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Abstract. Accurate knowledge of snow depth distributions
in mountain catchments is critical for applications in hy-
drology and ecology. Recently, a method was proposed to
map snow depth at meter-scale resolution from very-high-
resolution stereo satellite imagery (e.g., Pléiades) with an ac-
curacy close to 0.5 m. However, the validation was limited to
probe measurements and unmanned aircraft vehicle (UAV)
photogrammetry, which sampled a limited fraction of the to-
pographic and snow depth variability. We improve upon this
evaluation using accurate maps of the snow depth derived
from Airborne Snow Observatory laser-scanning measure-
ments in the Tuolumne river basin, USA. We find a good
agreement between both datasets over a snow-covered area
of 138 km2 on a 3 m grid, with a positive bias for a Pléiades
snow depth of 0.08 m, a root mean square error of 0.80 m and
a normalized median absolute deviation (NMAD) of 0.69 m.
Satellite data capture the relationship between snow depth
and elevation at the catchment scale and also small-scale
features like snow drifts and avalanche deposits at a typi-
cal scale of tens of meters. The random error at the pixel
level is lower in snow-free areas than in snow-covered areas,
but it is reduced by a factor of 2 (NMAD of approximately
0.40 m for snow depth) when averaged to a 36 m grid. We

conclude that satellite photogrammetry stands out as a con-
venient method to estimate the spatial distribution of snow
depth in high mountain catchments.

1 Introduction

The snow depth or height of the snowpack (symbol: HS;
Fierz et al., 2009) is a key variable for both water resource
management and avalanche forecasting in mountain regions.
However, determination of the spatial distribution of HS in
complex terrain remains challenging due to its high spatial
variability at horizontal scales below 100 m (Deems et al.,
2006; Fassnacht and Deems, 2006). Current approaches to
map HS are based on either sparse in situ measurements
(Lopez-Moreno et al., 2011; Sturm et al., 2018), area-limited
unmanned aircraft vehicle (UAV) campaigns (Bühler et al.,
2016; De Michele et al., 2016; Harder et al., 2016; Redpath
et al., 2018), terrestrial laser-scanning (Prokop et al., 2008;
Fey et al., 2019) or costly airborne campaigns (Bühler et al.,
2015; Dozier et al., 2016; Painter et al., 2016).

Recently a method was introduced to retrieve HS maps
from satellite data at meter-scale resolution, typically 1 to
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4 m (Marti et al., 2016; McGrath et al., 2019; Shaw et al.,
2019). The method is based on the differencing of snow-on
(winter) and snow-off (in general end of summer) digital el-
evation models (DEMs) that are generated from very-high-
resolution satellite stereo imagery (e.g., Pléiades; Digital-
Globe/Maxar WorldView-1, WorldView-2 and WorldView-
3; and GeoEye-1). The method was first tested using two
Pléiades stereo triplets over the Bassiès catchment in the
Pyrenees (Marti et al., 2016). The snow-on and snow-off
DEMs were generated using the Ames Stereo Pipeline (ASP;
Shean et al., 2016; Beyer et al., 2018) and coregistered be-
fore differencing (Berthier et al., 2007). The accuracy of
the method was evaluated using 451 probe measurements
of snow depth. The HS satellite-derived map was also com-
pared to one obtained from a UAV photogrammetric survey
over a small portion of the catchment (3.1 km2). The results
showed that snow depth could be retrieved from Pléiades im-
ages with an accuracy of roughly ∼ 0.5 m (standard devia-
tion of residuals of 0.58 m for a pixel size of 2 m), suggesting
that the method had the potential to become a viable alter-
native to airborne campaigns in mountain catchments with
the benefits of a space-based platform: access to any point
on the globe and lower cost for the end user. HS maps from
stereo satellite images were evaluated in two recent studies
besides Marti et al. (2016) against terrestrial laser-scanning
data over a small area (< 1 km2; Shaw et al., 2019) and
against ground-penetrating radar measurements, which were
limited to roughly 50 km2 of relatively flat terrain (McGrath
et al., 2019).

However, these works provided only a partial validation of
the method since the reference data did not homogeneously
sample the topographic and HS variability of the study area.
For example, in Marti et al. (2016), accumulation due to
snow drifts on the lee side of high-elevation ridges was not
surveyed for safety reasons. The sampling depth was also
limited to 3.2 m, which was the length of the snow probes.
Furthermore, the areas with steep slopes were undersampled.
Half of the points sampled in the field were on slopes lower
than 10◦, while the median terrain slope in this catchment
is ∼ 30◦. This lack of validation data in steep slope areas
was an important limitation of this study since DEMs from
stereoscopic images are known to be less accurate on steep
slopes due to a higher sensitivity to horizontal error and to
local image distortion (Lacroix, 2016; Shean et al., 2016). In
addition, snow probe measurements may fail to represent the
mean HS at a scale of a 2 m pixel, especially in mountain ter-
rain (Fassnacht et al., 2018). Furthermore, the impact of the
photogrammetric software configuration on the accuracy of
the HS map has never been evaluated. The semiglobal match-
ing algorithm (Hirschmüller, 2005) was, for instance, added
to the catalog of algorithms that can be used to derive the
disparity map from stereo images in the ASP and has never
been used with satellite images to derive HS. This algorithm
is expected to perform better in low-texture terrain (Bühler et
al., 2015; Shean et al., 2016; Harder et al., 2016; Beyer et al.,

2018) and therefore has the potential to reduce the number of
missing values in the snow depth map.

Given the aforementioned limitations, we present a more
comprehensive validation study by taking advantage of the
NASA Airborne Snow Observatory (ASO) campaigns in the
Sierra Nevada, USA. In this area ASO routinely acquires HS
measurements by airborne laser scanning (ALS). We used
two Pléiades stereo triplets over the Tuolumne river basin
(snow-on and snow-off). The snow-on triplet was acquired
on 1 May 2017, the day before the ASO flight, close to the
accumulation peak. The ASO product was used as a refer-
ence as it should exhibit no bias and was found to have an
accuracy roughly an order of magnitude better than Pléiades
HS maps (Painter et al., 2016). We use it to test the impact
of the DEM processing options, the stereo image acquisition
geometry and the HS map resolution on the accuracy of HS.
In addition we are able to evaluate an error model (Rolstad
et al., 2009), which would enable us to calculate the error of
Pléiades HS maps in other study areas where no reference
datasets are available.

2 Study site

The study site is located in the Tuolumne river basin in the
Sierra Nevada mountain range, California, USA (Fig. 1). The
Tuolumne river supplies water to the agricultural plain of the
Great Valley and the densely populated area of San Fran-
cisco. The region recently experienced a 5-year drought from
2012 to 2016 (Roche et al., 2019), increasing the interest for
water resource monitoring. The ASO flights cover 1100 km2

in the basin, while this study focuses on a 280 km2 subzone,
which was selected to cover a large elevation range. The ele-
vation within this subzone ranges from 1800 to 3500 m a.s.l.
Typical winter accumulation can reach several meters at
high elevations (Painter et al., 2016). The 2016–2017 win-
ter was characterized by near-record snow accumulation that
has been referred to as the “snowpocalypse” (Painter et al.,
2017).

3 Data

3.1 Pléiades images

The study area is too large to be imaged by Pléiades in tri-
stereo mode with a single scene; therefore the area was im-
aged in two strips, which overlapped by 3 km in winter and
1.5 km in summer in the along-track direction. The snow-
on triplets were both acquired on 1 May 2017, while the
snow-off triplets were acquired on 8 and 13 August 2017
(Fig. 1, Table 1, image ID in Table S1). The imaged area
covers 280 km2 in total. Images were acquired in panchro-
matic and multispectral mode, with incidence angles along-
track between −7 and 9◦. The base to height (B /H) ratio of
successive pairs is around 0.1 (Table 1). The panchromatic
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Figure 1. The Tuolumne basin is located in California, USA (a).
Pléiades image footprint (red polygon) in the Tuolumne basin (blue
line) (b). The terrain elevation in the background is the snow-off
digital elevation terrain from ASO used in the coregistration step.

images have a resolution of 0.5 m at nadir and are used to cal-
culate the DEMs. For the snow-on acquisition, we requested
to reduce the number of time domain integration (TDI) lines
used to image the scene. This is recommended to curb im-
age saturation over sun-exposed snow surfaces (Berthier et
al., 2014). As a result, there are no saturated pixels in the
images of this study. Pléiades multispectral images have a
resolution of 2 m. We only use the multispectral image that
was acquired closest to the nadir view angle to compute the
multispectral orthoimage. Pléiades images were obtained at
no cost through the DINAMIS program (only for French
scientists; see https://dinamis.teledetection.fr/, last access:
1 May 2020). It is also open to European scientists work-
ing at public research institutions. Otherwise Pléiades images
can be ordered from Airbus Defense and Space.

3.2 ALS data from the Airborne Snow Observatory
(ASO)

A snow-off DEM on 13 October 2015 and a snow depth
map on 2 May 2017 from the ASO are used for comparison
with the Pléiades products (Fig. 1, Table 1). The ASO pro-
gram, operating since 2012, provides snow depth, snow wa-
ter equivalent (SWE) and snow albedo maps over full moun-
tain watersheds to support scientific campaigns and opera-
tional water management (Painter et al., 2016). The ASO
laser-scanning system measures the distance between the tar-
get and aircraft and is combined with aircraft position and
orientation measurements to generate a collection of reflec-
tion points: a “point cloud”. Ground points are aggregated
to a 3 m grid to derive a gridded DEM (Painter et al., 2015).
Snow depth maps are obtained from the difference of a snow-
on and snow-off DEM in unforested areas. The values in the
snow-free areas are used to bias-correct the snow-on eleva-
tions and are set to zero. From comparison with 80 in situ

Figure 2. Workflow for the processing of the panchromatic and
multispectral Pléiades images. Intermediate products are in the
boxes, while the processing steps are in italics between the boxes.
Text in bold italic characters indicates steps for which we tested
different options.

manual measurements, no bias is observed on the HS maps,
and the root mean square error (RMSE) per pixel at a 3 m
resolution is 0.08 m (Painter et al., 2016). For the evaluation
of the Pléiades HS maps, we excluded 25 km2 near the catch-
ment divide in the northeast part of the study area because we
observed artifacts in the ASO HS map probably due to issues
with the aircraft position and orientation data.

4 Methods

4.1 Workflow for calculation of Pléiades snow depth
maps

Figure 2 presents the workflow we developed to produce
HS maps from Pléiades images using the ASP version 2.6.2
(Shean et al., 2016; Beyer et al., 2018) and the Orfeo Tool-
Box (Grizonnet et al., 2017). We detail below the calculation
of the DEMs, the HS maps and the land cover classifications.
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Table 1. Summary of the data used in this study. The base-to-height ratio (B /H) between the front–nadir (F–N), nadir–back (N–B) and
front–back (F–B) pair of images is given for the stereo images.

Type Source Zone Date Horizontal
resolution

B /H (F–N|N–B|F–B) Snow-on/snow-off

Digital terrain
model

Airborne laser
scanning (ASO)

North + south 13 October
2015

3.0 m – Off

Snow depth
map

Airborne laser
scanning (ASO)

North+south
(minus 25 km2)

2 May 2017 3.0 m – On

Tri-stereo
images

Satellite optical im-
ages (Pléiades)

South 1 May 2017 PAN:
0.5 m
MS: 2.0 m

0.12|0.12|0.23 On

Tri-stereo
images

Satellite optical im-
ages (Pléiades)

North 1 May 2017 PAN:
0.5 m
MS: 2.0 m

0.12|0.12|0.23 On

Tri-stereo
images

Satellite optical im-
ages (Pléiades)

South 8 August
2017

PAN:
0.5 m
MS: 2.0 m

0.12|0.08|0.20 Off

Tri-stereo
images

Satellite optical im-
ages (Pléiades)

North 13 August
2017

PAN:
0.5 m
MS: 2.0 m

0.11|0.11|0.22 Off

4.1.1 DEM calculation

A DEM is computed with the Ames Stereo Pipeline (ASP)
using two utilities: stereo and point2dem. All the options of
point2dem were set to their default values. We use an itera-
tive approach to obtain a refined point cloud with stereo and
a DEM with point2dem from each triplet of stereo images.
The first iteration uses L1B input images to produce a coarse
DEM at 50 m resolution. During the second iteration, the
L1B input images are orthorectified using this coarse DEM
with the ASP utility mapproject. The orthorectified images
are then processed to obtain a fine DEM at 3 m resolution.
The options of the stereo command for this second run were
empirically adjusted as explained in Sect. 4.1.2. This itera-
tive processing was shown to improve computation time and
reduce artifacts in the final DEM (Shean et al., 2016; Beyer
et al., 2018). The output DEM resolution and coordinate sys-
tem was defined to match those of the ASO product (UTM
11 north, WGS 84).

4.1.2 Photogrammetric processing of the images

First, stereo generates a dense disparity map (i.e., the pixel
displacement between the two images of a stereo pair) using
image correlation. The disparity map is used to calculate a
point cloud with a triangulation algorithm. Then, point2dem
interpolates the point cloud on a regular grid (Shean et al.,
2016; Beyer et al., 2018). We compared three sets of options
in stereo. These sets of options were empirically selected but
do not cover all the options available in the ASP. The first set

of options is the one used by Marti et al. (2016). This set uses
the local-search-window stereo algorithm and the normalized
cross-correlation parametric cost function with windows of
25px×25px (these options are hereafter called local search).
The subpixel refinement algorithm uses an affine method.
The two other sets of options use the semiglobal match-
ing (SGM) stereo algorithm (Hirschmüller, 2005) combined
with two different cost functions. The semiglobal matching
is often used with nonparametric cost functions. Here we
compare the two nonparametric cost functions implemented
in the ASP: the binary census transform (options hereafter
called SGM-binary) and the ternary census transform (here-
after called SGM-ternary). The subpixel refinement is oper-
ated during the SGM correlation with the option Poly4 of
the ASP. We evaluated the three sets of options based on
the completeness of the maps and the agreement of the snow
depth with the ASO using the mean bias, normalized median
absolute deviation (NMAD) and RMSE of the residuals. The
complete options are available in the Supplement (Table S2).

The SGM algorithm (Hirschmüller, 2005) differs from the
local-search-window algorithm during the disparity map cal-
culation. The local-search algorithm calculates the disparity
for each pixel independently. The SGM algorithm optimizes
the disparity over the whole image by assuming that disparity
from neighboring pixels is likely to be close. This introduces
more continuity in the disparity map and then in the DEM.
The matching of subsets of the images of a stereo pair is mea-
sured with a cost function. The binary and ternary census
transforms are two cost functions that convert a kernel cen-
tered on a pixel into a binary number. For the binary census
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transform, each pixel of the kernel is compared to the cen-
tral pixel of the kernel and gives 1 if it is superior to it, 0
otherwise. All the digits are concatenated in a binary num-
ber associated with the central pixel. For the ternary census
transform, each comparison of a pixel with the central pixel
can give three different values: 00, 01 or 11 depending on
whether it is smaller, within or greater than a buffer centered
on the central pixel value.

4.1.3 Comparison of bi- and tri-stereo images for DEM
calculation

We calculated five DEMs from each stereo triplet by select-
ing a pair of images (front–nadir, nadir–back, front–back)
or the complete triplet (front–nadir–back, nadir–front–back).
This provided combinations of different B /H (called image
geometry further in the article), ranging between 0.08 and
0.23 (Table 1). The three sets of options of stereo were tested
on these different geometries. In the tri-stereo case, the ASP
calculates two disparity maps and performs a joint triangu-
lation when calculating the point cloud. In the first tri-stereo
case (front–nadir–back), the ASP calculates a disparity map
between the front and the nadir image and between the front
and the back image. In the second case (nadir–front–back),
the ASP calculates a disparity map between the nadir and
the front image and between the nadir and the back image.
The order of the images matters in the tri-stereo case since
the B /H is different between front–nadir and front–back or
nadir–back and front–back. We did not evaluate the third pos-
sible tri-stereo combination (back–nadir–front) as we expect
results to be similar to the front–nadir–back case.

4.1.4 Snow depth (HS) maps

We coregistered the Pléiades DEMs to the ASO snow-
off DEM to enable a pixel-wise comparison between both
datasets. We first coregistered the Pléiades snow-off DEM
to the ASO snow-off DEM. We then separately coregistered
the Pléiades snow-on DEM to the Pléiades-registered snow-
off DEM before computing the difference between the Pléi-
ades snow-on and Pléiades snow-off DEMs (hereafter re-
ferred to as dDEMs). The north and south Pléiades dDEMs
were mosaicked, and the north dDEM value was preserved
in the overlapping area. The coregistration vectors were cal-
culated using the algorithm by Nuth and Kääb (2011) on ar-
eas where no elevation change is expected (i.e., stable ter-
rain). The stable-terrain areas, which are snow-free terrain
without trees, were determined by a supervised classification
of the Pléiades multispectral images into a land cover map
(see Sect. 4.1.5). From the same land cover map, the Pléi-
ades dDEM values were set to zero in snow-free areas to ob-
tain the HS map. Pléiades HS values below −1 m and above
30 m were set to no data to exclude unrealistic outliers based
on expert judgment and considering the minimal value that
Pléiades HS could reach for actual HS close to zero.

4.1.5 Land cover classification

Snow-covered areas and stable terrain were analyzed sepa-
rately, and their location was determined with a land cover
supervised classification calculated from the multispectral
images. The winter and summer scenes were classified into
four categories: snow, forest, open water and stable terrain,
the latter corresponding to snow-free areas with low vegeta-
tion or bare rock. First, we orthorectified the nadir multispec-
tral images using mapproject on their corresponding DEM.
For each image, we manually extracted training data cover-
ing 0.1–1.0 km2 from a composite image of red, green, blue
and near-infrared bands and the derived normalized differ-
ence vegetation index (NDVI). A maximum of 33 polygons
were manually drawn for the snow class on the winter north
image. These samples were used to train a random-forest
classifier with otbcli_TrainVectorClassifier from the Orfeo
ToolBox.

The stable-terrain and snow masks were shrunk (morpho-
logical erosion) to a radius of 2 pixels (4 m), and patches
smaller than 30 pixels (270 m2) were removed. The masks
were shifted according to the DEM coregistration vector and
then interpolated with the nearest-neighbor method onto the
ASO grid. Lakes and snow patches remaining in the sum-
mer land cover map were removed from the winter snow
mask. Lakes were manually delineated on snow-off images.
This workflow was automated except for the training dataset,
which was generated by human interpretation of the images.

4.2 Evaluation of the snow depth maps

We evaluated the Pléiades HS maps for the area where both
the Pléiades (snow mask) and ASO (HS greater than zero)
HS maps had snow. The term HS residuals in the rest of the
article refers to the difference between the Pléiades and the
ASO HS (Pléiades HS minus ASO HS). We also evaluated
the Pléiades dDEM over stable terrain, where we expect no
elevation difference over time. The stable-terrain residuals
are the Pléiades dDEM values as ASO products are set to
zero over snow-off terrain. The distribution of the residu-
als was characterized with the bias (both the mean and the
median), the root mean square error (RMSE) and the nor-
malized median absolute deviation (NMAD) of the residuals.
The NMAD is a measure of the dispersion suited for popula-
tions with outliers (Höhle and Höhle, 2009).

The accuracy of HS maps is often discussed at (or close
to) the highest resolution that is allowed by the sensor (e.g.,
Nolan et al., 2015; Marti et al., 2016). In practice however,
HS maps may be subject to spatial averaging to assimilate
in a snowpack model, to estimate catchment-scale HS, or
to compare with coarser satellite products and model out-
put (Painter et al., 2016; Margulis et al., 2019; Shaw et al.,
2019). The accuracy of the mean HS of a set of contiguous
pixels is expected to be higher than that of a single pixel but
depends on the spatial correlation of the errors (Rolstad et
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Table 2. Comparison of the snow depth residual (HS Pléiades minus HS ASO) and stable-terrain elevation difference (Pléiades) for different
image acquisition geometries for SGM-binary options only. HS Pléiades are calculated from a combination of images taken looking to the
front (F), the nadir (N) or the back (B). All metrics are in meters except the mean B /H for bi-stereo geometries, which is dimensionless.
The bold line is common to this table and Table 3.

Mean Area (km2 ) Mean Median NMAD RMSE SD

B /H snow stable snow stable snow stable snow stable snow stable snow stable

FB 0.22 138.11 5.2 0.16 −0.03 0.18 0.01 0.68 0.39 0.80 1.35 0.79 1.35
FN 0.12 138.13 5.28 0.01 −0.01 0.03 0.02 1.13 0.70 1.21 1.15 1.21 1.15
NB 0.10 137.25 5.25 0.08 −0.02 0.10 0.02 1.07 0.71 1.18 1.17 1.18 1.17
FNB – 138.02 5.30 0.08 −0.01 0.10 0.02 0.69 0.40 0.80 1.16 0.79 1.16
NFB – 137.51 5.29 0.13 −0.06 0.15 −0.00 0.78 0.44 0.90 1.06 0.89 1.06

al., 2009; Anderson, 2019). Hence, we performed an empir-
ical assessment of the evolution of the accuracy of Pléiades
HS as a function of resolution by aggregating the HS residual
map to resolutions ranging between 3 and 180 m (Berthier et
al., 2016; Brun et al., 2017; Miles et al., 2018). An average
resampling scheme was used, which calculates the average
value of all valid contributing pixels. For each resolution, we
compared the distribution of the HS residual or measured er-
ror to the standard error that is obtained from the error model
of Rolstad et al. (2009). Using a spherical semivariogram
model to measure the spatial correlation, Rolstad et al. (2009)
estimate the random error of the spatially averaged residual,
σA, as

σ 2
A = σ

2
(

1−
L

lcor
+

1
5
L3

lcor

)
if L < lcor (1)

σ 2
A =

σ 2l2cor

L2 if L > lcor, (2)

where σ is the standard deviation of the elevation difference
residual, lcor is the semivariogram range or length of auto-
correlation, and L is the length of aggregation (half of the
pixel spacing). A is the area of aggregation (pixel area) and
is related to L (A= 4×L2). This formula assumes no spatial
trend in the HS residual map. We estimated lcor from a semi-
variogram analysis of the HS residuals at the highest resolu-
tion (3 m). The value of σ was taken as the NMAD of the HS
residuals at the highest resolution (3 m). We also tested this
equation using the stable-terrain residuals to set the value of
lcor and σ . The measured error was taken as the NMAD of
the aggregated HS residual. By comparing the measured er-
ror and the modeled error, we aim to verify whether (i) the er-
ror model from Eqs. (1) and (2) is valid and (ii) its parameters
(σ lcor) can be estimated from stable-terrain residuals only. It
is important to evaluate whether the stable-terrain residuals
can be used to parameterize the error model because that is
the only available information in regions without HS refer-
ence data (Deschamps-Berger et al., 2019).

Figure 3. Mean, median, NMAD and RMSE of the residual of HS
maps depending on the ASP stereo correlation option. The options
compared are the SGM algorithm with the binary census transform
cost function (SGM-binary in red), the ternary census transform
cost function (SGM-ternary in yellow) and the local-search algo-
rithm (local search in blue).

5 Results

5.1 Evaluating the impact of bi- or tri-stereo images as
input

We first investigate the impact of different image geometries
on the HS maps while keeping the stereo SGM-binary option
fixed. The NMAD of the HS residuals with respect to ASO
data (Table 2) is larger for maps from pairs of images with
B–H around 0.12 (1.13 m for front–nadir, 1.07 m for nadir–
back) than from pairs of images with B /H around 0.20
(0.68 m for front–back) or triplets of images. The NMAD of
the snow depth residuals from the front–nadir–back triplets
(0.69 m) is slightly better than from the nadir–front–back
triplets (0.78 m) and very similar to the NMAD from the
front–back pair. The NMAD over stable terrain is lower, but
relative values between two geometries are similar (Table 2).
For the different image geometries, the RMSE evolves simi-
larly to the NMAD over snow-covered areas but very differ-
ently over stable terrain. The largest RMSE over stable ter-
rain is 1.35 m for front–back, and the smallest is 1.06 m for
nadir–front–back. The mean differences over snow-covered
areas range from +0.01 m (front–nadir) to +0.16 m (front–
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Table 3. Comparison of the snow depth residual (HS Pléiades minus HS ASO) and stable-terrain elevation difference (Pléiades) depending
on the ASP stereo options for front–nadir–back geometry only. All metrics are in meters. The bold line is common to this table and Table 2.

Area (km2 ) Mean Median NMAD RMSE SD

snow stable snow stable snow stable snow stable snow stable snow stable

SGM-binary 138.02 5.30 0.08 −0.01 0.10 0.02 0.69 0.40 0.80 1.16 0.79 1.16
SGM-ternary 138.14 5.21 0.24 −0.03 0.25 0.03 0.85 0.44 1.11 1.30 1.09 1.30
Local search 135.96 5.32 0.49 −0.32 0.39 −0.00 0.80 0.51 1.41 1.94 1.32 1.92

back). The absolute means and medians over stable terrain
are all less than 0.06 m. The relative results for the different
geometries are similar to the SGM-ternary and local-search
options except for the mean error (not shown here). In the fol-
lowing sections, the HS map from the front–nadir–back ge-
ometry is used as it yields the lowest bias, RMSE and NMAD
of all the geometries, although it is similar to the front–back
geometry.

5.2 Sensitivity to the photogrammetric processing

We compare the stereo options on the HS maps from the
front–nadir–back geometry (Table 3 and Fig. 3). The SGM
sets of options provide DEMs without data gaps. The local-
search option produces snow-on DEMs with gaps, which re-
sults in ∼ 2 km2 missing in the HS maps compared to the
SGM options (Table 3). Visual examination of the winter
DEMs shows large differences in snow fields and forest. Lin-
ear artifacts are observed over snow in the DEM produced
with the SGM-ternary option (Fig. S1). The same regions are
noisy in SGM-binary. Patches of typically 20 m× 20 m with
abnormally large HS (> 10 m) compared to ASO (∼ 3 m) are
also observed with the local-search options around isolated
trees. These artifacts are not visible with the SGM-binary or
ternary options (Fig. S1).

The mean differences from the ASO snow depth data
range from +0.08 m (SGM-binary) to +0.49 m (local-search
option). The mean differences are larger for SGM-ternary
(+0.24 m) than SGM-binary. The NMAD of the residuals
is smaller for SGM-binary (0.68 m) than the local-search
(0.80 m) and SGM-ternary options (0.85 m). Over stable ter-
rain, the absolute mean and median of the elevation differ-
ences are less than 0.03 m except for the mean of the local-
search option, which is −0.32 m. The mean of the elevation
differences for local search decreases to −0.03 m when the
elevation differences are excluded if they exceed 3 times the
NMAD value. This is expected as the same filtering is used
during the coregistration process to remove outliers. In the
following, the SGM-binary was selected since it gives the
lowest bias and NMAD with respect to ASO data and the
lowest NMAD over stable areas (Table 3).

5.3 Spatial distribution of the residuals

The Pléiades HS map calculated with the selected image
geometry and ASP configuration (front–nadir–back images,
SGM-binary) compares well with the ASO HS map (Fig. 4).
Typical mountain snowpack features (e.g., avalanche de-
posits and snow drift accumulation) can be identified on the
Pléiades HS map (Figs. 4d, e, 5). Pléiades HS data are avail-
able over 215 km2 of open terrain but not for the 23 km2 of
forest. No HS was higher than 30 m, but 0.25 km2 of HS were
excluded because HS was less than −1 m. This occurred in
areas covered with low-density deciduous vegetation, which
was classified as snow. The intersection area of Pléiades and
ASO snow-covered areas is 138 km2 after erosion of the Pléi-
ades snow mask. The Pléiades mean (median) HS is 4.05 m
(4.13 m) against 3.96 m (4.02 m) for ASO over the common
snow-covered area. ASO and Pléiades HS exhibit a simi-
lar relationship between HS and elevation (Fig. 6) except
between 1900 and 2100 m and between 3500 and 3700 m,
where the mean residual over snow-covered areas is greater
than 0.25 m (Fig. 7). This corresponds, however, to elevation
ranges that cover less than 0.05 km2 each.

The NMAD of the Pléiades dDEMs over the 4.07 km2

of stable terrain is 0.40 m against 0.69 m for the HS resid-
ual. The distribution of residuals on stable terrain is simi-
lar for most aspect classes with the exception of the north-
facing slopes (0.26 km2 , aspect classes 315–360◦ and 0–45◦;
Fig. 7). Based on a visual analysis of the residual map, we
attribute these errors to shaded slopes of steep summits. The
distribution of HS shows a similar spread for all aspects but
a larger positive bias (∼ 0.20 m) for south-facing slopes (90–
270◦, Fig. 7). The distribution of HS residuals against the
terrain slope is similar between 0 and 50◦ but has a greater
spread in steeper terrain, which covers 2.13 km2 . The same
trend is observed over stable terrain but only above 70◦.

The semivariogram of the residual increases from 0.2 to
0.8 linearly for lag distances between 3 and 20 m (Fig. 9a).
Low-amplitude undulation for lag distances between 2000
and 8000 m (Fig. 9b) is related to a low-frequency undula-
tion in the HS residual map, which has an amplitude of ap-
proximately 0.30 m and a wavelength of about 4 km (Fig. 8).
The crests of the undulation are oriented in the east–west di-
rection (Fig. 8). Such an undulation pattern was observed in
other Pléiades products, ASTER images (Girod et al., 2017)
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Figure 4. Snow depth maps from Pléiades data on 1 May 2017 (a, d) and from ASO on 2 May 2017 (b, e). Cornice (spot A) and avalanche
deposits (spot B) are visible on Pléiades HS maps (d). The land surface cover is shown in (c) and (f) over the same area. Black squares in
(a–c) are the area shown in (d–f). The transect T –T ′ is shown in Fig. 5. All datasets have the same spatial resolution (3 m). The difference
of the maps (a) and (b) (Pléiades minus ASO) is in Fig. 8.

and WorldView DEMs (Fig. 10 in Shean et al., 2016; Fig. 6
in Bessette-Kirton et al., 2018). It is attributed to nonmod-
eled satellite attitude oscillations along-track (jitter). A simi-
lar semivariogram shape is obtained over stable terrain. From
this semivariogram analysis we estimate that the correlation
length of the residuals (see Sect. 4.2) is about 20 m for both
snow and stable areas.

5.4 Evaluation of the Rolstad error model

The measured error of the HS map decreases with increasing
resampling resolution (Fig. 10). The NMAD of the HS resid-
uals is reduced by a factor of almost 2 by resampling from
the original resolution of 3 m (NMAD= 0.69 m) to 36 m
(NMAD= 0.38 m). As explained in Sect. 4.2, we computed
two error models using either the HS residuals (lcor = 20 m,
σ = 0.69 m) or the stable-terrain residuals (lcor = 20 m, σ =

Figure 5. Transect T –T ′ of snow depth visible in Fig. 4e from Pléi-
ades data (pink) and ASO (blue). More transects are available in the
Supplement (Figs. S3 and S4).

0.40 m) to parameterize Eqs. (1) and (2). We find that the
NMAD of the HS residual well matches the error modeled
for averaging areas smaller than 103 m2 when lcor and σ

are calculated with the HS residuals (Fig. 10). However it
does not match with the modeled error for averaging areas
larger than 103 m2 (Fig. 10). This is due to the lower decrease
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Figure 6. Snow depth against elevation (a) and total distribution (b)
from Pléiades data (pink) and ASO (blue). The box plots show the
median value (white line), the 25th and 75th percentile (box), and
the 5th and 95th percentile (whiskers).

Figure 7. Distribution of the residuals between the Pléiades and
ASO snow depth maps over the snow-covered area (empty box)
and stable terrain (filled box) against elevations (a), slopes (b) and
aspect (c). Over stable terrain, the ASO product is set uniformly to
zero. Boxes where data were covering less than 1 km2 are slightly
transparent.

in the residual dispersion with spatial resolution. The mea-
sured NMAD decreased by 0.07 m between 36 m resolution
and 180 m resolution, while the modeled error decreased by
0.22 m between the same resolutions. We attribute this mis-
match to the undulation pattern identified in Sect. 5.3 (see
Sect. 6.5 in Discussion).

Figure 8. Residual snow depth (Pléiades minus ASO) over the com-
plete study area (a) and average per line (b). In (b), the HS residual
before correction (blue) is corrected for the low-frequency undula-
tion (black) to obtain a corrected signal (red).

6 Discussion

6.1 Comparison to other studies using satellite
photogrammetry

By comparing the Pléiades HS with the ASO data, we find
an NMAD of 0.69 m in the best case (i.e., best acquisition
geometry and ASP options), which is close to or higher than
most previous evaluations (Table 4). Only Marti et al. (2016)
measured a larger NMAD (0.78 m), with a reference HS
map of 3.15 km2 that was obtained by UAV photogramme-
try. The spread in accuracy between studies in Table 4 could
be due to differences in (i) the satellite data (i.e., acquisi-
tion geometry, image resolution), (ii) the characteristics of
the study site and (iii) the representativeness of the valida-
tion data. The comparison with snow probe measurements
showed NMAD about a third lower than this study, at 0.45 m
(n= 442; Marti et al., 2016) and 0.47 m (n= 36; Eberhard et
al., 2020), but covered limited portions of the studied sites.
The B /H for the images of Marti et al. (2016) range be-
tween 0.21 and 0.25 for all consecutive stereo pairs, while
our B /H ranges between 0.08 and 0.12. This is consis-
tent with photogrammetry theory, which states that the ac-
curacy of the DEM increases with the B /H up to a certain
limit (Delvit and Michel, 2016). We find a similar NMAD
to Eberhard et al. (2020), who calculated an HS map from a
Pléiades snow-on DEM and an airplane structure from mo-
tion (SfM) snow-off DEM and compared it to HS from the

https://doi.org/10.5194/tc-14-2925-2020 The Cryosphere, 14, 2925–2940, 2020



2934 C. Deschamps-Berger et al.: Snow depth mapping in mountainous terrain

Figure 9. (a) Semivariogram or spatial autocorrelation (γ ) against lag distance of the HS residuals (empty circles) and Pléiades elevation
difference over stable terrain (filled circle). (b) Semivariogram of the HS residuals for large distances before (blue line) and after correcting
the undulation pattern (red line), illustrating the reduction in spatial variance at greater lag distances due to this correction (Sect. 6.5).

Figure 10. Measured error and modeled error (Rolstad et al., 2009)
of the HS averaged over different areas. Modeled error (dashed line)
is predicted based on different random error per pixel (σ ) and au-
tocorrelation length (lcor; Eq. 3). The lines are the modeled error
based on lcor from the semivariogram and σ taken as the NMAD
derived from stable-terrain residuals (dotted line) and HS residuals
(dashed line). Empty blue circles are the NMAD of the residual HS
maps averaged at different resolutions before the undulation cor-
rection. Filled red circles are the NMAD of the residual HS maps
averaged at different resolutions after the undulation correction.

airplane SfM over 75 km2 (NMAD= 0.65 m). Finally, Mc-
Grath et al. (2019) found an NMAD of 0.24 m for HS from
WorldView-3 stereo DEMs using 2107 point observations
from ground-penetrating radar surveys over a flat area of
roughly 50 km2 . This lower NMAD value might result from
the higher resolution of the WorldView-3 images (0.3 m) to-
gether with the flatter terrain used for evaluation. As the ASO
provides a much larger reference dataset over a complex ter-
rain, we argue that our study provides a more robust evalua-
tion of the HS accuracy that can be expected from Pléiades
in high mountain regions. While the ASO data itself may add

some error, the published accuracy of the ASO HS data is
significantly better than Pléiades. In all these studies, the ab-
solute mean biases range between 0.01 m (McGrath et al.,
2019) and 0.35 m (Eberhard et al., 2020).

6.2 Sensitivity to image geometry

We find that the HS map accuracy is sensitive to the B /H ra-
tio of the input images and to the configuration details of the
photogrammetric processing. We do not find a large added
value of the tri-stereo images for the map accuracy com-
pared to an optimal bi-stereo configuration. Tri-stereo might
provide greater benefits in case of image occlusion in steep
slopes, which is more prone to occur with higher B /H.

The NMAD of the Pléiades HS is improved by 36 % when
using images with a B /H of 0.22 instead of 0.11 (Table 3).
Marti et al. (2016) used pairs of front–nadir and nadir–back
images (B /H= 0.2) as they observed that the front–back
pair (B /H= 0.4) led to too many no-data pixels. From these
two studies and for similar terrain, a triplet of images with a
B /H for consecutive images around 0.2 seems to be a good
compromise. It should ensure high coverage and good DEM
precision. Further work is needed to confirm this statement
by testing varying B /H values.

Using tri-stereo instead of bi-stereo images did not sig-
nificantly improve the Pléiades HS map accuracy. It seems
like the processing of a triplet of stereo images (front, nadir,
back) with the ASP stereo function is equivalent to the pro-
cessing of the best stereo pair of the triplet, the front–back
pair in our case. There were no data gaps due to view ob-
struction by steep relief in this study area. Should this be the
case, the tri-stereo may offer better coverage. Several stud-
ies have evaluated the benefits of tri-stereo imagery against
bi-stereo (Berthier et al., 2014; Zhou et al., 2015; Bagnardi
et al., 2016; Marti et al., 2016). However, these studies used
different photogrammetric software that does not handle the
combination of three images in the same way. For example,
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Table 4. Comparison of HS accuracy with studies using satellite photogrammetry.

Satellite HS map Validation Number of
(resolution) resolution data Area measurements Mean Median NMAD RMSE

This study Pléiades
(0.5 m)

3 m Airplane lidar 138 km2 0.08 0.10 0.69 0.80

Marti et al.
(2016)

Pléiades
(0.5 m)

2 m Snow probing 442 −0.16 0.45

UAV SfM 3.15 km2
−0.06 −0.14 0.78

McGrath et
al. (2019)

WorldView-3
(0.3 m)

8 m Ground-
penetrating
radar

2107 +0.01 +0.03 0.24

Shaw et al.
(2019)

Pléiades
(0.5 m)

4 m Terrestrial lidar 0.74 km2
−0.10 −0.22 0.36 0.52

Eberhard Pléiades 2 m Snow probing 36 −0.35 −0.36 0.47 0.52
et
al. (2020)∗

(0.5 m) UAV SfM 4 km2
−0.18 −0.18 0.38 0.44

Airplane SfM 75 km2
−0.02 −0.18 0.65 0.92

∗ Eberhard et al. (2020) used a Pléiades DEM for snow-on and UAV or airplane SfM DEM for snow-off.

either multiple disparity maps, point clouds or DEMs can be
calculated and merged to produce a final single DEM. The
use of tri-stereo results in increasing the density of the point
cloud (Zhou et al., 2015; Bagnardi et al., 2016) and decreas-
ing the area with missing data in the final DEM (Berthier
et al., 2014; Zhou et al., 2015). The accuracy of elevation
products from tri-stereo was slightly modified in Berthier et
al. (2014) and Marti et al. (2016) compared to bi-stereo, with
an increase or decrease in the NMAD by a few percent.

To our knowledge, surface elevation changes were never
computed from a large number of very-high-resolution satel-
lite stereo images (> 10), but a study suggests that the com-
bination of multiview images can improve the DEM quality.
The fusion of 16 WorldView-3 images improved the NMAD
of the residual by 20 % compared to a set of 6 images over
an industrial zone (Rupnik et al., 2018). Therefore, the most
important use of tri-stereo may not be to improve the accu-
racy of HS maps but rather to obtain complete coverage of
complex terrain and have a less distorted nadir orthoimage
for land surface classification. We did not evaluate the extent
to which the front and back images would provide a differ-
ent land surface classification from the one obtained with the
nadir image.

6.3 Sensitivity to photogrammetric processing

The choice of the photogrammetric options has an impact
on the elevation difference accuracy over stable terrain and
snow-covered areas. The NMAD over snow-covered areas
is improved by 0.16 m by modifying the cost function (bi-
nary census transform instead of ternary census transform).

However, such a decrease in the dispersion will hardly im-
pact the HS averaged over a region of interest since the ran-
dom error decreases rapidly with increases in averaging area
(see Sect. 6.5). More important is the larger mean bias over
snow-covered areas introduced with the SGM-ternary option
(0.24 m) and local-search option (0.49 m) compared to the
SGM-binary option (0.08 m). This bias is particularly impor-
tant for south-facing slopes. It seems to result from difficul-
ties in image matching in bright areas for the three options
and from the impact of isolated trees for local search. The
impact of the trees is likely due to the larger kernel size (25
pixels) used in the local-search option. The exact origin of
the bias on south-facing slopes remains unknown.

6.4 Attribution of the HS error

We found a mean difference of +0.08 m between Pléiades
(SGM-binary, front–nadir–back) and ASO HS despite the
correction of the vertical offset between the snow-on and
snow-off DEM using stable terrain after coregistration. This
bias is low given the differences in the characteristics of the
ASO and the Pléiades products. This can be due to many
factors, including the effect of vegetation. First, the ASO
snow-off DEM is a digital terrain model, while the Pléiades
snow-off DEM is a digital surface model. Tall vegetation
(i.e., trees) is identified during the classification of the MS
images and does not impact the HS evaluation. But short veg-
etation completely covered with snow in winter is not iden-
tified in the classification. For ASO products, filtering based
on the multiple lidar returns produced by vegetation should
provide the ground elevation, but short vegetation often does
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not produce multiple returns (Painter et al., 2015). Further-
more, there is a large known error in vegetation height mea-
sured with Pléiades DEMs (Piermattei et al., 2018). Thus, it
is still unclear which surface is sensed by each method be-
tween the top of the vegetation and the underlying ground.

We found that the random error is larger on snow-
covered terrain (NMAD= 0.69 m) than on stable terrain
(NMAD= 0.40 m). This is true for all slopes and most aspect
classes (Fig. 7). Although mountainous snow surfaces tend to
have smoother topography, thereby increasing the accuracy
of the photogrammetric processing, bright snow surfaces also
tend to have less texture than snow-free surfaces, which de-
creases the accuracy of the photogrammetric processing. The
lower accuracy of snow areas is not due to saturation since no
pixel was saturated in the panchromatic images. In addition,
the residuals over stable terrain were computed from Pléi-
ades data only, while residuals over snow-covered areas were
computed from Pléiades and ASO data. Finally, the coregis-
tration of the snow-on DEM was optimized using the stable
terrain (Sect. 4.1.4); therefore a lower NMAD on stable ter-
rain may be due to the coregistration step and not the pho-
togrammetric processing in itself. Based on the above, we
cannot conclude whether the larger dispersion over snow-
covered areas results from the properties of the surface.

We further compared Pléiades snow-off DEM with the
ASO snow-off DEM and Pléiades snow-on DEM with the
ASO snow-on DEM. The latter was calculated by adding
the ASO snow-off DEM and the ASO HS. Both Pléiades
DEMs are coregistered as described in Sect. 4.1.4. We find a
mean bias over snow-covered terrain of +0.13 m for snow-
off conditions and +0.21 m for snow-on conditions (Ta-
ble S3). These biases are of the same order of magnitude and
suggest that a bias in the Pléiades snow-on DEM is partially
compensated by the difference of the surface observed in the
snow-off DEM (see above). In addition, the ASO snow-off
DEM was acquired in October 2015 and the Pléiades snow-
off DEM in August 2017. Growth or decay of the vegeta-
tion can occur over almost 2 years, leading to elevation dif-
ferences between the snow-off DEMs. The NMAD is larger
for snow-off DEMs (0.80 m) and snow-on DEMs (0.93 m)
compared to the HS residual (0.69 m). This shows that some
errors are consistently present in the snow-off and snow-on
DEMs of each type (airplane lidar or satellite photogramme-
try). Pléiades DEMs indeed overestimate the surface eleva-
tion as the terrain slope increases (Fig. S2). This suggests
that combining satellite photogrammetry and airplane lidar
DEMs may lead to larger errors than comparing DEMs from
the same platform.

6.5 Evaluation of an error model at different
resolutions

The error predicted with Eqs. (1) and (2) does not agree with
the NMAD of measured HS error for averaging areas larger
than 103 m2 (Fig. 10). This is likely because Eqs. (1) assumes

a randomly distributed error beyond the short-distance corre-
lation length (here 20 m), while the undulation pattern iden-
tified in Fig. 8 introduces an additional spatial correlation
at larger scales in the HS residual map. To verify this ex-
planation, we applied an empirical correction to remove the
undulation pattern from the residual map. We averaged the
HS residuals by pixel rows in the across-track direction and
used a Fourier transform to identify the undulation frequen-
cies (adapted from Girod et al., 2017). Then, we modeled this
error by selecting the frequencies lower than 4× 10−4 m−1

(i.e., wavelength longer than 2.5 km) and removed it from
the HS map. As expected, this correction makes the semivar-
iogram of the HS residual flatter for lag distances between
2000 and 8000 m (Fig. 9b). As a result, there is a better
agreement between the HS residuals’ NMAD and the mod-
eled error, with σ and lcor estimated from the HS residuals
(lcor = 20 m, σ = 0.69 m; Fig. 10). The improvement is more
marked at lower resampling resolution. For instance, the HS
NMAD is reduced after correction by 50 % at a resolution of
180 m. The improvement is under 10 % at 20 m resolution as
expected since the correction only dampers a low-frequency
signal. When the stable-terrain residuals are used to compute
Eqs. (1) and (2) (lcor = 20 m, σ = 0.40 m), the modeled er-
ror is lower than the measured error. This is expected since
the NMAD of the stable-terrain residuals is lower than the
NMAD of the HS residual. However, the discrepancy be-
tween both models decreased at coarser resolution.

This analysis shows that the model proposed by Rolstad et
al. (2009) provides a good first-order estimation of the ran-
dom error after spatial aggregation under the assumption that
there is no spatial drift in the error at scales beyond the corre-
lation length. In most cases, the statistics of the HS residuals
are not available and might only be measured on stable ter-
rain. Interestingly, in this study the correlation length of the
error is similar over stable terrain and snow terrain. How-
ever, the dispersion (NMAD, standard deviation) is 2 times
larger over snow-covered terrain than stable terrain, which
leads to a proportional underestimation of the error. Finally,
although the bias or systematic error is corrected on stable
terrain, there remains a bias on HS of the order of ∼ 0.20 m
(Table 4) that should be taken into account in the error calcu-
lation. According to the literature, this bias can be estimated
by comparing the mean and median of elevation differences
over stable terrain (Gardelle et al., 2013) or by calculating
the residual of the coregistration vector when more than two
elevation datasets are available (Nuth and Kääb, 2011).

6.6 Comparison of satellite photogrammetry with
airborne methods

ALS provides HS maps with a better accuracy
(RMSE< 0.10 m) than Pléiades and potentially a finer
horizontal resolution too (Painter et al., 2016). One signifi-
cant advantage of ALS is that it can measure HS under the
tree canopy and in shaded areas. It is also able to acquire data
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in overcast conditions provided that the clouds are above
the aircraft. However, from this study and that of Marti et
al. (2016), it appears that the accuracy of Pléiades HS maps
is sufficient to provide valuable information in regions where
there is no ALS monitoring capability (the vast majority of
mountain regions with snow cover). A limitation of current
very-high-resolution sensors such as Pléiades is their narrow
swath (20 km for Pléiades), which impedes the acquisition
of large areas with a frequent revisit. In particular, there are
areas of high tasking competition at lower latitudes, where
it can be challenging to obtain a stereo pair at the right
time of the snow season. More frequent acquisitions should,
however, become easier as new stereo satellite fleets are to
be launched in the coming years (Pléiades Neo, WorldView
Legion). The acquisition of visible images will always be
limited by the presence of clouds, making some regions hard
to study at least during some seasons.

HS maps from UAV SfM typically exhibit a centimeter-
scale bias (0.05 to 0.11 m) and an RMSE between 0.05 and
0.30 m based on comparison with snow probe and Global
Navigation Satellite System (GNSS) measurements. This is
more accurate than what is currently achieved with satel-
lite photogrammetry. However, UAV campaigns are currently
limited to areas of a few square kilometers due to battery
limitation and often rely on numerous ground control points.
This greatly limits the possibility to cover large and remote
areas. Airplane SfM exhibits accuracy close to UAV SfM,
with an NMAD typically of 0.30 m (Bühler et al., 2015), and
presents the same potential and logistic limitations as air-
plane laser-scanning campaigns. The reader is referred to the
study of Eberhard et al. (2020) for a detailed discussion on
the different approaches to map snow depth with photogram-
metry.

6.7 Generalization to other regions

Several snow applications could benefit from HS maps from
satellite photogrammetry. First, this study could be repro-
duced in any place of the globe provided that (i) there is a
window to acquire snow-off images and (ii) there is a way
to coregister the series of DEMs, for example with stable ter-
rain. This method is particularly suited for snow volume eval-
uation at a basin scale in alpine areas (this study site; Marti et
al., 2016; McGrath et al., 2019; Shaw et al., 2019). Observing
shallow snowpack (HS roughly below 0.5 m, e.g., polar envi-
ronments) might not be as straightforward as the typical spa-
tial variability lies within our range of uncertainty (roughly
0.5 m). However, even landscapes with shallow snowpack of-
ten feature local accumulation of snow, which would be mea-
surable with satellite photogrammetry. Therefore it is hard to
qualify this method as unfit to any region, but future stud-
ies are required to confirm its usefulness in these challenging
contexts. Study of shallow snowpack would clearly benefit
from higher-accuracy DEMs through correction of the satel-
lite jitter or increases in image resolution.

A lack of well-distributed stable terrain in snow-on and
snow-off DEMs can complicate the coregistration process in
some regions. The horizontal component of the coregistra-
tion vector can be measured without differencing stable ter-
rain and snow-covered terrain (Marti et al., 2016), but the
vertical component requires some stable terrain or an eleva-
tion reference. Ground control points (GCPs) could be used
but would limit the applicability of the method in remote
mountains. Besides, it remains to be tested how many GCPs
would be required and how precisely their position should be
measured.

There are already a number of efficient free and open-
access photogrammetric software tools that are under con-
tinuous development. These tools enable a high level of au-
tomation and are compatible with high-performance comput-
ing environments (Howat et al., 2019). In our workflow, the
last step to automate is the collection of training samples for
image classification. This could be done by using an unsu-
pervised classification algorithm or by using an external land
cover classification. Preliminary work with a time series of
Pléiades images in the Pyrénées (not shown here) suggests
that it is not possible to simply use the classification model
from a previous year to generate the classification of the cur-
rent year. A possibility may be to use a Sentinel-2 snow
cover map to extract training samples in the Pléiades mul-
tispectral images since Sentinel-2 images have a shortwave
infrared band, which enables a robust and unsupervised de-
tection of snow cover (Gascoin et al., 2019). Differentiating
terrain covered with vegetation from stable terrain would re-
main challenging.

We find that the selection of the image configuration and
the processing options can lead to changes in the NMAD up
to ∼ 0.3 m. Figure 10 suggests that this variation is likely to
become insignificant if the HS map is aggregated at a larger
spatial scale (grid spacing larger than 100 m× 100 m). Such
optimization is therefore more important for the study of
small-scale features (wind drift, avalanches, typically about
a few tens of meters) or to decrease bias on specific terrain
(south slopes, fields with isolated trees). The optimization of
the photogrammetric processing can also be important when
little stable terrain is available for the coregistration step.

7 Conclusion

We found a good agreement between snow depth (HS) maps
from high-resolution stereo satellite images with airplane
laser-scanning HS maps over 138 km2 of mountainous ter-
rain in California. The mean residual is+0.08 m, the NMAD
is 0.69 m, and the RMSE is 0.80 m. Comparison of indi-
vidual DEMs shows a growing positive bias with slope in
Pléiades DEMs. This bias is of similar magnitude in both
snow-on and snow-off Pléiades DEMs and thus cancels out
in the HS map, leading to agreement between Pléiades and
airplane laser-scanning HS for all slopes up to 60◦. South-
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facing slopes seem prone to a positive bias in the Pléiades
HS (∼ 0.2 m). These areas were found to have less texture in
the panchromatic images. The main drawbacks of the satel-
lite stereo HS method are the lack of data under dense tree
cover, the reduced accuracy in shaded areas and the current
challenge to image large regions in a short time. We found
that the accuracy of the maps was sensitive to the B /H and
the photogrammetric processing options. Using the current
ASP multiview triangulation routines, we could not find a
clear benefit from the use of a triplet of images compared to
a pair with optimal B /H (about 0.2). The accuracy of the HS
maps can be improved by decreasing their resolution. This
improvement cannot be described with a well-accepted sta-
tistical model partly due to an undulation pattern commonly
observed in DEMs derived from satellite photogrammetry.
We observe that the accuracy is improved by 50 % when de-
creasing the HS map resolution from 3 to 36 m. We conclude
that satellite photogrammetric measurements of HS are rel-
evant for snow studies as they offer accuracy of ∼ 0.70 m at
3 m resolution, a high level of automation and the potential
to cover remote regions around the world.

Data availability. The HS map and land surface cover from
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