogenase in Azotobacter, vol.3, pp.23-56, 1934.

J. W. Burton, C. Harlow, and E. C. Theil, Evidence for reutilization of nodule iron in soybean seed development, Journal of Plant Nutrition, vol.21, issue.5, pp.913-927, 1998.

C. M. Catalano, K. J. Czymmek, J. G. Gann, and D. J. Sherrier, Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules, Planta, vol.225, issue.3, pp.541-550, 2006.

H. Cheng and G. C. Walker, Succinoglycan Is Required for Initiation and Elongation of Infection Threads during Nodulation of Alfalfa byRhizobium meliloti, Journal of Bacteriology, vol.180, issue.19, pp.5183-5191, 1998.

X. Cheng, M. Wang, H. Lee, M. Tadege, P. Ratet et al., An efficient reverse genetics platform in the model legumeMedicago truncatula, New Phytologist, vol.201, issue.3, pp.1065-1076, 2013.

M. Cotte, E. Pouyet, M. Salomé, C. Rivard, W. De-nolf et al., The ID21 X-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials, Journal of Analytical Atomic Spectrometry, vol.32, issue.3, pp.477-493, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01935489

C. Curie and S. Mari, New routes for plant iron mining, New Phytologist, vol.214, issue.2, pp.521-525, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416822

D. A. Dalton, S. L. Joyner, M. Becana, I. Iturbe-ormaetxe, and J. M. Chatfield, Antioxidant Defenses in the Peripheral Cell Layers of Legume Root Nodules, Plant Physiology, vol.116, issue.1, pp.37-43, 1998.

J. Dem?ar, B. Zupan, G. Leban, and T. Curk, Orange: From Experimental Machine Learning to Interactive Data Mining, Lecture Notes in Computer Science, vol.14, pp.537-539, 2004.

J. A. Downie, Legume nodulation, Current Biology, vol.24, issue.5, pp.R184-R190, 2014.

T. P. Durrett, W. Gassmann, and E. E. Rogers, The FRD3-Mediated Efflux of Citrate into the Root Vasculature Is Necessary for Efficient Iron Translocation, Plant Physiology, vol.144, issue.1, pp.197-205, 2007.

V. Escudero, I. Abreu, E. Del-sastre, M. Tejada-jiménez, C. Larue et al., Nicotianamine synthase 2 is required for symbiotic nitrogen fixation in Medicago truncatula nodules, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02997879

V. Escudero, I. Abreu, M. Tejada-jiménez, E. Rosa-núñez, J. Quintana et al., Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02997924

G. Fahraeus, The Infection of Clover Root Hairs by Nodule Bacteria Studied by a Simple Glass Slide Technique, Microbiology, vol.16, issue.2, pp.374-381, 1957.

L. A. Finney and T. V. Halloran, Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors, Science, vol.300, issue.5621, pp.931-936, 2003.

P. Flis, L. Ouerdane, L. Grillet, C. Curie, S. Mari et al., Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high?resolution molecular mass spectrometric detection, New Phytologist, vol.211, issue.3, pp.1129-1141, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01354671

D. J. Gage, Analysis of Infection Thread Development Using Gfp- and DsRed-Expressing Sinorhizobium meliloti, Journal of Bacteriology, vol.184, issue.24, pp.7042-7046, 2002.

P. Gil-díez, M. Tejada-jiménez, J. León-mediavilla, J. Wen, K. S. Mysore et al., MtMOT1.2 is responsible for molybdate supply toMedicago truncatulanodules, Plant, Cell & Environment, vol.42, issue.1, pp.310-320, 2018.

M. González-guerrero, D. Raimunda, X. Cheng, and J. M. Argüello, Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa, Molecular Microbiology, vol.78, issue.5, pp.1246-1258, 2010.

M. González-guerrero, A. Matthiadis, Á. Sáez, and T. A. Long, Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation, Frontiers in Plant Science, vol.5, p.45, 2014.

M. González-guerrero, V. Escudero, Á. Saéz, and M. Tejada-jiménez, Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia, Frontiers in Plant Science, vol.7, p.1088, 2016.

T. Hakoyama, H. Watanabe, J. Tomita, A. Yamamoto, S. Sato et al., Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus, Planta, vol.230, issue.2, pp.309-317, 2009.

T. Hakoyama, K. Niimi, T. Yamamoto, S. Isobe, S. Sato et al., The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules, Plant and Cell Physiology, vol.53, issue.1, pp.225-236, 2011.

R. W. Hardy, R. D. Holsten, E. K. Jackson, and R. C. Burns, The Acetylene-Ethylene Assay for N2 Fixation: Laboratory and Field Evaluation, Plant Physiology, vol.43, issue.8, pp.1185-1207, 1968.

M. J. Haydon, M. Kawachi, M. Wirtz, S. Hillmer, R. Hell et al., Vacuolar Nicotianamine Has Critical and Distinct Roles under Iron Deficiency and for Zinc Sequestration in Arabidopsis, The Plant Cell, vol.24, issue.2, pp.724-737, 2012.

K. Higuchi, K. Suzuki, H. Nakanishi, H. Yamaguchi, N. Nishizawa et al., Cloning of Nicotianamine Synthase Genes, Novel Genes Involved in the Biosynthesis of Phytosiderophores, Plant Physiology, vol.119, issue.2, pp.471-480, 1999.

B. M. Hoffman, D. Lukoyanov, Z. Yang, D. R. Dean, and L. C. Seefeldt, Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage, Chemical Reviews, vol.114, issue.8, pp.4041-4062, 2014.

H. Inoue, K. Higuchi, M. Takahashi, H. Nakanishi, S. Mori et al., Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, The Plant Journal, vol.36, issue.3, pp.366-381, 2003.

W. P. Inskeep and P. R. Bloom, Extinction Coefficients of Chlorophyll a and b in N,N-Dimethylformamide and 80% Acetone, Plant Physiology, vol.77, issue.2, pp.483-485, 1985.

A. Jain, G. T. Wilson, and E. L. Connolly, The diverse roles of FRO family metalloreductases in iron and copper homeostasis, Frontiers in Plant Science, vol.5, p.100, 2014.

S. E. Johnson and C. L. Mohler, Crop rotation on organic farms: A planning manual, 2009.

M. Klatte, M. Schuler, M. Wirtz, C. Fink-straube, R. Hell et al., The Analysis of Arabidopsis Nicotianamine Synthase Mutants Reveals Functions for Nicotianamine in Seed Iron Loading and Iron Deficiency Responses, Plant Physiology, vol.150, issue.1, pp.257-271, 2009.

T. Kobayashi and N. K. Nishizawa, Iron Uptake, Translocation, and Regulation in Higher Plants, Annual Review of Plant Biology, vol.63, issue.1, pp.131-152, 2012.

E. Kondorosi, P. Mergaert, and A. Kereszt, A Paradigm for Endosymbiotic Life: Cell Differentiation ofRhizobiumBacteria Provoked by Host Plant Factors, Annual Review of Microbiology, vol.67, issue.1, pp.611-628, 2013.

I. S. Kryvoruchko, P. Routray, S. Sinharoy, I. Torres-jerez, M. Tejada-jiménez et al., An Iron-Activated Citrate Transporter, MtMATE67, Is Required for Symbiotic Nitrogen Fixation, Plant Physiology, vol.176, issue.3, pp.2315-2329, 2017.

R. K. Kumar, H. Chu, C. Abundis, K. Vasques, D. C. Rodriguez et al., Iron-Nicotianamine Transporters Are Required for Proper Long Distance Iron Signaling, Plant Physiology, vol.175, issue.3, pp.1254-1268, 2017.

C. Larue, H. Castillo-michel, S. Sobanska, L. Cécillon, S. Bureau et al., Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation, Journal of Hazardous Materials, vol.264, pp.98-106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01974700

J. León-mediavilla, M. Senovilla, J. Montiel, P. Gil-díez, Á. Saez et al., MtMTP2-Facilitated Zinc Transport Into Intracellular Compartments Is Essential for Nodule Development in Medicago truncatula, Frontiers in Plant Science, vol.9, p.990, 2018.

K. Levier, D. A. Day, and M. L. Guerinot, Iron Uptake by Symbiosomes from Soybean Root Nodules, Plant Physiology, vol.111, issue.3, pp.893-900, 1996.

J. Montiel, M. Arthikala, L. Cárdenas, and C. Quinto, Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation, International Journal of Molecular Sciences, vol.17, issue.5, p.680, 2016.

S. Moreau, J. Meyer, and A. Puppo, Uptake of iron by symbiosomes and bacteroids from soybean nodules, FEBS Letters, vol.361, issue.2-3, pp.225-228, 1995.

F. Mus, M. B. Crook, K. Garcia, A. Garcia-costas, B. A. Geddes et al., Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes, Applied and Environmental Microbiology, vol.82, issue.13, pp.3698-3710, 2016.

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai et al., Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, Journal of Bioscience and Bioengineering, vol.104, issue.1, pp.34-41, 2007.

G. W. O'hara, Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review, Australian Journal of Experimental Agriculture, vol.41, issue.3, p.417, 2001.

G. E. Oldroyd, Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants, Nature Reviews Microbiology, vol.11, issue.4, pp.252-263, 2013.

O. Preisig, R. Zufferey, L. Thöny-meyer, C. A. Appleby, and H. Hennecke, A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum., Journal of bacteriology, vol.178, issue.6, pp.1532-1538, 1996.

B. Ravel and M. Newville, ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT, Journal of Synchrotron Radiation, vol.12, issue.4, pp.537-541, 2005.

R. Rellán-Álvarez, J. Abadía, and A. Álvarez-fernández, Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry, vol.22, issue.10, pp.1553-1562, 2008.

R. Rellán-Álvarez, J. Giner-martínez-sierra, J. Orduna, I. Orera, J. Á. Rodríguez-castrillón et al., Identification of a Tri-Iron(III), Tri-Citrate Complex in the Xylem Sap of Iron-Deficient Tomato Resupplied with Iron: New Insights into Plant Iron Long-Distance Transport, Plant and Cell Physiology, vol.51, issue.1, pp.91-102, 2009.

B. Rodríguez-haas, L. Finney, S. Vogt, P. González-melendi, J. Imperial et al., Iron distribution through the developmental stages of Medicago truncatula nodules, Metallomics, vol.5, issue.9, p.1247, 2013.

H. Roschzttardtz, M. Séguéla-arnaud, J. Briat, G. Vert, and C. Curie, The FRD3 Citrate Effluxer Promotes Iron Nutrition between Symplastically Disconnected Tissues throughout Arabidopsis Development, The Plant Cell, vol.23, issue.7, pp.2725-2737, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00623171

L. E. Roth and G. Stacey, Bacterium release into host cells of nitrogenfixing soybean nodules: the symbiosome membrane comes from three sources, Eur. J. Cell Biol, vol.49, pp.13-23, 1989.

B. Roux, N. Rodde, M. Jardinaud, T. Timmers, L. Sauviac et al., An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing, The Plant Journal, vol.77, issue.6, pp.817-837, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639318

L. M. Rubio and P. W. Ludden, Maturation of nitrogenase: a biochemical puzzle, J. Bacteriol, vol.187, pp.405-414, 2005.

M. C. Rubio, M. Becana, S. Sato, E. K. James, S. Tabata et al., Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus, Mol. Plant Microbe Interact, vol.20, pp.262-275, 2007.

R. Santos, D. Herouart, A. Puppo, and D. Touati, Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis, Molecular Microbiology, vol.38, issue.4, pp.750-759, 2000.

S. Schneider, A. Schintlmeister, M. Becana, M. Wagner, D. Woebken et al., Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis, Plant Cell Environ, vol.42, pp.1180-1189, 2019.

M. Schuler, R. Rellán-Álvarez, C. Fink-straube, J. Abadía, and P. Bauer, Nicotianamine Functions in the Phloem-Based Transport of Iron to Sink Organs, in Pollen Development and Pollen Tube Growth in Arabidopsis, The Plant Cell, vol.24, issue.6, pp.2380-2400, 2012.

M. Senovilla, R. Castro-rodríguez, I. Abreu, V. Escudero, I. Kryvoruchko et al., Medicago truncatulacopper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation, New Phytologist, vol.218, issue.2, pp.696-709, 2018.

P. W. Singleton and C. Van-kessel, Effect of Localized Nitrogen Availability to Soybean Half-Root Systems on Photosynthate Partitioning to Roots and Nodules, Plant Physiology, vol.83, issue.3, pp.552-556, 1987.

V. Smil, Nitrogen in crop production: An account of global flows, Global Biogeochemical Cycles, vol.13, issue.2, pp.647-662, 1999.

V. A. Solé, E. Papillon, M. Cotte, P. H. Walter, and J. A. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1, pp.63-68, 2007.

J. G. Streeter, Carbohydrate, Organic Acid, and Amino Acid Composition of Bacteroids and Cytosol from Soybean Nodules, Plant Physiology, vol.85, issue.3, pp.768-773, 1987.

L. Sun, U. S. Gill, R. S. Nandety, S. Kwon, P. Mehta et al., Genome?wide analysis of flanking sequences reveals that Tnt1 insertion is positively correlated with gene methylation in Medicago truncatula, The Plant Journal, 2019.

, Genome-wide analyses of flanking sequences reveals that Tnt1 insertion is positively correlated with gene methylation in Medicago truncatula, Plant J, vol.98, pp.1016-1119

K. Takanashi, K. Yokosho, K. Saeki, A. Sugiyama, S. Sato et al., LjMATE1: A Citrate Transporter Responsible for Iron Supply to the Nodule Infection Zone of Lotus japonicus, Plant and Cell Physiology, vol.54, issue.4, pp.585-594, 2013.

C. Tang, A. D. Robson, and M. J. Dilworth, Which stage of nodule initiation in Lupinus angustifolius L. is sensitive to iron deficiency?, New Phytologist, vol.117, issue.2, pp.243-250, 1991.

M. Tejada-jiménez, R. Castro-rodríguez, I. Kryvoruchko, M. M. Lucas, M. Udvardi et al., Medicago truncatula Natural Resistance-Associated Macrophage Protein1 Is Required for Iron Uptake by Rhizobia-Infected Nodule Cells, Plant Physiology, vol.168, issue.1, pp.258-272, 2015.

M. Tejada-jiménez, P. Gil-díez, J. León-mediavilla, J. Wen, K. S. Mysore et al., Medicago truncatulaMolybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency, New Phytologist, vol.216, issue.4, pp.1223-1235, 2017.

R. E. Terry, K. U. Soerensen, D. Von-jolley, and J. C. Brown, The role of active Bradyrhizobium japonicum in iron stress response of soybeans, Plant and Soil, vol.130, issue.1-2, pp.225-230, 1991.

M. Udvardi and P. S. Poole, Transport and Metabolism in Legume-Rhizobia Symbioses, Annual Review of Plant Biology, vol.64, issue.1, pp.781-805, 2013.

A. J. Valentine, A. Kleinert, and V. A. Benedito, Adaptive strategies for nitrogen metabolism in phosphate deficient legume nodules, Plant Science, vol.256, pp.46-52, 2017.

J. Vasse, F. De-billy, S. Camut, and G. Truchet, Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules., Journal of Bacteriology, vol.172, issue.8, pp.4295-4306, 1990.

V. Vernoud, E. Journet, and D. G. Barker, MtENOD20, a Nod Factor-Inducible Molecular Marker for Root Cortical Cell Activation, Molecular Plant-Microbe Interactions®, vol.12, issue.7, pp.604-614, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02694254

N. Von-wirén, S. Klair, S. Bansal, J. Briat, H. Khodr et al., Nicotianamine Chelates Both FeIII and FeII. Implications for Metal Transport in Plants, Plant Physiology, vol.119, issue.3, pp.1107-1114, 1999.

B. M. Waters, H. Chu, R. J. Didonato, L. A. Roberts, R. B. Eisley et al., Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds, Plant Physiology, vol.141, issue.4, pp.1446-1458, 2006.

T. T. Xiao, S. Schilderink, S. Moling, E. E. Deinum, E. Kondorosi et al., Fate map of Medicago truncatula root nodules, Development, vol.141, issue.18, pp.3517-3528, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02636064