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Abstract

The identification of subnetworks of interest - or active modules - by integrating biological networks
with molecular profiles is a key resource to inform on the processes perturbed in different cellular con-
ditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules
in multiplex biological networks. MOGAMUN optimizes both the density of interactions and the scores
of the nodes (e.g., their differential expression).

We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedi-
cated to the identification of active modules in single networks. MOGAMUN identifies dense and high-
scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first
method able to use multiplex networks. Multiplex networks are composed of different layers of physical
and functional relationships between genes and proteins. Each layer is associated to its own meaning,
topology, and biases; the multiplex framework allows exploiting this diversity of biological networks.

We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular
Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified
different active modules of interest, thereby providing new angles for investigating the pathomechanisms
of this disease.
Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN.
Contact: elva.novoa@inserm.fr, anais.baudot@univ-amu.fr

1 Introduction

The success of functional genomics is associated
with the massive production of quantitative infor-
mation related to genes, proteins or other macro-
molecules. These data include, for instance, -
omics molecular profiles measuring the expression
or activity of thousands of genes/proteins, sensi-
tivity scores resulting from RNA interference or
CRISPR screenings, and GWAS scores providing
significance of association between genes and phe-
notypic traits. These scores and measurements,
often presented as p-values, intend to inform on
the cellular responses associated to different cellu-
lar contexts. But transforming lists of deregulated
genes/proteins and their associated p-values to sets
of pathways and processes affected in the different
cellular conditions remains a major challenge.

A classical approach to identify perturbed cel-
lular processes is the search for over-representation
of function or process annotations. Many tools ex-
ist that can take as input a list of genes, selected
after defining a threshold for significance or ranked
according to their p-values [1]. Such enrichment
approaches will consider only the genes/proteins
annotated in databases. Another set of successful
approaches try to overcome this limitation by inte-
grating scores or measures with biological networks.
Biological networks are composed of nodes repre-
senting the biological macromolecules, often genes
or proteins, and edges representing physical or func-
tional interactions between those macromolecules.
The goal is to identify active modules, i.e., subnet-
works enriched in interactions and in nodes of in-
terest. These active modules then facilitate the in-
vestigation of the perturbed cellular responses, as
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functional modules are the building blocks of cellu-
lar processes and pathways [2].

The identification of active modules from net-
works is an NP-hard problem [3, 4, 5]. Some active
module identification algorithms are based on clus-
tering co-expression networks [6, 7, 8] or memetic
algorithms [4]. However, most approaches rely on
greedy searches, simulated annealing, and genetic
algorithms (see [2] and [9] for general surveys of
active module identification methods).

Algorithms based on greedy searches, such as
PinnacleZ [10] and MATISSE [11], follow three gen-
eral steps: i) selection of seed(s), ii) expansion of
seed(s), and iii) significance test. In the selection of
seed(s), a set of genes of interest (for instance, sig-
nificantly differentially expressed genes) are picked.
Then, the seed(s) are iteratively expanded (adding
one node at a time), following a greedy criteria, i.e.
choosing the node in the network neighborhood of
the seed(s) that maximizes a score, which improves
the module fitness. The expansion stops when any
of the following three conditions is met: 1) the im-
provement of the score of the subnetwork is below
a minimum threshold, 2) the subnetwork reached
a maximum size, or 3) a maximum distance from
the seed(s) is reached. As a last step, the subnet-
works are tested for significance, by comparing the
score of each subnetwork with the score of a ran-
dom subnetwork. These three steps are common
to greedy searches algorithms, but every method
has variations. For instance, the seeds selected by
PinnacleZ are single nodes, whereas MATISSE se-
lects connected subnetworks. The main drawback
of greedy searches is that they can get trapped in
local optima because at every step they only look
at the local options. In particular, they cannot pick
low scoring nodes, even if these can be key for es-
caping local optima and have access to several high
scoring nodes.

Methods based on simulated annealing, such as
jActiveModules [3], follow a hill-climbing philoso-
phy, but instead of always picking the best option,
i.e., the best neighbor node to be added to the
subnetwork, they can also choose unfavorable op-
tions (i.e. options decreasing the global score), and
thereby escape local optima. Algorithms based on
simulated annealing follow two steps: i) initializa-
tion of nodes states, and ii) toggling of nodes states.
In the initialization of nodes states, each node in
the network gets either the active or inactive state,
with a given probability. The set of active nodes
constitutes the initial subnetwork, and the subnet-
work’s score is calculated as the aggregated score
of its nodes. Then, in the second step, the nodes
states are toggled: in every iteration, the state of
a random node is changed from active to inactive,
or vice versa. If the toggling improves the score of
the subnetwork, it is always accepted; otherwise, it
is accepted with a probability calculated based on

the temperature parameter, which decreases grad-
ually in every iteration. After toggling states for a
given number of iterations, the highest scoring sub-
network found in any iteration is given as result.
Some algorithms, such as jActiveModules, have a
third step to evaluate the significance of the final
subnetwork by comparing its score to scores ob-
tained on randomized expression data. The main
drawback of simulated annealing is that the bigger
the input network is, the more iterations are needed
in order to explore the full search space. Moreover,
simulated annealing does not guarantee that the
final set of nodes forms a single connected compo-
nent. However, jActiveModules can filter such set
of nodes, in order to keep the top-scoring single
connected component(s).

Methods such as COSINE [12], the algorithm
proposed by Muraro et al. [13], the one proposed
by Ozisik et al. [14] or the one proposed by Chen et
al. [5], are all based on genetic algorithms. A key
feature of genetic algorithms is that several poten-
tial solutions are considered simultaneously. In a
genetic algorithm, an initial population of individ-
uals, i.e. subnetworks corresponding to potential
solutions, is usually randomly generated. Each in-
dividual’s fitness is then evaluated using one (mono-
objective optimization) or several (multi-objective
optimization) objective functions. The population
of individuals then starts the evolution process,
where new individuals are generated by crossing ex-
isting ones and by modifying them with mutations.
The fittest individuals (those with better values for
the objective function(s)) have a higher probabil-
ity to be selected for the generation of offspring.
The evolution stops when the algorithm converges,
for instance, when there is no improvement in the
best value for the objective function(s) for a given
number of generations. One of the main advan-
tages of genetic algorithms is that the crossover and
mutation operators can help to find a balance be-
tween exploring different areas of the whole search
space and exploiting the surroundings of promis-
ing regions. However, as in simulated annealing,
standard crossover and mutation operators cannot
guarantee that the final solution will have a set of
nodes forming a single connected component. As
an option, one can design customized crossover and
mutation operators, as in [13, 14]. Importantly, ge-
netic algorithms are capable of optimizing multiple
(often conflicting) objectives simultaneously. If the
problem is tackled as mono-objective, all the objec-
tives are added into a single objective function by
considering weights for each one of them, and the
result is usually a single solution. In contrast, if
the problem is defined as multi-objective, each ob-
jective is associated with an independent objective
function, and the result generally leads to several
solutions that provide a trade-off for the values of
the different objective functions.
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By definition, active modules are expected to
be enriched in interactions. However, to our knowl-
edge, only few methods, such as SigMod [15], con-
sider the density of interactions. Moreover, existing
methods were designed for the analysis of single bi-
ological networks, usually a protein-protein inter-
action network. However, we now have access to
several sources of physical and functional interac-
tions between biological molecules. These interac-
tions are represented in a diversity of biological net-
works, from networks encompassing metabolic and
signaling pathways to networks representing cor-
relation of expression. These different interaction
networks, each having their own features, topology
and biases, are better represented as multiplex net-
works. Multiplex networks are multilayer networks
(i.e., networks composed of different layers, where
every layer is an independent network), sharing
the same set of nodes, but different types of edges
[16]. We and others recently developed different ap-
proaches to study and leverage these more complex
but richer biological networks [17, 18, 19, 20, 21].
In this work, we present MOGAMUN, a multi-
objective genetic algorithm able to explore a mul-
tiplex network to identify several active modules.

2 Materials and methods

2.1 The MOGAMUN algorithm

A multiplex network is defined as a triplet G =<
V,E, C >, where V is the set of nodes, E =
E1, ..., Eα correspond to the α different types of
edges between the nodes in V , one type per layer
of the multiplex network, and C = {(v, v, l, k) :
v ∈ V, l, k ∈ [1, α], l 6= k} is the set of coupling
links that link every node v with itself across the
α layers. For every type of edge in a layer l,
El = {(vi, vj) : i 6= j, vi, vj ∈ V } [22].

We introduce MOGAMUN, a Multi-
Objective Genetic Algorithm to identify active
modules from MUltiplex Networks. MOGAMUN
is a customized version of the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) [23], adapted
to deal with networks. Our goal is to identify
subnetworks that jointly fulfil two objectives: the
relevance of the nodes and the density of interac-
tions, inside a given subnetwork. We measure the
relevance of the nodes in a subnetwork, using the
first objective function, the average nodes score,
defined in Equation (1).

NodesScore =
1

n

n∑
i=1

(Scorenormi ) (1)

Where n is the number of nodes in the subnet-
work, and Scorei = Φ−1(1 − pi) is the weight of
node i. Φ−1 is the inverse standard normal cu-
mulative distribution function and pi is the result-

ing p-value, or FDR-corrected p-value, of a statis-
tical test. A node is considered significant if its
p-value/FDR is lower than a user-defined thresh-
old. In many cases, it corresponds to the result of
a differential expression analysis.

The calculus of the inverse normal cumulative
distribution (Φ−1) leads to values in the range be-
tween (−∞, +∞). We use Equation (2) to normal-
ize the nodes scores to be in the [0, 1] range. The
average nodes score NodesScore is thus also within
this range. Notice that the average nodes score is
not an aggregated z-score, as defined in [3], because
our Scorenormi can be computed from either p-value
or FDRs and is scaled to the range from 0 to 1. It
is thereby not necessarily distributed according to
a standard normal distribution.

Scorenormi =
Scorei −min(Score)

max(Score)−min(Score)
(2)

The second objective function intends to
evaluate the density of interactions in a subnetwork.
Here, we compute a normalized density in order to
evaluate the density of a subnetwork in a multiplex
network. We define the normalized density Dnorm
in Equation (3).

Dnorm =

L∑
l=1

ds
dl

(3)

Where L is the total number of layers in the
multiplex network, dl is the overall density of layer
l, and ds is the density of the subnetwork in layer
l; the densities ds and dl are defined by Equation
(4).

d =
|Et|
|Emax|

(4)

Where Et is the total number of edges in ds or
dl, and Emax is the number of edges of the complete
graph of the corresponding size.

We present the general flowchart of MOGA-
MUN in Figure 1. We initialise the algorithm with
a random population of individuals (parents). We
then mate the initial population to create a new
population (children) of same size. Last, we se-
lect the best individuals out of the two populations
(parents & children) to use them as parents in the
next generation. We iteratively repeat the process
until convergence. The step-by-step procedure is
detailed below, in subsections 2.1.1 to 2.1.10. The
algorithm parameters are presented in section 2.2.
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Figure 1: General flowchart of MOGAMUN

We modified NSGA-II [23] to work with net-
works. To do so, we defined a coding scheme for
the individuals with a variable length, where each
feature corresponds to the identifier of a node. We
also customized the original steps involving either
the creation or the modification of individuals (gen-
eration of the initial population, crossover and mu-
tation). In addition, we added a step to replace du-
plicated individuals with randomly generated ones,
in order to ensure the diversity of the population
and allow exploring the search space further. Im-
portantly, we request all the individuals (i.e., the

subnetworks of the multiplex network) to be single
connected components.

2.1.1 Generating the initial population

We first defined a multiplex-network version of the
Depth First Search (multiplex-DFS, see Algorithm
1), which allows generating individuals that are sin-
gle connected components. In every iteration of
the multiplex-DFS, a uniformly random layer of the
multiplex network is visited (see Algorithm 1, line
9). We use the multiplex-DFS to generate an ini-
tial population of N individuals. Each individual
is a connected subnetwork with a random size be-
tween MinS and MaxS. The seed, i.e., the initial
node in the network, is randomly chosen from the
pool of significant nodes, in order to focus around
interesting areas of the multiplex network.

Algorithm 1 Multiplex Depth First Search

1: procedure DFS(M, seed)
2: Let S be a stack
3: Let l be a layer from the multiplex net-

work M
4: S.push(seed)
5: while S is not empty do
6: v = S.pop()
7: if v is not labeled as discovered then
8: Label v as discovered
9: l = pick a layer from M

10: neighbors = get all direct neigh-
bors of v in l

11: neighbors = Shuffle(neighbors)
12: for all i in neighbors do
13: S.push(i)
14: end for
15: end if
16: end while
17: end procedure

2.1.2 Evaluating the initial population

We now evaluate all the individuals of the popu-
lation, i.e., the set of potential subnetwork solu-
tions, with the two objective functions described in
Equations (1) and (3). A high average nodes score
implies that the individual contains high-scoring
nodes. Similarly, a high normalized density implies
that the individual is densely connected in the mul-
tiplex network.

2.1.3 Ranking individuals in the popu-
lation

We use the Pareto dominance, a classical crite-
rion in evolutionary multi-objective optimization,
to rank the individuals [24]. In a maximization
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problem, an individual S1 dominates S2 (S1 �
S2), if NodesScore(S1) ≥ NodesScore(S2) and
Dnorm(S1) ≥ Dnorm(S2), and at least one of the
two inequalities is strict. The ranking process is
carried out like in the original NSGA-II algorithm,
as follows: initially, all non-dominated individuals
(i.e., those individuals that are not dominated by
any other individual in the current population) are
assigned rank 1 and separated from the popula-
tion. After that, from the remaining individuals in
the population, those non-dominated are assigned
ranking 2 and separated from the population as
well. Such process continues until there are no re-
maining individuals in the current population. At
the end, all individuals in the population have a
ranking value. The best individuals have rank 1.

Apart from assigning a rank to every individual,
we also calculate their crowding distance, which is
a measure that determines the proximity of the in-
dividuals in the objective space. The crowding dis-
tance of an individual is equivalent to the perime-
ter of the cuboid formed by its surrounding nearest
pair of individuals in the same Pareto front, one
at each side. The only exception is for those indi-
viduals that maximize one of the two objectives in
each rank, which are directly assigned an infinite
crowding distance value [24].

2.1.4 Selecting compatible parents by
tournament

The parents are selected by tournament [25]. The
selection of a pair of parents restricts the crossover
to individuals that are compatible. This ensures
that the children are also single connected compo-
nents. Two individuals S1 and S2 are compatible
if:

• S1 ∩ S2 6= ∅, or

• S1 ∩ N (S2) 6= ∅, where N (S2) is the set of
neighbors of the nodes of S2.

The first parent is chosen via tournament (con-
sidering the rank of the individuals, and the crowd-
ing distance if they have the same rank). Depend-
ing on the number of compatible individuals, the
second parent can be either selected also by tour-
nament or directly assigned, if there is only one
compatible individual. The procedure is described
in Algorithm 2. If no individual is compatible with
the first parent, we restart the process with a dif-
ferent individual as Parent1 (line 10 of Algorithm
2). If after a pre-specified number of attempts, the
search of compatible parents is unsuccessful, we add
a copy of two individuals (randomly chosen) to the
population of children and we skip crossover and
mutation.

Algorithm 2 Selection of compatible parents

1: Let Parent1 be the first parent, an indi-
vidual selected from the population, with a
tournament of size t based on ranking

2: Let CI be the list the compatible individu-
als with Parent1

3: Let NCI be the number of compatible indi-
viduals with Parent1

4: if NCI >= t then
5: Let Parent2 be chosen via a tourna-

ment of size t from the individuals in CI
6: else
7: if NCI == 1 then
8: Let Parent2 be the only compatible

individual
9: else

10: if NCI == 0 then
11: Discard Parent1 and return to

line 1
12: end if
13: end if
14: end if

2.1.5 Crossover

The goal of the crossover operator is to combine
the nodes of two parent individuals, in an attempt
to improve the values of any of the objective func-
tions (average nodes score or normalized density).
We mate the parents with crossover rate c. In or-
der to guarantee that each child will be a single
connected component, we use a crossover method
inspired from the one proposed in Muraro et al.,
where the subnetworks corresponding to the par-
ents are merged to have a single connected compo-
nent [13]. In such a way, two nodes are randomly
chosen, and two new children are generated with
a Depth First Search, having as seed each selected
node, respectively. However, our crossover varies
according to two main aspects: 1) each seed for the
children must correspond to significant nodes, and
2) the children can be generated either with Depth
First Search or Breadth First Search. All children
respect the subnetwork size’s range.

2.1.6 Mutation

The goal of the mutation operator is to exploit
the neighborhood of the children, adding/removing
nodes, here also in an attempt to improve the value
of any of the two objective functions. Notice that a
node that is in the neighborhood of a child, i.e., di-
rectly connected to it, and that has a high node
score, would allow increasing the average nodes
score. In the same way, a neighbor node that is
highly connected with the nodes of the child could
improve the normalized density. We mutate each
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child independently with rate m. We first choose
the list of potential nodes vp to be removed. We
restrict this list to those nodes that can be re-
moved without disconnecting the child subnetwork
and that are not significant. We finalize the muta-
tion process by adding |vp| new nodes to the sub-
network if |vp| > 0, or a single node if |vp| = 0. The
new nodes are chosen randomly, from the neighbor-
hood of the corresponding child, considering all the
layers of the multiplex network, and preferring sig-
nificant nodes, if existing.

2.1.7 Combining parent and children
populations

We join the parent and children populations, giving
as result a population of size 2N .

2.1.8 Replacing duplicated individuals
with randomly generated ones

Duplicates of individuals appear in the population
when no compatible parents are found or when no
crossover nor mutation are applied. To preserve di-
versity in the population, promote the exploration
of the search space and avoid premature conver-
gence, we introduce the replacement of duplicated
individuals. To determine if an individual is du-
plicated, we check if it has more nodes in common
with another individual than a given threshold Jt of
the Jaccard similarity coefficient. The Jaccard sim-
ilarity coefficient J between two subnetworks (indi-
viduals) A and B, is calculated as follows:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (5)

The dominated individual is labeled as dupli-
cated. If no domination exists, one of the individ-
uals is randomly selected.

2.1.9 Selecting the new population

After ranking the full population of size 2N , the
new population of size N is selected with elitism.
The top N ranked individuals will form the new
population, whereas the other N are discarded. It
is to note that the best individuals (among the par-
ents and children) will thereby always remain in the
population.

2.1.10 Stopping criteria

At this point, we have completed one generation.
We iterate until reaching the stopping criteria,
given by the number of generations gen. The result
is the set of individuals in the first Pareto front
(rank = 1). Evolutionary algorithms are stochastic
search approaches, they must hence be run several
times. As a result, we will have several first Pareto

fronts. In order to select the final set of individu-
als, we calculate the accumulated Pareto front. To
this goal, we take the results of all runs, re-rank
them, and keep only those individuals in the new
first Pareto front.

2.2 Parameter values

In the study presented here, we used the parameter
values listed in Table 1. We generated subnetworks
in size range of [15-50], which corresponds to the
size of communities identified by four over five top-
performing algorithms in a community identifica-
tion challenge [26]. This size range combined with
a population of size 100 individuals, allows covering
about a quarter of the multiplex network, around
the most interesting areas. Tournament size and
crossover rate are classical values in genetic algo-
rithms. Mutation rate of 10% is higher than in
most approaches, to promote the exploitation of
the search space near good solutions. We elected
the total number of generations empirically, after
running the algorithm several times in different con-
texts and monitoring its convergence. Similarly, the
threshold of the Jaccard similarity coefficient was
also obtained empirically; we found that it allows
to keep a high diversity rate, while preventing pre-
mature convergence.

Feature Description Value

N Population size 100
MinS Minimum size of the individuals 15
MaxS Maximum size of the individuals 50

t Tournament size 2
c Crossover rate 80%
m Mutation rate 10%
gen Total number of generations 500
Jt Jaccard similarity coefficient threshold 30%

Table 1: Parameters of MOGAMUN and values
used in this study

2.3 Benchmark to compare the
performance of MOGAMUN
with existing methods

In order to compare the performance of MOGA-
MUN with state-of-the-art approaches, we used and
extended the benchmark initially proposed by Ba-
tra et al. [27]. It is worth noticing that this bench-
mark works with a single interaction network as,
to our knowledge, no active module identification
method can consider multiplex networks. It artifi-
cially generates expression data to simulate a dif-
ferentially expressed subnetwork. To this goal, the
nodes of the network (i.e., the genes) are separated
into two groups: Foreground Genes (FG) and Back-
ground Genes (BG). A seed-and-select algorithm is
defined to randomly select the FG as a connected
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subnetwork. Artificial expression data is then gen-
erated so that the FG contrasts with the BG, which
means that the FG genes are artificially differen-
tially expressed.

We computed the F1 score (also known as F
score or F measure) to evaluate the quality of the
active modules identified by the different methods.
The F1 score is calculated on the union of all the
active modules retrieved by each method over the
30 runs, using the equation 6.

F1 = 2×
(
precision× recall
precision+ recall

)
(6)

Where precision = TP
TP+FP

and recall =
TP

TP+FN
. The TP and the FP are the number of

FG and BG present in the active modules, respec-
tively, and the FN are the number of missing FG
(i.e. the FG that were not retrieved).

2.3.1 Benchmark Networks

We used two independent interaction networks
in the benchmark (Table 2). PPI 1 is the hu-
man protein reference database [28], taken from
[27]. PPI 2 was generated by merging interac-
tions identified from several databases through the
PSICQUIC portal [29] and the CCSB Interactome
database [30], taken from [17].

Name
Number of Number of Density
nodes |V | edges |E| d

PPI 1 9 425 36 811 8.28 x 10−4

PPI 2 12 621 66 971 8.41 x 10−4

Table 2: Interaction networks used in the bench-
mark

2.3.2 Benchmark artificial expression
data

We simulated 2 different artificial expression
datasets, one following a normal distribution and
another one sampled from real RNA-seq data, as
follows:

1. Sim normal. We simulated data following a
normal distribution. The mean values µ of the
FG and BG groups of genes are µ(FG) = 5,
and µ(BG) = 2, respectively, and a standard
deviation SD = 1 for both groups of genes.
This situation corresponds to a high signal
strength, as in [27]. To test for differential
expression, we performed a series of t-tests,
and considered a gene as significantly differ-
entially expressed if the p-value ≤ 0.05. We
used a set of 20 FG.

2. Samp TCGA. We sampled data from real
expression data, in order to have an RNA-
seq distribution-like. We downloaded breast

cancer RNA-seq expression dataset from
the TCGA breast cancer project (TCGA-
BRCA) from the US National Cancer
GDC portal (https://portal.gdc.cancer.gov/),
as of May, 2019. This dataset is com-
posed of 1 102 cases and 112 controls
(we removed the outlier control sample
”d5f0ea64.6660.49ac.a37e.3cd747045147”).
To test for differential expression, we used
the R package edgeR version 3.26.8 [31]. We
consider a gene to be significantly differen-
tially expressed if its False Discovery Rate
FDR ≤ 0.05 and |log2(FC)| > 1, where the
FC is the ratio of the difference in expression
between cases/patients and controls. The
expression data for the FG and BG were ran-
domly sampled from the set of significantly
differentially expressed and non-differentially
expressed genes, respectively. We used a set
of 20 FG.

In Table 3 we describe our two datasets.
Columns ”Cases” and ”Controls” show the num-
ber of patients/cases and controls, respectively,
”Genes” shows the total number of genes in the sim-
ulated dataset, corresponding to the total number
of nodes in the networks, and ”Significant DE” is
the number of significantly differentially expressed
genes.

Name Cases Controls Genes
Significant

DE
Sim normal 100 10 9 425 483
Samp TCGA 1 102 112 12 621 20

Table 3: Artificial expression datasets

2.3.3 State-of-the-art algorithms se-
lected for comparison

We compared MOGAMUN with three selected
methods, representative of the main approaches
seeking for active modules: jActiveModules [3],
PinnacleZ [10], and COSINE [12].

2.3.3.1 jActiveModules

Ideker et al. [3] proposed jActiveModules. They
use a simulated annealing algorithm to find sub-
networks with the highest scores, calculated from
the differential expression of the subnetwork nodes.
The search starts by selecting a subnetwork con-
taining approximately half of the nodes of the full
network. After that, they iteratively add or re-
move one node at a time from the selected sub-
network (the number of iterations is defined a pri-
ori). Whenever the addition or removal of a node
increases the score of the subnetwork, the modifi-
cation is accepted. Otherwise, it is accepted with
a probability that decreases along the iterations,
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according to the temperature value. After finishing
adding/removing nodes, the highest scoring subnet-
work (found in any iteration) is selected as result.
Finally, the significance of the selected subnetwork
is evaluated. Several parameters can be tuned, but
for the tests performed here, we used the default
values recommended by the authors [3]. The only
exception is that we set to 1 the number of modules
to be retrieved, as this corresponds to the bench-
mark settings. jActiveModules is available as a Cy-
toscape plugin.

2.3.3.2 COSINE

Ma et al. [12] proposed COSINE, a method based
on a standard mono-objective genetic algorithm.
The goal of COSINE is to find the subnetwork with
the highest change in expression among conditions,
represented as node weights. COSINE further al-
lows considering the level of co-expression between
pairs of genes, represented as edge weights. To
compute the edge weights, we calculated the co-
expression of every pair of nodes connected in the
benchmark networks. COSINE further allows giv-
ing more importance to either the weights of the
nodes or the edges, with a parameter lambda. For
the tests performed here, we used the same parame-
ters as reported in [12], where COSINE is compared
with other methods (number of iterations = 5,000;
zero to one ratio = 30), and we set lambda to 0.5,
in order to give the same importance to changes in
expression (i.e. node weights) and co-expressions
(i.e. edge weights). COSINE is available as an R-
package.

2.3.3.3 PinnacleZ

Chuang et al. [10] designed PinnacleZ, a greedy al-
gorithm to identify active subnetworks that maxi-
mize the mutual information. The mutual informa-
tion measures the differences in the distribution of
the expression values of a given set of genes between
two conditions. PinnacleZ starts the search by se-
lecting an initial set of seeds, and for each of these
seeds, it iteratively adds the neighbor node that
maximizes the mutual information of the subnet-
work. The search stops when a maximal distance
from the seed is reached or when the improvement
of the mutual information score is not considered
significant, given a threshold. PinnacleZ then per-
forms three tests of significance on each of the iden-
tified active subnetworks, in order to guarantee that
their individual mutual information is higher than
the mutual information of a random subnetwork.
We used the same parameters reported in [10] (dis-
tance from the seed = 2 nodes, minimal mutual
information score improvement threshold = 0.05),
and we set the maximum size per subnetwork = 50
(the same size that we allowed for MOGAMUN).

PinnacleZ was originally available as a Java pro-
gram and a Cytoscape plugin, but this latter one is
no longer supported.

2.4 Application to Facio-Scapulo-
Humeral muscular Dystrophy
type 1 (FSHD1)

2.4.1 RNA-seq expression data

We used five Facio-Scapulo-Humeral muscular Dys-
trophy type 1 (FSHD1) RNA-sequencing expres-
sion datasets publicly available [32, 33, 34], ex-
tracted from the Gene Expression Omnibus [35].
We performed the differential expression analyses
using the R package edgeR version 3.26.8 [31]. As
recommended in the user guide of edgeR, we per-
formed glmQLF tests for the two datasets with
samples from different batches [33, 34], and Fisher
Exact tests for the three datasets with samples from
a single batch [32]. We considered a gene as signifi-
cantly Differentially Expressed (significantly DEG)
if the False Discovery Rate FDR ≤ 0.05 and the
|log2(FC)| > 1, where the FC (Fold-Change) is the
ratio of the difference in expression between cases
and controls.

We selected from Yao et al. [32] RNA-seq data
from muscle biopsies of 9 FSHD1 patients (quadri-
ceps, 4 males and 5 females) and 9 controls (8
quadriceps, 1 tibialis anterior, 5 males and 4 fe-
males). We also selected data from two myoblasts
derived from patients and the two corresponding
myotubes, as well as two myoblasts from controls
and three control myotubes (Supplementary Table
S1). The cells were obtained from the University
of Rochester repository and are described in Young
et al. [36]. Our differential expression analyses re-
vealed 6, 7 and 343 significantly DEGs, for biopsies,
myoblasts and myotubes, respectively.

In Banerji et al. 2017 [33] RNA-sequencing was
performed in triplicate on confluent immortalized
myoblasts, for three FSHD1 patients (correspond-
ing to 5 cell lines, for a total of 15 samples) and
three healthy individuals (corresponding to 4 cell
lines, for a total of 12 samples) (Supplementary
Table S2). These cells were on one hand derived
from a mosaic patient and described in Krom et
al. [37] (54-12; 54-45; 54-2 for FSHD1 cells with
3 D4Z4 units and 54-6; 54-A10 as controls with 13
D4Z4 units). On the other hand, the 12Ubic and
16Ubic cells obtained from two FSHD1 patients and
the 12Abic and 16ABic cells from matching controls
are described in Homma et al. [38]. We identified
192 significantly DEGs comparing all the FSHD1
to control samples.

The last dataset was obtained from Banerji et
al. 2019 [34] and corresponds to myotubes collected
at the end of myoblasts to myotubes differentiation.
These myotubes are derived from the myoblasts de-
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scribed in Banerji et al. 2017 [33]. In Banerji et al.
2019, a time course expression during differentia-
tion was analyzed. We considered here only the last
time point (T8) and selected triplicated samples for
5 FHSD1 patients and 4 controls (Supplementary
Table S3). We identified 261 significantly DEGs.

2.4.2 Biological interaction networks

We built a multiplex network composed of three
layers of physical and functional interactions (see
Table 4). The nodes are either genes or proteins,
considered here equally. The edges are undirected,
and we removed loops (i.e., self-interactions). The
three networks were taken from [17]. The first net-
work (PPI 2 ), is a protein-protein interaction net-
work, and is also the one used for the benchmark
(Section 2.3). In the second network (Pathways),
the links correspond to pathway interaction data,
obtained with the R package graphite [39]. The
last network (Co-expression), contains edges corre-
sponding to correlations of expression. Spearman
correlations were calculated from RNA-seq data of
32 tissues and 45 cell lines, and absolute correla-
tions of at least 0.7 were selected to build the net-
work [40].

Name
Number of Number of Density
nodes |V | edges |E| d

PPI 2 12 621 66 971 8.41 x 10−4

Pathways 10 534 254 766 4.59 x 10−3

Co-expression 10 458 1 337 347 2.45 x 10−2

Table 4: Multiplex biological network

3 Results

To the best of our knowledge, MOGAMUN is the
first algorithm that detects active modules from
multiplex networks. However, several methods ex-
ist to detect one [4, 11, 12], or several [3, 5, 6, 7, 10,
13] active modules in monoplex networks -aka sin-
gle networks. We here compare MOGAMUN with
three state-of-the-art approaches to detect active
modules in monoplex networks (section 3.1). We
then applied our algorithm to study Facio-Scapulo-
Humeral muscular Dystrophy type 1 (FSHD1), us-
ing a multiplex network (section 3.2).

3.1 MOGAMUN against state-of-
the-art active module identifi-
cation methods

We ran jActiveModules, COSINE, PinnacleZ and
MOGAMUN 30 times (see Materials and Meth-
ods). The execution times per run of each algo-
rithm, in a desk computer with Intel processor i7 at
3.60GHz and 32GB of RAM, were approximately 30

min, 8 hours, 30 min, and 12 hours for jActiveMod-
ules, COSINE, PinnacleZ and MOGAMUN, respec-
tively.

As a first test, we used the PPI 1 network (Ta-
ble 2) and the Sim normal dataset (Table 3) (see
Materials and Methods). The goal is to retrieve
the active module, which is a single subnetwork
composed of 20 nodes (i.e., the foreground genes
(FG)). The four methods retrieved the 20 nodes
of the FG (Figure 2a). PinnacleZ retrieved 13 231
subnetworks in total, corresponding to 494 subnet-
works with at least one different node. These 494
subnetworks have an average size of 6 nodes and
3% average Jaccard similarity between them. CO-
SINE and jActiveModules retrieved 30 subnetworks
each, one per run. The 30 subnetworks found by
COSINE all have at least one different node, an
average size of 640 nodes and 5% average Jaccard
similarity. Finally, 29 out of the 30 subnetworks
retrieved by jActiveModules have at least one dif-
ferent node, an average size of 6 952 nodes and 76%
average Jaccard similarity. MOGAMUN retrieved
6 modules with at least one different node, an av-
erage size of 17 nodes and 13% average Jaccard
similarity. We calculated the F1 score (Material
and Methods) of the union of all the active mod-
ules retrieved by each method on the 30 runs. the
F1 score determines how good the methods are to
retrieve the foreground genes (FG) while avoiding
picking background genes (BG). The F1 score for
jActiveModules, COSINE and PinnacleZ is near to
zero (< 1), and > 4 for MOGAMUN (Supplemen-
tary Figure S9).

Overall, PinnacleZ identified the best modules
in terms of both average nodes score and density
(figure 2a). However, the identified modules are
small (average size of 6 nodes). PinnacleZ indeed
restricts the search locally around the seed neigh-
borhood by considering only the subset of nodes
that are (at most) two steps away from the seed.
In such small modules, the two objectives are ex-
pected to reach their maximum values. For exam-
ple, a subnetwork composed only of two significant
nodes with score = 1 linked by an interaction will
have a maximal average nodes score, as well as a
maximal subnetwork density because it is a com-
plete graph. In order to consider this, we filtered
the all the modules obtained by the four methods
to keep only the subnetworks with at least 15 nodes
(Figure 2b). This removed all the active modules
obtained by PinnacleZ, and revealed that MOGA-
MUN succeeded to find the best results, in terms
of the two objectives. MOGAMUN is the only
approach allowing setting a minimum allowed size
from the four methods implemented here. It is to
note that, if we also remove the subnetworks with
more than 50 nodes (the maximum size we set in
MOGAMUN and PinnacleZ, the two methods al-
lowing this setting), we would also discard all the
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results from COSINE and jActiveModules, which
obtain subnetworks with hundreds or even thou-
sands of nodes.

In a second test, we used the PPI 2 network
(Table 2) and the Samp TCGA dataset (Table 3).
The goal is also to retrieve a single active mod-
ule, which is a subnetwork composed of 20 nodes
(i.e., the foreground genes (FG), see Materials and
Methods). jActiveModules retrieved the highest
number of FG genes (19/20), whereas PinnacleZ
and MOGAMUN found 18/20 each, and COSINE,
12/20 (Figure 2c). The results are similar to the
ones obtained in the first test. PinnacleZ found
25 313 modules, out of which 1 055 have at least
one different node. These 1 055 subnetworks have
an average size of 6 nodes and 5% average Jaccard
similarity between them. COSINE and jActive-
Modules retrieved 30 modules each, one per run.
The 30 subnetworks found by COSINE all have at
least one different node, with an average size of 205
nodes and 5% average Jaccard similarity. Four out
of the 30 subnetworks retrieved by jActiveModules
have at least one different node, with an average
size of 1 033 nodes and 28% average Jaccard similar-
ity between these 4 subnetworks. MOGAMUN re-
trieved 18 modules with at least one different node,
an average size of 16 nodes and 18% average Jac-
card similarity. The F1 score of the union of all the
active modules retrieved by each method on the 30
runs is < 1 for jActiveModules, COSINE and Pin-
nacleZ, and > 3 for MOGAMUN (Supplementary
Figure S9).

The filtering of the modules having more than
15 nodes in this comparison also removed all the
results obtained by PinnacleZ, as well as two high-
scoring subnetworks from jActiveModules (figure
2d).

After filtering on module size, MOGAMUN led
to the best results, although jActiveModules suc-
ceeded to find a module with an average nodes score
similar to one of ours. However, MOGAMUN found
overall denser subnetworks. If we also remove the
subnetworks with more than 50 nodes, we would
again discard all the results from COSINE and jAc-
tiveModules, with the exception of a single sub-
network, found by jActiveModules. In summary,
MOGAMUN clearly identifies the best modules in
terms of the multiple objective setting. Moreover,
the retrieved modules have reasonable and tunable
sizes.

3.2 Application to FSHD1

Facio-Scapulo-Humeral muscular Dystrophy type 1
(FSHD1) is a rare autosomal dominant genetic dis-
ease characterized by a progressive and asymmet-
ric weakening of specific groups of muscles, with
progression from the face to the lower limbs. The
particularity of this disease resides in the absence

of mutation in a gene encoding a muscle-specific
factor. FSHD1 is however associated to a variable
number of tandem repeats in the disease locus at
the subtelomeric 4q35, more specifically to an array
of 3.3 kb macrosatellite elements (D4Z4). In unaf-
fected individuals, this array comprises between 11
and up to an average of 75 units [41]. In patients,
this array is shortened with a threshold limit of less
than 10 units. D4Z4 encodes the DUX4 transcrip-
tion factor. The current pathological model asso-
ciates D4Z4 array shortening with chromatin relax-
ation, expression of the DUX4 transcription factor
and subsequent activation of a number of target
genes of poorly known function in muscle physiol-
ogy [42]. Overall, the biological processes leading
to the muscle defects remain currently unclear.

We aim here to apply MOGAMUN in order to
reveal biological processes that would not have been
exposed by previous analyses, and further define
biomarkers associated with the muscle phenotype
of patients. We applied MOGAMUN using a mul-
tiplex networks composed of three layers of biolog-
ical interactions and FSHD1 RNA-sequencing ex-
pression datasets obtained from different types of
cells [32, 33, 34] (Materials and Methods). More
precisely, the first FSHD1 RNA-seq datasets were
obtained from biopsies, myoblasts and myotubes
differentiated from those myoblasts [32]. The two
other datasets were obtained from immortalized
myoblasts [33] and myotubes differentiated from
those myoblasts [34] (Material and Methods). We
independently ran MOGAMUN 30 times.

We first considered the results obtained from
[32] dataset, and analyzed the active modules iden-
tified in biopsies (18 active modules, Supplemen-
tary Figures S10), myoblasts (10 active modules,
Supplementary Figures S11) and corresponding
myotubes (23 active modules, Supplementary Fig-
ures S12).

In myoblasts, all the 10 active modules contain
at least one of the two significantly down-regulated
genes LRRTM4 and GFRA1 (Supplementary Fig-
ures S11). LRRTM4 is required for presynaptic dif-
ferentiation and GFRA1 belongs to the GDNF fam-
ily receptor, also involved in the control of neuron
survival and differentiation. The function of these
two factors in muscle cells is, to our knowledge, not
described. However, it is interesting to note that
they belong to active modules containing proteins
implicated in ubiquitination, intracellular signaling
and DNA replication machinery, as FSHD1 cells
display increased apoptosis and reduced prolifera-
tion.

Using expression data obtained from myotubes
differentiated from these myoblasts, MOGAMUN
identified 23 active modules, among which many
contain a subset of highly over-expressed nodes
(Supplementary Figure S12). These nodes associ-
ated to a high fold-change are DUX4 target genes,
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(a) (b)

(c) (d)

Figure 2: Comparing the performance of MOGAMUN, COSINE, PinnacleZ and jActiveModules. (a)
Results of 30 runs using the PPI 1 network and the Sim normal dataset. (b) Filtered results from (a),
keeping only the subnetworks with at least 15 nodes. (c) Results of 30 runs using the PPI 2 network and
the Samp TCGA dataset. (d) Filtered results from (c), keeping only the subnetworks with at least 15
nodes. The size distributions of all the modules can be retrieved in Supplementary Figures S1-8.
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as defined in Geng et al. [42] and in Yao et al.
[32] from DUX4-transduced over-expression exper-
iments. In the active modules, the DUX4 target
genes are however only linked together by interac-
tions inferred from correlation of expression, and do
not share pathway nor physical interactions. The
over-expression of DUX4 target genes in differenti-
ated cells is consistent with previous observations
showing increased expression of this gene and its
target genes upon differentiation. In some active
modules, the DUX4 target genes are connected to
cyclins through the Ubiquitin conjugating enzymes
E2 D1 (Figure 3a). They are connected in partic-
ular to CCNA1, involved in cell cycle regulation at
the G1/S and G2/M, and also reported as a DUX4
target gene in DUX4-transduced [42, 32] and im-
mortalized [37, 43] myoblasts.

In biopsies, Yao et al. also detected some DUX4
targets genes at a low level [32]. However, we do
not identify DUX4 target genes in active modules
obtained by MOGAMUN from biopsy expression
data. Notably, in biopsies, we identified an in-
teresting active module containing ACTC1 (encod-
ing the Alpha Actin Cardiac Muscle 1)(Figure 3b).
ACTC1 is mainly expressed in developing skeletal
muscle, but its expression is also reactivated in dis-
eased mature skeletal muscle, possibly as a sign of
regeneration. In this module, we also noticed the
presence of the over-expressed gene ABCC8, encod-
ing a modulator of ATP-sensitive potassium chan-
nel and insulin release, and involved in the control
of contractility and protection of the tissue against
calcium overload and fiber damage. An intrigu-
ing observation is also the presence of OGDHL, en-
coding the 2-oxoglutarate deshydrogenase complex
component E1-like, which localizes to mitochondria
and degrades glucose and glutamate. OGDHL is
significantly down-regulated in diseased biopsies.
Overall, this active module links a potential re-
duced mitochondrial activity, frequently described
for FSHD1, to decreased response to electrical stim-
uli (ABCC8) and possible dysfunction of the con-
tractile apparatus associated with over-expression
of ACTC1, which might reveal an increased muscle
regeneration or immaturity of the contractile appa-
ratus.

In Banerji et al. 2017, the authors highlighted
the repression of PAX7 target genes as a hallmark
of FSHD1 skeletal muscle [33]. This signature, as-
sociated with the activation of the hypoxia path-
way, was considered as more robust than the DUX4
signature, which remains variable between studies
[42, 32, 44]. We identified 23 active modules with
MOGAMUN using this expression dataset (Supple-
mentary Figure S13). The nodes belonging to these
modules, as observed for instance in Figure 3c, re-
veal MAPK-dependent decrease in cell signaling
pathways, response to oxydative stress and reduced
cell proliferation, as often reported for FSHD1 cells

in culture.

We finally applied MOGAMUN to RNA-seq
data from myotubes derived from immortalized my-
oblasts [34]. This RNA-seq study was designed to
consider the temporal dimension of gene expression.
Genes are classified into 6 categories divided in 3
different groups: up or down regulated in FSHD1;
up or down regulated during myogenesis and up or
down regulated during FSHD1 myogenesis. One of
the main message of this work relates to the sup-
pression of PGC1α (encoded by the PPARGC1A
gene) in FSHD1 myotubes as a cause of hypotro-
phy in FSHD1 myotubes [34]. We applied MOGA-
MUN only to RNA-seq data obtained from the last
time point of the myoblast to myotubes differentia-
tion kinetics (i.e. fully differentiated post-mitotic
myotubes) (Material and Method). We identi-
fied 17 active modules (Supplementary Figure S14).
An interesting module revealed, among other, con-
nections between PPARGC1A and CPT1C (Fig-
ure 3d). PPARGC1, down-regulated in FSHD1, is
involved in regulating the activities of cAMP re-
sponse element binding protein (CREB) and nu-
clear respiratory factors (NRFs). CPT1C, up-
regulated in FSHD, is involved in muscle glucose
uptake. We also observed in the module the pres-
ence of MAPK10, required for protection against
apoptosis. It is to note that MAPK10 is also
identified in a module from FSHD1 immortalized
myoblasts (Figure 3c), overall highlighting the ex-
istence of connections between specific signalling
pathways and chromatin-associated factors previ-
ously identified as implicated in the disease (YY1,
EP300, CREBBP) [44, 45].

4 Discussion

We here designed, compared and applied MOGA-
MUN, a multi-objective genetic algorithm that is
able to detect active modules in multiplex net-
works. Multiplex biological networks are composed
of different layers of physical and functional inter-
actions; each layer has its own meaning, topology
and noise. The protein-protein interaction layer,
for example, is sparse, but composed of physical bi-
nary interactions extracted from curated databases.
On the other hand, the co-expression network is
very dense, but prone to indirect and spurious in-
teractions. However, altogether, the different layers
can provide complementary functional information
[17, 18].

We compared MOGAMUN to three different
methods, representative of the main algorithms
dedicated to the identification of active modules:
greedy searches (PinnacleZ), simulated annealing
(jActiveModule), and mono-objective genetic algo-
rithm (COSINE). As, to our knowledge, no exist-
ing method is able to leverage multiplex networks
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Figure 3: Four active modules obtained by applying MOGAMUN on different FSHD1 expression datasets. The color
of the nodes represents the fold-change, where green and red nodes correspond to under- and over-expressed genes,
respectively. Nodes with bold black border correspond to genes significantly differentially expressed (FDR < 0.05
and absolute log2 fold-change > 1). Blue nodes correspond to genes with no associated transcriptomics data. The
active modules are extracted from the sets of active modules obtained from a) myotubes from Yao et al. 2014 [32],
b) biopsies from Yao et al. 2014 [32], c) myoblasts from Banerji et al. 2017 [33] and d) corresponding myotubes from
Banerji et al. 2019 [34].
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as inputs, we designed a benchmark for compar-
ison that is based on single networks. In order
to have a fair comparison between MOGAMUN
and the three other methods, we used the param-
eters recommended by the authors, except if there
were other values that matched our particular se-
lection of parameters (Table 1). In particular, we
set the number of subnetworks to be retrieved by
jActiveModules to one because there was a single
active module. In addition, we set the maximum
size per subnetwork to 50 in PinnacleZ. Finally, we
set the lambda parameter to 0.5, to have a trade-
off between the weights of the nodes and edges,
in COSINE. We demonstrated the performance of
MOGAMUN in retrieving modules both densely
connected and containing top-scoring nodes, i.e.,
nodes associated to a high deregulation. However,
MOGAMUN running time is, similarly to the other
genetic algorithm COSINE, one order of magnitude
slower than jActiveModule and PinnacleZ in its
current implementation. This running time could
be improved by implementing the most computa-
tionally demanding tasks (e.g., cross-over) in lower
programming languages, like C or Python, or us-
ing surrogate-assisted multi-objective evolutionary
algorithms.

The extensive analysis of the different FSHD1
datasets highlighted the reduced proliferation and
increased apoptosis of cells from FSHD1 patients
and led to the identification of novel genes in this
different pathways by linking cell defects to fac-
tors involved in muscle function. It further re-
vealed consistencies in biological processes identi-
fied by different teams in their respective models
but also some putative discrepancies in the inter-
pretation of disease-associated biological processes
depending on the type of samples used (biopsies of
muscle unaffected in the disease, immortalized or
transduced proliferative myoblasts or post-mitotic
myotubes). Overall, this also reveals that MOGA-
MUN can be applied to identify disease-associated
biological processes in rare diseases for which the
number of samples is limited, and also to compare
the processes identified in different datasets.

We applied here MOGAMUN to identify active
module from the integration of RNA-seq expression
data into multiplex networks. However, it is to note
that any type of molecular profile associated to p-
values can be integrated on the networks, such as
p-values obtained from a GWAS, from phenotypic
hit screening, or from proteomics profiling.
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