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Abstract:

This study uses experimental data of paele foam flow inside a higtomplexitynetwork to fit a graph

based model describing preferential flow paths based on characteristics of the porous medium. Two
experiments, with equal gas fractions but varying injection rates, are modelled in parallel. Proposed paths
are solution paths to th&-Shortest Paths with Limited OverlapSPwLOproblem, applied to a graph
representation of the porous medium with edge weights representing throat propertiesp@dmeter

model, based on throat radius only is tested before integrating a second paranusscribing the
alignment of the pores surrounding the throat with respect to injection pressure gradient. The preferential
paths in both experiments vary in quantity and in the specific zones described. As such, fitted models
characterizing preferentiapaths for either experiment show separate dependencies to structural
parameters. Overall, the graghased framework was able to capture many hilgitw zones in various
model parameter combinations, perhaps as consequence of the relatively spiked ttrealisiibution

of the model. The optimized model for the high injection rate experiment markedly shows-aemon
dependence to the pore alignment to pressure gradient as well as throat size, whereas the lower injection
rate experiment was best fitted ta model that made sole use of the throat radius.

1 et —c'e

Foams constitute an attractivenethod to enhance oil recoveque to theirhighviscosity highpotential
for conformance control, low cost and low environmental impact.

To implement a largscle foam operation, prior validation and injection optimization must be performed
using a reservoir modelling software. While some attempts have been made to integrate microstructural
parameterssuch as average pore sir¢o upscaled foam model&ttinger and Radke 1992; Gassara et al.
2017)a great deal of foam behavior laws are derived from Dagagle laboratory experiments, and
require significant a posteriori parameter fitting to match observations. The numerical load would be
greatly alleviatedy the useor at least constraint offitting parameters with a value obtained through a
purely structural characterization of the porous medium.

Recent works on 2D micromodéGéraud et al. 2016; Yeazt et al. 201%ave shown that a range of foam
behaviors exist that are highly likely to contribute to Dascgle flow properties. Indeed, trapped foams



and highvelocity preferential paths have been repeatedly observed, displaying ranges of velocity mu
lower and higher, respectively, than those seen in Newtonian flow Furthermore, it has been shown that
high-velocity zones are accesspdmarilyby larger bubbles in a heterogeneous bubble distribution flow,
containing the majority of flow in the modeThe interest ottharacterizinghe specific paths that these
bubbles will take, as well as the number and rank of equivalent or alternative paths, becomes obvious.

A purely locatlescriptionof flow has shown to be insufficient thfficultly acces#arger scale phenomena
such as preferential paths and trapped zones For this reason, here we attempt achavatterization

approach, by integrating the notion of overall path (spannimgt to outlet of the model) and ranking
paths according to a numericahlue derived from the components that make up it.

Modelling porous media with graph models has been recently given new life. Gesggd models have

been used to find least resistance paths and predict breakthrough points successfully in heterogeneous
porous media(Rizzo and Barros 201@yaph models have also found use in discrete fracture modelling

to rapidly characterize, query, and interrogate fracture network connect{Migwanathan et al. 2018)

The pathproposingis done via an algorithm that makes uska graph representation of the porous
network. Nodes of the graph represent the pores, while the graph edge weights represent throats. This
gives a labelled graph of connected objects, with edge weights given by a throat property of our choosing.
The sun of edge weights of a given path between the source node and the target hode -,
otherwise known as the path length, is then given%:q\ r. ™ @&EThe shortest path is then path that
minimizes this sum. Many algorithmic solutions exist fof¢th% E} o u Jv op JvP Jil*SE [ «Z} E
algorithm (Dijkstra 1959n extension of this problem is interested with the first K patiasiked by
increasing value of path lengti-shortest paths) v v *}JoA A]3Z z v[*+ OP}E]3Zu (} &
(Yen 197QWhen applied to our porous network graph, solutions to thehidrtest paths problem often

are small variants of the best path, with one or two elentseof the paths changed, even for large values

of K (%000). When combined with our observations of preferential path flow in the micromodels, in which

a multitude of somewhat distinct paths serve as preferential paths at the same time, we are motivated t
assimilate our problernto an extension of the {€hortest pathgroblem, findinghe K-Shortest Paths with
Limited Overlap @8PwLQ The path solutions to this problem aréd kshortest paths respeutg a
condition of maximapath overlapbetween one anther. We makeuseof the recently published OnePass
algorithm, a solution algorithm that efficiently proposes candidate paths with-osesen maximal path
overlap(Chondrogiannis et al. 2017 EXperimentally observeflow maps serve as the basis for comparison of
proposed paths Experimental images showing long preferential paths of flow in a fully characterized
micromodel are analyzkaccording to a welllefined statistical workflow to quantify active and dead
zones in the network. Paths are th@noposedusing a graph representation of the porous model. The
pathfit to experimental data is evaluated by counting thrportion of elenents in the proposed paths

that are active irexperimentalflow map, corresponding to a match value
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Our experimental data acquisition setup and procedure is described inl detaates et al(2019) We

create velocity heatmaps by averaging local tracked bubble velocities over multiplef 208 high

frequency images. Fixed injection rates and gas fraction are injected into a foaming device upstream of
the micromodel, then connected in series to the model. Pressure gradient is measured, and images are
acquired at steady state (constant gre gradient over the model). The image processing procedure
leading to bubble segmentation as well as the tracking procedure is also describedtés et al.

(2019)

Injections were done with purified N2 gas. The surfactant solution was composed of purified water with
30 g/l of salt and an AOS surfactant at 10 times the CMC, supplementebdetdtihebased foam
booster.

Two experiments are described in this study. We compare injections of same gas fraction but different
injection rates. The two injections were performed in succession. Experiment 1 was at a gas fraction of
79% at an injection rate &.53x 102 cm®/min. For Experiment 2, as lower injection rates were not
obtainable with the gas flow controller, a biphasic reservoir, essentially a long coiled up tube, was used
to enclose the gas and surfactant solution at the chosen gas fraction. The mixture wasighed p

using the liquid pump, reaching much lower injection rates, into the foaming device. The injection rate
for Experiment 2 wa8.9 x 10° cm®/min. Despite a reduction in injection rate 65% the measured

pressure drop over the model decreased fronb24 mBar for the high rate experiment to 182

mBar for the low rate experiment, corresponding to a 32% decrease in pressure gradient, showing a
highly sheaithinning apparent viscosity profile coherent with other foam studilvarez et al. 2001)

As previously show(Géraud et al. 2016; Yeates et al. 2028 majority of flow in a polydisperse foam
injection into a heterogeneous medium is carried by the largest bubbles, in a series oEptigfiepaths.
Furthermore these paths show higher relative flow intensity than for Newtonian fliielates et al. 2019)
Correct characterization and modelling of the flawthin these preferential paths will constitute a
significant part of macroscopic foam flow modelling due to the large contribution of flow solely in these
paths. For the experimental comparison, we therefore only use the flow maps of only thénaigtitside

of the bubble size distributions

We show irFigure 1 the bubble size spatial probability distributions for each experiment, and highlight
the bubbles used contributing to the flow maps used in this study. The spatial probabaility distributions
are weighted histograms of bubble frequency histograwithh each histogram frequency peak weighted
by the average bin bubble size (taken as bin center value). Such distributions give a more accurate
depiction of the bubble size distribution inside the medium. The bubble size distributions are
established by amnting bubbles measured in the entire model. The bubble sizes contributing to the flow
maps in this study are highlighted in red.
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Figurel: Bubble frequency histograms and bubble sizes contributing to flowmaps in each cagateidli red. We observe
that the lower minimum of bubble sizes is approximately equivalent in each experiment, but the experiment 2 distribuson show
a larger righthand tail. It is to be noted that although the higher bound shown here was cut falityisiarger bubbles were
observed (especially in experiment 2) and took upmemgligible areas of the porous volume.
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The 2D micromodel used has previously been studied elsewhexdes et al. 2019)it is a69.7% porosity

glass micromodel with awet-etched depth of 40um. The permeability of the total model with the flow
spreading system before and after the model is 4.7 Darcy. A binarized version of the model was
decomposed into pres and throats using an adjustable watershed algori{&wille and Vincent 1990)

with the tunable sensitivity parameter set to 2he model decomposition gives a total gf0® pores and

6284 throats.The throat radii show a unimodal distribution with sharp peak at 51 pum. A network
extraction algorithm was developed and applied to the 2Dcageposed porous medium to find
neighborhood properties of each pore and a graph was created. We show the different steps of the graph
extraction process in Figure 2:
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Figure2: Image and network analysis process. Porous ardaisrsin black. Throats are shown in light
green. Extracted graph nodes are shown as red circles with edges represented as grey rectangles joining
them. The displayed graph is superimposed on the initial network for clarity.

Note here that this graph simptisplays graph topology by positioning nodes on the centers of mass of
the pores and edge lengths or widths are not representative of edge weights.



Due to the quantized pixel nature of the model image, and the design of the watershed algorithm, some
of the throats were found to not be perfectly straight and resembkh&pes. As we make substantial

use of the throat size in our study, use of the throat length as given by the watershed was inadequate.
Instead, ve use the maximal Feret diametef the waterdieds as measured with Imagedalyze

particles toolto access the exact size of the throdtalf of the measured Feret diameter was then
approximated to represent the throat radius, referred to in the rest of the article simply as throat size.
We show he model and associated graph in their entirety in Appendix A, with the added artificial inlet
and outlet pores (described below) visible at each extremity.
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We make us ofhe recently publisheddnePasgraph algorithm(Chondrogiannis et al. 201 8plution to
the Kshortest paths with limited overlap problem-8PwLO)to provide a series of paths that resetab
the preferential patls visiblein our experiments.

In our context, to capture thepecificityof the flow in the porous network, edge weights are represented
by a function of the throaproperties, initially the throat radii, located at the distance pnainima, that
will contribute the most to variations in hydraulic conductivilty.this sense, we try to minimize overall
sum of contributions of throatadii, rather than distance. Note, that this problem is distinct from the
shortest bottleneck, or widgt path problem, which yields the shortest soutoetarget path with the
largest minimunthroat sizepossible.

Naturally, as we desire to find a path that spans the entirety of the model, we constractificial source
node and target node representirige model inlet and outletshating connections with all theodesat
each extremity of the model, as to not restrict the patfoposing procedure to a specific point in either
side of the model.

As we want the largest throats to contribute the lesshie bverall sum, and hence be chosen in the paths,
we use functions of the inverse of the thragizefor edge weights. However, it is unclear which (positive)
exponent =should be used to integrate thtbroat sizeas an edge weight. The shortest path will then

minimize the functionAw:q\ " %A in which ": «<4®Hs the radius of the throat connecting pore® (E

and eand —+epresent thesourceor target nodes, or viceversa, as the graph is undirected

While individualthroats radii will preserve theirankif they are raised to a power L sor =L t, the

rank of a sum of throat radii forming a path will not be conserfiegdach exponent. The largerdlvalue

of 5 the more a small, difficult to pass throat will contribute towards the sum. The proposed paths will
then avoid smaller throats, at the price of increasing the overall path length and tortuosity. Inversely, a
lower value of =will render the dgorithm less sensitive to the actual value of throat size, as the virtual
length of the path (or number of throats that compose it) becomes more significant. At the extreme of
=L r, all weights are the same and we retrieve the shortest path based on nuofilements alone.

We give an example of different proposed paths for different valuesiafFigure3. We see that different
throat radii exponents produce different shortest paths when integrated as edge weights.



Figure3: Motivational exampleOptimal paths for different values diin a schematic example. Porous
space is shown in white between gray solid obstacles. Throats are shown iMbltiple paths link the
sources and destination pores, shown in red. Theatvalues are givem white, next to the relevant
throats. For UL rthe path shown by full black line is optimal, forL sthe path shown by the thinly
dashed path is optimal, fol L t the path shown by thickly dashed line is optimal.

The shortest paths connecting the two nodeanked by red dots are shown for valuesoL r &4. For
=L r, all the weights arequal to 1and the optimal path is simply the one with the less throats, shown
as a full black linpassing a throat of size #or = L sthe thinly dashed path is chosevith two throats

. . . ~ 5 . .
of size value Sindeed, thesum edgeof weightsgiven by Agen. g - %As the smallesfor the thinly
dashed path, such agsE—Z O—_5 E—_5 E—_5 O—Z orrd Or&tzOravFor=L t, the thickly dashed path is
. . . x 5 6
chosen composeé of three throats of size 7. Indeeithe sum edgeof weightsgiven by Agpn. 1 %A

is smallest for the thickly dashed path, such—;ZleOEG~ O€5~ or raxsOrazOrdwdespite being the
path with the most throats.
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To evaluate a candidate path, we make use of a system of classification of active/inactive pores of the
experimental data, as previously describedYieates et al(2019) Appendix B. Average pore velocity
intensity values are compared to values for pores of similar sizes (split between 20 equidistant intervals
of area).If a threshold is passed, then the porensidered active. The threshold values are chosen as
fractions of the average pore intensities for each of the pore sizes categories. In this way we extract
ourselves from making any hypotheses on the way velocity intensity is spread out over the tifi@en

sizes and simply recalculate a threshold value for each size category. We chose 19 size categories. We
define two classification thresholds: half of average (low threshold) and the average intensity (high
threshold). The pores contained the proposggths can then be tallied up and the proportion of active
pores within the proposed path (situated between 4, i.e.the fraction of active pores within the
candidate path assesses quantitatively theatch of the candidate path to the preferential path the
experimental image. This binary classification (i.e. active or inactive) method is preferred over a more
direct method of taking average pixel intensity values of the whole path for two reasons. Firstly, a direct
comparison of average intensity vakiér pores of different sizes seems prejudicial to larger pores, in
which flow is more spread out, creating lower average intensity values. Secondly theshigh spread

of average pore intensities, taking the average pixel value over the path mate ¢renillusion of a
satisfactoryfit when only a restricted number of hightensity poresare contributing, and the rest of the
candidate path is incorrect.



In Figured we show the active/inactive pores for two different threshold values overlaid orvéhecity

map for both experiments studied. The active pores are shown in green and the inactive pores in red. We
notice the pathlike nature of the active pores and the |lew inactive pores, in red, situated in between
these paths. In these experimemtzonditions, we observe an important number of active paths and flow
distributed equally throughout all sections of the model.

Figure4: Velocity maps with overlaid active/inactive pore classification. Measured velocity in the pores

is shown as dark slde in the model. Each pore is colored and overlaid according to its activity. Active

pores are shown in green while inactive pores are red. White areas of the image correspond to solid
grains Flow is from left to right.

In Table 1 we display the propasti of active pores for each experiment and threshold value, that serve
as baseline values for assessment ofrtretchof proposed paths to the experimental dai&/e note that

the ratio of low to high threshold pores is equal for both experiments, demotistrahe equivalence
between the two thresholds for both experiments.

Tablel: Proportion of active pores for each experiment and threshold value

Exp. 1 Exp 2
Low threshold 65.6% 50.5%
High threshold 41.1% 31.8%
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In the results section we preed by first describing the model used, agide associated statisticd the
proposed paths in terms of geometrical and network properties only. Secondly wetBhaaatchwith

experimental dataf the proposed pathsThissequencas repeated twicefor the 1-parameter model,

and for the 2parameter model.

1-parameter model t description and path properties

To propose a series of realistic paths, the parameters we can input into the proposing algorithm are: the
graph, that includes a function of throates as edge weights; the number of desired paths, K; and finally
the maximal allowed overlapvalugU P]JA v 3A v iU (}J&E v} }A o %U v iU ]J(}v %
in the other. We share here some statistics for different functions of throat siaéth varying maximal

path overlap value. The number of output paths, K, is maintained at a fixed value of 7. The throat size
exponent spans 31 values, varying from 0 to a large value of 6, even if physically unrealistic, for the sake
of assessing limiton behavior. The maximal overlap is restricted to 3 values for comparison: 0, 0.1, 0.5.
The EL rcasedescribes a situation in which no pore can be shared between any of the proposed paths,
effectively slicing the model in two separate parts for each new path found. Hber & case allows

limited overlap, in which some short passages that couldstoecturally attractive for flow, can be
proposed in all the paths output by the algorithm. TIEeL r dcase represents a higher boundary, in
which the number of shared pores between proposed paths can be up to half of the pores in either of the
paths. Se€hondrogiannis et a{2017)for a detailed description oEcalculation.

Note that for some cases, foEL r & notably, when calculation time was too long for 7 paths, the
algorithm was restarted, aiming for 6 {b&, and so on, until it reached a solution in a practical amount of
time (here 2 000 seconds). Figseshows some characteristics of the proposed paths for each overlap
value and throat size exponent. Statistics for each point are calculated over tregavier all the 7 paths
output by the algorithm for each throat size exponenand overlap valuek

Best 7 paths
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Figureb: Characteristics of proposed paths for different throat size exponent values.

We observe that as the throat size exponent increases, the output path lengths increase, as described
previously We observe that for= L r, the average throasizefor the paths is close to the average madel



throat size providing confirmation that these pathare independent of throat sizelowever, the average
throat sizeseems to reach a plateau around a value of approximately t & This isunderstood as
follows: for higher exponent values, the algorithm outputs paths that will avoid smaller and smaller
throats at the expense of creating longer paths. However there exists a point in which the smaller, avoided
throat contributes a negligiblamount to the average, as the number of throats contributing to the
average is ever increasing.

Another observation is the difference between the characteristics offte r paths on one side, and the

EL r&and EL r&paths on the other side. The number of throats for thel r paths at the lowest

throat size exponent value is smaller and the value of the plateau of the throat size average is smaller.
This translates the fathat each proposed path for th& L r output effectively separates the model into

two parts and makes it harder to find short paths with small throat sizes in the created sections of the
model.

Experimentalmatch: 1-parameter model

We now perform a scan ovéhe proposed paths for each setting and attempt to retrieve the higfiest

to the experimental data. We display in Figérthe active pore matctvalues for both threshold values

for different values ofEandthe 31throat size exponerstfor both expeiments.Each exponent andpair

form a algorithm input setting, from which all the pores in all the proposed paths are noted and compared
against a dictionary of active pores for both thresholds and both experim@mts.input setting is then
evaluated infour different ways, as shown by the four distinct plots in Figure 6. The match value is the
ratio of active pores to all pores in the proposed paths for the given threshold value, and is referenced
interchangeably as a match percentage.
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Figure6: Pathmatches for high and low threshold valuesboth experimentdor different overlap and throat size
exponent settings,

The observed match is globally very high. For Exp. 1, most input settings propose paths in which 90% of
pores are active as defined blet low threshold and 65% as defined by the high threshioiceither



threshold such ratios are more than 25% above the model average (see Table 1). For Exp. 2, in most input
settings80% of the proposed pores are active as defined by the low threshol@@#idas defined by the

high thresholdThe besfits occur for throat size exponents betweerXor the low threshold pores and

1-2 for the high threshold pores. This still gives a large degree of uncertainty as to how tebesbe

foam preferential pths in a characterized porous medium. The match valuesEar r & &vare not
significantly larger than the values obtained f&rlL r. The match values for the high threshold farL

r &vhowever are significantly lower than the other values. For this reasnod, far the reasons we
previously mentionedssuesoccurring with theE L rvalue, we shall use the value &L r &for the rest

of the analysis.

We first give some examples of relatively satisfying resintSigure7 we givethree images of an overlay

of the proposed paths calculated usirgL t, EL r&and displayed on the flow data of Experiment 2.
The active pores represented are from the high threshold activity classification. This is the image with the
lowest number of active pores, so statistically hatdesmatch

Figure7: Examples afuccessfumatches between model and experimeifilbw is from left to right.
Experimental velocity fields are shown in greyscale inside the pores (darker is higher velocity). The grains
are in solid gray. The color coethe following: green pores are active in both experimental and
proposed cases, red pores are proposed active but experimentally are inactive, purple pores are not
proposed active but are experimentally active.

We observe long sections high intensitywl are identified by the proposed paths (green overlay). The
top image of Figure 7 shows a chain of 30 pores in which 28 are correctly identified by a proposed path.
The bottom right image of Figure 7 shows a chain of pores in which 20 out of 21 areldalgreen.
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well to the flow reality. One telling example is shown in the bottom right imad&gire 7 in which the

proposed path takes makes azsp curve around an obstacle while the flow takes a straighter alternative

path. Here we can start to see the limitations of using a simplified model of the network that only takes

the throat size into account and disregards any notion of path distanterosity. InFigure8 we give

three more examples ofproposed pathfailures occurring for the paths calculated using a throat size

exponent of 2,EL r &and displayed on the flow data of Experiment 1. The active pores represented are



from the low threshold activity classification. This is the image showing the largest number of active pores,
in which a failegpbath matchshouldstatisticallyhappen tre less often.

Figure8: Examples of path match failure. Flow is from left to rii®e Figure 7 for color code.
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only a limited number of paths wergalculated, and it is possible that a larger number of output paths

could have included these. In the three cases shown here we identify a common eoospdpaths go

off the experimental track by moving into pores that are perpendicular to the flo&dis]}v v & Vv|[§
visited by the foam, despite not showing significantly small throat entrances.

2-parameter model- description and path properties

We make an addition to the-frarameter model tooffset the proposed patHailures occurring for pores
branching outwards to the flow direction. We introduce a second local parameter in the description of
the flow, the angle of the pore centers surrounding a throat in relation to the flow direction: net€de
angle is formed by the vector the connecting the two pores (oriented in the flow direction) and direction
of pressure gradient. An example of the angle definition is shown in FigWkie refer the reader to the
AppendixB for some statistics relatg to this parameter and the independence of the 2 parameters.

Figure9: Simple example of X dA} % }E « ]Jv o | & }vv § C SZ]&E vs E-
projected onto the axis of flow, here shown as left to right.

dZ A op }( v Z « §Zxial gadE of 90° when two neighboring pores are perpendicular with
respect to flow direction, and a minimal value of 0° for pores aligned in parallel to flow. Inclusion of the
vparameterin the edge weight of the throat connecting poret® G& the gaph, as noted by™ «&FEis
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For simplicity, the allowed values ofthe % & u § E A EC ]v 3Z =paaméteCin 3157
equally spaced values from 0 toWWe show statistics assocét to the proposed paths in the 2D
parameter space in Figue.
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FigurelO: Statistics of paths proposed in a 2D parameter space

Interesting 2dimensional patterns appeaWe note that the path length@igurelO, leff) are of the same
order as for thel-parameter modelWhile the path lengths heatmap seems to have a global minimum in
the bottomleft corner for :=&; L :r &;it has two local maxima in the bottom right and top right corners
for values of:=&; L :xd&;and :=&; L :x&;respectively. In accordance with the explanation of the 1
parameter model results, path length increases as the algorithm is fed mdremare widely spread edge
weight values in the graph (i.e. some throat weights become so large that it chooses to take a series of
smaller values with a lesser contribution to the overall path sum). Thé&; L :x&; path length
maximum is then understood asccurring because of a widely spread throat size term only, with no
contribution from the angle term, explaining the average throat size rise in this zone.=&e L :r &,

path length maximum is then understood as the equivalent phenomenon, in whiclgerlpath is chosen
purely on the basis on avoiding unfavorable gtw-pore angles. The average throat sizes:imé&; L

:r &; (Figurel0b) and angle cosine in=&; L :x&; (Figurel0c) confirm this observation. For these
parameter values, they respectivelykiathe model average throat size and the model average cosine
value (for the full model"&. w sA « S¢$PL r& u. What is not easily understood is the decrease in
path length across the=L x parameter series, befordhe rise to the :=&; L :x&; maximum.
Increasing>with a fixed =should create a larger weight spread and lead to &rgaths. We refer the
reader to Appendixcfor this analysis.

Experimentalmatch: 2-parameter model

We show in Figurél colormaps of experiment match values for each edge igigrameter
combination for both experiments and both thresholds.



Figurell: Path matches for-parameter model combinations for both experiments and thresholds.

We observe that many parameter combinatianatch well the experimental paths. Low value§ t P]A
the best matches.

In fact, for experiment 2, the best matches are observed *dr r, i.e. the oneparameter model. Fo
experiment 1, while a large zone of good experimentatchess observed for the low intensity threshold
for values of= O uand vdues of > O s& the best values for the high intensity threshold are observed
for :=&; L :saFt&&aFrg, ie.for anonzero > with the angle parameter adding capacity
match the data more closelfhe best fit for experiment 1, high threshold (battdeft of Figure 11) using

a l-parameter model is obtained at=&>; L :s & ; obtaining a match score of 0.749, while the best fit
using a Zparameter model ::=&; L :td& & &;, achieves 0.7573, a small but naegligible 1.1%
increase.

To interpret this reslt, we consider the varying flow rates in both experiments. The lower flow rate of
experiment 1 couldhows no angle dependencedeed, at lower flow rates, we observe that preferential
paths are less chosen on the basismimediate path straightness opore-to-pore alignment with flow

as described by the angle parameter, and instead are mainly chosen as tradeoffs between path shortness
and throat size, as described by the gmarameter model With faster flow rateswhile the paths seen

in the lower \elocity experiment are also accessed, we observe more paths are accessed, which in turn

creates a more parallel flow. In this way we observe [#ssS$Z+ }v[S & v Z }(( % E% Vv ] po C

flow direction.



The colored imaged showing the results from toenbination displaying the experimenttiigh threshold

bestfit, :=&; L :t4 & &;, shown by a smatharkerin Figurell,is shown in its entirety in Appendix

We observe large sections of the flamarrying paths are correctipatched by the algorithm. While a large

number ofincorrectly proposegbores, colored in redjo appear, upon inspection they seem to still carry

(0}A v E v[8 VE]E oC Jv JEE § oy Z -+ PvFa@rherm@repdboactivefmpdtive J[v &P p(
pores are determined on a local basis and not included in a path, it is not even guarami¢ednodel

spanning path of active pores wituly exist. Rather, the patlshouldbe evaluated in its capacity to

capturethe largest number of active pores ingimodel.

4, <o, —eoec’e

Path-basedflow characterizationviability

Here we stress the effeiseness of the patihasedformalismby showing the results for the best model

fit for experiment 1,:=8>; L :td & & In Figure 12ve display howdifferent modelssuccessfullgapture
highflow pores even with the simplest model explored:=&; L :r &; in which no structural
parameters are included into the edge weights, and the paths are simply the shdmesfraph
representation). However, the=&>; L :r &; model does implicitly take the porous structure into
account as the decomposition into poresdathroats itself was performed using a distaroap based
watershed. A comparison is also made to a model proposing paths that minimize physical path distance.
The paths minimizing the physical distance were obtained by taking throat weight the sundiftdrece
between the pore center and throat center for both pores associated with the throat. This distance is
named ¢,2 P.Z'he sum of the weights for all throats in the path then was used as physical path distance.
In Figure 2, left we showfor varying values of N, the percentage chighest average velocifyoresin

the entire model that are captured in the pathBor emphasis,he modelproposed pathsare also
compared to a random choice of pores (right). The success probability for the random choice of pores was
simply the number of chosen pores (same number as in the proposed paths) over the total number of
pores

Figure 2: Comparison of path prediction performance for experiment thibest fit model
the shortest number of pores model, and the shortest distance model

We observe thathe path-based modelperform better than a random choice of por¢Bigure 12, right)
Even the simplest model, based purely mimimizing the number of poresuccessfully predicts a large



degree of high flow poreschieving sindir results to the physically shortest patfi$ie similarity between

the results of the shortest distance model and the smallest number of pores model seems to indicate that
both descriptions are similar and could originate from a spiked distribution tdrdies between first
neighbors. However, upon inspection of the proposed paths, this appears to be untrue and the proposed
paths are quite distinct. The paths are shown in the Appendtnglly, the best modefully predicts the

3 highest flowcarrying pres and almost 50% of the top 20. This demonstrates the viability of a path
basedgraph model for characterizinghigh flow zones for foam injectierin a heterogeneous porous
medium.

Difference between experiments

We note that the best models for eachpetiment take different parameter values. The active pores in
Experiment 1, the high rate experiment, are best predicted by tarameter model with:=&; L
‘td & &;. However, Experiment 2, the low rate experiment, is best predicted b{-frerameter model
with :=&>; L :sd &, The problem this study attempts to solve, i.e. predicting preferential paths of a
polydisperse foam in a heterogeneous poraoosdium, is akin to finding the paths of least resistance in a
medium, evaluated for combinations of local structural parameters taken as hydraulic resistance. The
path of least resistance then minimizes the sum of resistances between both ends of the modal
rectangular channel, of width W and of height H, length L and of fluid viscqsktg hydraulic resistance

¢+ can beapproximated agTanyeri et al. 2011jor & Os

stJ
""sFr&u o ;

f

The path of least resistance then minimizes the sum, L A ; for all the channels in the modeThe
validity of this equation depends on the exact rati® . For values of H/W close to 0.5, the error is
approximately 0.15% and for H/®0.1 the error drops to 0.003%. We show a histogram of H/W values
in Figure 13 showing that most of the throats in our model respect this condition.

Figure 13: Aspect ratio H/W distribution (left) and distribution of hydraulic resistance (right).

Thecalculated hydraulic resistance from the equation above is also shown inlcogggot making the
throat width dependencies apparent (right). For simplicity, the throat length is taken a constant value



here, given by half the meag?2 P Zalue for all first neighbors, and water viscosity is used. Thealues

are shown as red dots. To guide the reader, we give two lines displaying on one side the asymptotic
dependency of ; as Wt at large throat widths and provide a f\line tangent to ¢ values at lower
widths. We supplement the plot with a histogram showing the distribution of widths in logarithmic space
on top of the Figure 13. This plot shows that most throats are situated in an intermediate zone of mixed
dependence btween W' and W?, demonstrating that a series of models with values=bktween 1 and

2 may in fact be physically appropriate. For this reason, and with the understanding that the average
throat size in both models does not change significantly, (see Figure 10, center), we will not justify the
higher =exponent in the bestif for experiment 1 as its physical justification is not obvious.

The besmodel fitfor Experiment 1 however, includes a rp@ro contribution from the angle parameter,

with :=&; L :td & &.. This is a demonstration of difference in behavior for higheogity foams, in
which, while showing a strong dependence to throat size, preferential paths are also chosen based on
pore-to-pore alignment with pressure gradient, despite their capillary ease of entry.

In supplement, Figure4ldisplays the average validy in the pores, rather than the number of active
pores, to reinforce the validity of the model as best fit in both experimental matching framewdids.
observe a maximum located in the same parameter pair as found using the active/inactive pore
classiftation.

Figure 4. Average velocity intensifipr all paths in each setting. The best model is the same as shown in
the active/inactive higlthresholdpore framework.

The presence of a narero >parameter in the best fit is conformed microscopicallylbgking at the
bubble displacement distributions. Access to individual bubble tracks can provide a displacement term in
the Ydirection (perpendicular to pressure gradient) compared to total displacement in all directions. Y
displacement and total displament were taken simply as Euclidean distances between start and end
point of the bubble tracks. Taking the inverse sine of the ratio of Y to total displacement yields the angle
of deviation of the bubble from the pressure gradient direction, nanieWe take care here to distinguish

the displacement of flowing bubbles from the quasro displacement of static bubbles, which adds noise

to the final probabilitydistribution by filling it with the displacement ratios efatic bubblesWe show in

Figure 15 the different bubble displacement distributions that are bimodal irsjpgce, allowing us to
segment the flowing bubbles with ease as the right side of the bimodal local minimum for each
distribution.



Figure B. Bubble displacement distributioto)) and bubble track deviation angle from pressure
gradient (bottom) for both experiments.

The deviation angle distribution confirms microscopically the different model fits for each experiment.
While both angle probability distributions are symmetric arahtered on zero, the faster flowing foam
(experiment 2) is more spiked in zero, showing a larger tendency for the bubbles to remain in parallel
tracks to flow.

We offer the explanation that the higher flow rate and pressure gradient enable a larger nainbaths

to be accessed by the foam and remain aligned with pressure gradient to minimize the number of flow
path intersections in which a large amount of energy is dissipated through viscous shearing. Inactive paths
are observed more frequently in thewer velocity case. They can originate from either capillary difficulty

of entry or insufficient pressure gradient required to dislodge trapped foams. The larger pressure gradient
of experiment 2 facilitates foam mobilization creating a larger numbertbfeapaths. In turn, a flow path

to crossing the medium in the-drection would imply numerous intersections with other active flow
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direction due to preexisting flow paths, staying aligned with pressure gradient. In this sense, the initial
motivation of overlapping preferential flow paths requires some refining. While we observe that some
flow paths join and create higher velocity sections for a givetaniég, or otherwise split into two
branching downstream paths, we rarely observe pdiké intersections between two continuously
flowing paths from different directions. More exactly, these kinds of intersections create either flow paths
that deflect offeach other, if the geometry permits, or otherwise creates intermittent trafke flow. We

give two examples of flow paths that show large vertical displacement in lower velocity experiment, while
being contained by surrounding active paths in the higlocity experiment.



Figure B: Comparison diow maps fotwo areas of interest for each experiment. We observe flow path deviation
perpendicular to pressure gradient in experiment 2, while access to these zones is denied by the presence of other
flow paths in Experiment 1. We circle in green the exact access links that are crucial in keeping the flow in the
straighter paths for the higlvelocity experiment. Flow is from left to right in both examp&ste: colormap
contrast has been forced in eachaexple for clarity.

In Figure 16 we can observe two distinct cases in whickepigting flow paths in the higher velocity
experiment inhibits the foam access to these zones. Following the flow from left to right, vgbee
intensity patts describing sigificant movement irin the ¥directiononly in experiment 2n two key
areascircled in green

As well as the different injection rates, the experiments also show variable bubble size distributions within
the model. Larger bubbles contribute to the flow man Experiment 2 as shown in Figure 1. This could
also be a source of dissimilarity in the fitted models. Indeed, while the lower bound of bubble sizes is
roughly equivalent, larger bubbles could in fact guide the flow within the experiment 2. For a lower
injection rate and lower induced pressure gradient, the necessary Laplace pressure gradient needed to
enter certain smaller throats may not be achieved, and large bubbles will in fact test multiple downstream
throats before entering the widest. The smallbbles shown in Experiment 1 will mostly be of the order

of the throat size, therefore not probing multiple throats for the widest possible entrance. Instead, in this
situation, straighter paths therefore used.

The presence of the higher throat size erpnt =L t & in the Experiment 1 best fit is more intriguing.
This exponent could either reflect a physical phenomenon for faster flofoags or could be a
consequence of the intermediate dependence (betweerr 1 and==2) of the hydraulic resistander

our model throats, as shown in Figure 13b. Finally, this effect coala probably be a product of the
interaction between the two parameters within the mddéndeed, we can remark that the good model

fit zone, shown in bright colors figurell, has a shape that evolves diagonally in the positive direction
of both =and > This behavior could show thiite two components of the graph weight function interact
nontrivially, and is confirmed by the lower skew in edge weight distribution in this area, as shown in
Appendix ClIn this sense, the higher exponent of thedh fit for Exp. 1 could simply be a consequence of
the best model necessitating a naero value of >

5. ‘e Z—ec'e



In this study we show how a simple grapased model can successfullgpture zones of higklow in
experimental foam data in a porous mach. From experimentally established flow maps for different
experiments, we attempt to characterize the paths chosen by the largest bubbles, that have previously
been shown to contain a significant portion of the flow in a series of distinct paths. Thexperiments
investigated here are performed with varying injection rates and display slightly different bubble size
distributions. A graph representation of the porous network is used in which edge weights are chosen as
functions of two separate throgproperties. A model parameter optimization is done to establish the
best model fits for each experiment individuali/e show how a simple-garametermodel basedon

throat sizeretrievesa large amount of the high flow areas in a complex medium. Furtbexpwe include

a 2local structural parameter that describes the alignment of pores with respect to pressure gradient.
We observe that a larger sensitivity to the pore alignment parameter existhéoexperiment with a
higher injection rate with smaler sized bubble sizesyhereas the Iparameter modelbest describes
slower injectionswith the presence of large bubbled/hile this pathbased approach shows promise by
identifying highflow zones in a complex medium using a simple model, further tigag®n into the

effect of varying model structure and injection conditions in necessary to generalize the behavior seen
here.



Appendix A: Porous network and extracted graph

Figure Al: Top: Micromodel structure with porous area sedaick and obstacles in white. Fluid injection can be
performed on the full width of the model. Bottom: Extracted complete graph with added inlet and outlet node that
share edges with all the adjacent nodes to the inlet or outlet of the model.

Regardinghe structural parameters used for the weights of the edges connecting the inlet/outlet nodes
to the rest of the network; the throat size for each edge was trivially the throat that connected the
network to the inlet/outlet zone. However, thengle vthat shows the poreo-pore alignment with

pressure gradient was set equal to 0 (perfect alignment with gradient) for all nodes connected to either
to inlet or outlet nodes. Indeed, as the center of mass of the inlet and outlet nodes are positioned in th
central axis, taking the alignment angle with this position would create erroneous bias against pores

outwards from the central axis.



AppendixB: :»; properties and parameter independence

As the parameters are more and more spread out withittigeasing exponentsor > the path lengths
along the = L xparameter series should therefore monotonically rise to thes>; L : x&; maximum.

This discrepancy reveals either a hidden relationship between the two supposed independent
parameters”and ... €@ or otherwise an oversight on the authors behalf in the way the weight spread
is interpreted to contribute to path length.

We first explore the parameter independence. We displaigare Bl a histogram showing the
distribution of values of... €@ anda boxplot displaying the spread of valuesizefor each cosine
category, dividing the values into 10 quantiles with an equal number of points from 0 to 1.

Figure B1: Histogram ¢f K:@; and boxplot of parameter independence in thep@rameter modé

The histogram shows orgded distribution for the... “@values. This is a hatural consequence of the
cosine function, and a similar distribution occurs when plotting the cosine of a random sequence of
angles from @M0°. However, a noticeable spike ocgaround the 0.7 value. The boxplot shows a

median throat value that raises slightly in the central quartile and shows a smaller data spread towards
the central values of... €@ We believe this behavior, as well the spike occurring around 0.7 for the
cosine histogram are consequences of the way in which the watershed algorithm establishes throats and
pores from the binarized model but does not represent a significant dependence between the two
structural parameters used.

AppendixC. Edge weight charaerization with respect to parameter combinations in the-Barameter
model

Different combinations of parameters produce different edge weight distributions for the graph input to
the path-proposing algorithm. Properties of this distribution are believetiédinked to the path length,

we explore here the edge weight distributions and how they affect the proposed paths. Values of the
throat size term,”take values all above 1, displaying a roughly gaussian distribution (Yeates 2019). The

values of @A, therefore lie between €1. Similarlyyalues of thethroat size term,... €@ are between

0-1, while @m%_A is bounded as FL[. We show in Figur€l different edge weight histograms for

different parameter combinations.



Figure C1: Edge vght distributions in terms of different parameter combinations.

We observe in Figur€la that increasingthe >parameter spreads the distribution in the positive
direction, while maintaining many values a¥L s Raising the=parameter as shown in Figu@lb
spreads the distribution in both direction and shifts it towards smaller value®'éfs the parameters are
independent, increasingboth in combination therefore combines both effects without any further
interaction; it spreads the distribution both wayand shifts it to the left, but creates a more significant
spread on the righhand tail due to the raisedparameter.As we can see, both the varian&and mean

J of edge weight distributions change with each parameter combination. We show the parameter
distribution skew irFfigureC2 We suspect that the nemonotony of the path lengths function visible on

the =L xparameter series is related to the skewness of the distribution. Indeed, a decrease in the
calculated skew of the edge weight distribution occurs where the path lengths dips alongltheseries.

This indicates an interaction between the parametarghe model that explains why the proposed paths
match experimental data relatively well in a large zone diagonally situated in the positarel >
directions. The edge weight distribution is significantly less skewed in this region, which leadshthe pat
proposing algorithm to output shorter paths that closeatchedo the preferential paths observed in the
foam experiments.

FigureC2 Edge weight distribution skew for all model weights.



Appendix D: Full model experimental match for the best nebdor experiment 1::1 & ; L : UdJ AJR;
with a high intensity threshold on the pore activity classificatioRlow intensity is shown in greyscale
within the porous network.The color code igiven in Figure 7Flow is from top to bottom.



Appendix E: Full model experiméal match for the best model for experiment 1:1 & ; L : VD &,
with a high intensity threshold on the pore activity classificatiomhe color code igiven in Figure 7.
Flow is from top to bottom.



AppendixF: First 5 proposed paths for comparisanodels used in Figure 12: The paths in light green
are proposed by the model minimizing physical distance, whereas the paths in light blue are proposed
by the model minimizing the number of pores. The areas in dark blue are common to both sets of
paths. The velocity intensity of Exp 1 is shown in grayscale.



We note that for the shortest distance paths (green), the mean path distance is 19826 um, composed of
a mean 91.8 pores per path. The paths minimizing the number of pores have a path distance2of 2158
pm and are composed of 79.2 pores per path.
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