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Marco Vanzinia,b,c, Francesco Sottilea,b, Igor Reshetnyakd , Sergio Ciuchie, f , Lucia Reininga,b

and Matteo Gattia,b,g

The Kohn-Sham system is the prototypical example of an auxiliary system that targets, in princi-
ple exactly, an observable like the electronic density without the need to calculate the complicated
many-body wavefunction. Although the Kohn-Sham system does not describe excited-state proper-
ties directly, it represents a very successful strategy guideline also for many spectroscopy applications.
Here we propose a generalization of the Kohn-Sham idea. In many situations one is interested only
in limited answers to specific questions, whereas in state-of-the-art approaches a lot of information is
generally calculated that is not needed for the interpretation of experimental spectra. For example,
while the target is a spectrum S(ω) like the optical absorption of a solid, within time-dependent
density-functional theory (TDDFT) one calculates the whole response function χ(r,r′,ω). Analo-
gously, within many-body perturbation theory (MBPT) one calculates the whole one-particle Green’s
function G(r,r′,ω), while only the total spectral function A(ω) is needed for angle-integrated pho-
toemission spectra. In this contribution, we advocate the possibility to design auxiliary systems with
effective potentials or kernels that target only the specific spectral properties of interest and are
simpler than the self-energy of MBPT or the exchange-correlation kernel of TDDFT. In particular,
we discuss the fundamentals and prototypical applications of simplified effective kernels for optical
absorption and spectral potentials for photoemission, and we discuss how to express these potentials
or kernels as functionals of the density.

1 Introduction
In all spectroscopy experiments one perturbs a sample with an
external mean (e.g. a beam of photons, electrons or neutrons)
driving the system into an excited state1,2. If the external pertur-
bation is not too strong (so that the sample is not modified during
the experiment), the measurement of the system response gives
access to the elementary excitations that characterize the physical
properties of the material3,4. The measured spectra are affected
both quantitatively and qualitatively by the electron-electron in-
teraction5, which poses a challenge for their interpretation or pre-
diction. Features such as finite quasiparticle linewidths and satel-
lites in photoemission spectra6, bound excitons7,8 and double ex-
citations9 in optical spectra, or double plasmons10,11 in loss spec-
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tra, are all signatures of the Coulomb interaction that cannot be
captured within an independent-particle picture. Apparently, the
theoretical description and analysis of excitation spectra hence
require the solution of a complex many-body problem.

However, each spectrum contains only a limited amount of in-
formation and each spectroscopy probes a different kind of ex-
citation: for example, electron removal and addition excitations
in photoemission or neutral electron-hole excitations in absorp-
tion spectroscopy1. Indeed, observables are formally obtained as
expectation values of the many-body wavefunction through high-
dimensional integrals, implying that most of the detailed informa-
tion carried by the wavefunction itself is actually not required12.
We can thus wonder: Is it possible to bypass the many-body prob-
lem of the calculation of the wavefunction and obtain directly the
quantity of interest?

The Kohn-Sham approach13 to density-functional theory14

(DFT), together with its extension to the time-dependent case
within time-dependent density-functional theory15 (TDDFT),
shows that a positive answer to this question indeed exists, at
least for the electronic density n(r, t). The Kohn-Sham scheme
represents the prominent example of an auxiliary system of ficti-
tious electrons subjected to an effective potential: the local and
real potential vKS(r, t), which besides the original external poten-
tial also contains Hartree and exchange-correlation (xc) contri-
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butions. The effective Hamiltonian is much simpler to solve than
the initial one: the Kohn-Sham electrons are non-interacting∗,
giving rise to a single-particle Hamiltonian. The only require-
ment of the Kohn-Sham auxiliary system is to yield the same
density n(r, t) as the original interacting electron system. In-
stead, for example, the many-body Kohn-Sham wavefunction is a
Slater determinant and its single-particle density matrix is idem-
potent (i.e., occupation numbers are either 0 or 1): both are thus
inherently different from the corresponding quantities that are
obtained from the full solution of the many-body Hamiltonian.
The Kohn-Sham potential of (TD)DFT can be understood as a
mean field made exact uniquely for the target quantity, n(r, t).
Within many-body perturbation theory5,18 (MBPT), the role of
the self-energy Σxc(r1,r2,ω) can also be interpreted in a simi-
lar manner. As a matter of fact, the self-energy is the effective
operator describing exchange-correlation effects that yields the
single-particle Green’s function G(r1,r2,ω), without the need
of knowing explicitly multi-particle excitations contained in the
many-body wavefunction or in Green’s functions of higher or-
ders. In contrast to the Kohn-Sham potential, the self-energy is
spatially non-local: already the first-order term of the perturba-
tion expansion in the Coulomb interaction contains the non-local
Fock exchange operator; frequency dependent: dynamical cor-
relation effects beyond Hartree-Fock give rise to the renormaliza-
tion of quasiparticles and additional structures in the spectra such
as satellites; complex: its imaginary part describes the finite life-
time of quasiparticles and is responsible for the band-gap opening
in Mott insulators5.

The definition of auxiliary systems seems a very appealing strat-
egy also to obtain excitation spectra circumventing the many-
body problem. Ref.19 showed that generalizations of the Kohn-
Sham auxiliary system are indeed possible also for spectral quan-
tities. In particular, the suggestion of a local, real, yet dynami-
cal, spectral potential vSF(r,ω) for photoemission has been later
investigated more in detail for exactly solvable models20,21 and
prototypical materials22. The spectral potential has a much sim-
pler form than the self-energy. Even though it is real, through its
frequency dependence it is still constructed to reproduce, in prin-
ciple exactly, all features associated to the imaginary part of the
self-energy.

How far can we extend this idea to spectroscopy? If we tar-
get frequency-dependent excitation spectra only, which are the sim-
plest auxiliary systems that are peculiar to each spectroscopy? Are
the corresponding effective potentials pathological or are they still
amenable to approximations guided by physical ideas? In the rest
of the article we explore some answers to those questions: After
having outlined the general problem in Sec. 2, in Secs. 3 and 4
we examine the specific cases of angle-integrated photoemission
and absorption spectroscopy, respectively, with numerical results
for prototypical materials. Finally, we summarize our conclusions
in Sec. 5.

∗ In general, one can devise auxiliary particles whose other physical properties may
be different from real electrons as well, see e.g. Refs. 16,17.

2 General framework
We aim to calculate a generic excitation spectrum S(ω) of a many-
electron system. At the same time we suppose to be able to deter-
mine the spectrum S0(ω), typically the one corresponding to the
original Hamiltonian without electron-electron interaction, or for
a model or a material that is solvable with high accuracy (pos-
sibly exactly). Spectra are generally a part of the information
carried by correlation functions19,23, which we formally indicate
as S(ω) = p{C(ω)} and S0(ω) = p{C0(ω)}.† A way to connect the
two spectra is to introduce a Dyson-like equation between them,
which, focusing on frequency-dependent spectra, can be schemat-
ically written as:

C(ω) =C0(ω)+C0(ω)K(ω)C(ω) (1)

or, if the inverse functions exist in a common domain, equiva-
lently:

K(ω) =C−1
0 (ω)−C−1(ω). (2)

The issue of determining S(ω) is therefore translated into the
calculation of the kernel K(ω) of the Dyson equation. The ad-
vantage of the structure of Dyson equations is that low-accuracy
approximations to K(ω) can give spectra S(ω) of higher accuracy
than equivalent direct approximations to S(ω). Therefore one
usually can find Dyson equations in many different contexts, from
MBPT and TDDFT to dynamical mean-field theory24 (DMFT).

K(ω) (which can be alternatively named ‘kernel’ or ‘poten-
tial’‡) defines the auxiliary system that is designed to give the
specific target S(ω), but not other spectra. So, for each spec-
troscopy, one has to introduce a different auxiliary system. Since
the target here is a frequency-dependent function S(ω) and not a
space-dependent quantity like the density n(r), the simplest pos-
sible ansatz is a frequency-dependent K(ω), so even simpler than
the Kohn-Sham potential vKS(r) of DFT or the spectral potential
vSF(r,ω) for photoemission.

The obvious question is that a new auxiliary system becomes
useful only if it is possible to obtain a satisfactory approximation
for its effective potential (or kernel) K(ω). One can expect that
working with more compact objects can make their approxima-
tion harder to find. Different strategies of approximation have
been followed in the various contexts. Within MBPT, diagram-
matic techniques combined with physical intuition of fundamen-
tal processes have been often the guide to find successful ap-
proximations5,25, while in the context of DFT exact constraints
or fits of semi-empirical parameters in large sets of compounds
have been also often employed (see e.g. Refs.26–35).

A very popular route, especially within DFT and its extensions,
is to build an accurate knowledge of the effective potential in a
model and import this information into the systems under study

†Analogously, the density is also a part of the Green’s function, its diagonal: n(r, t) =
−iG(r,r, t, t+).
‡Correlation functions are generally complex functions, so K(ω) is generally complex

as well. However, static and real potentials, like the Kohn-Sham potential, are also
possible. In Sec. 3 we will discuss an effective potential that is real, while in Sec. 4
we will investigate an effective kernel that is complex.
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through a proper prescription. Notably, the local density approx-
imation13 (LDA) chooses the homogeneous electron gas (HEG)
as the model system: its xc potential36 is used in real materials
through their local electronic density. Recently, in Ref.37 this ap-
proach has been turned into a general formal strategy, called the
“connector theory”. Along this line, in Sec. 3 we will explore the
possibility to extract information from the HEG for a new auxil-
iary potential vpes(ω) that directly targets angle-integrated spec-
tral functions.

In the following, we will also exploit the fact that S(ω) is of-
ten a part of the information contained in more complex corre-
lation functions. In these cases K(ω) can be expressed in terms
of those quantities and successful approximations can be found.
The representative example of this strategy is the Sham-Schlüter
equation38,39 of DFT, which can be also used to devise approxi-
mations within optimized effective potential40 schemes. In Sec.
4 we will revisit the TDDFT Nanoquanta kernel19,41–46 from
this perspective, and we will introduce auxiliary systems with
frequency-dependent kernels f abs(ω) that are even more compact
than TDDFT for the calculation of optical spectra.

3 Photoemission spectroscopy

3.1 Spectral function: state of the art
By measuring the one-electron addition and removal energies,
angle-resolved photoemission spectroscopy (ARPES) is one of the
most direct ways to probe the electronic structure of a mate-
rial6,47. If one ignores many subtleties related to the photoe-
mission process itself48, ARPES spectra can be interpreted within
the sudden approximation in terms of the k-dependent spectral
function:

A(k,ω) =
1
π
|ImG(k,ω)|, (3)

where the one-particle Green’s function§ G(k,ω) can be calcu-
lated from the Dyson equation5,18:

G−1(k,ω) = G−1
H (k,ω)−Σxc(k,ω). (4)

Here GH is the Green’s function associated to the Hartree hamil-
tonian and the self-energy Σxc describes all the many-body
exchange-correlation effects. Within Kohn-Sham DFT, the com-
plex and non-local self-energy is replaced by the real and local xc
potential vxc, which is however not meant to give the correct spec-
tral function A(k,ω). The infamous “band-gap problem” of Kohn-
Sham DFT is a manifestation of this issue38,49. Various approx-
imations to the self-energy Σxc, with different ranges of validity,
are today very popular, ranging from Hedin’s GW approximation
(GWA)48 of MBPT to DMFT in the single site approximation24.
Both in the GWA and DMFT approximations, the self-energy has
a non-zero imaginary part, leading to effects and satellites due
to the electron-electron interaction. In the following we will in-
stead restrict our focus to real and non-local DFT hybrid function-
als, such as the Heyd-Scuseria-Ernzerhof HSE06 functional50,51.
They can be considered as static approximations to Σxc(k,ω) giv-
ing satisfactory results for quasi-particle energies in a large set of

§ Here and in the following all quantities are defined at T=0 K.

sp semiconductors and metals (see e.g. Refs.52–55).
All the computational schemes that make use of approximate

non-local and/or dynamical self-energies, including hybrid func-
tionals, are intrinsically more expensive than the Kohn-Sham DFT
approach with a local potential. The search for alternative short-
cuts is thus a very active field of investigation.

3.2 Effective potentials for photoemission

In Ref.19 it was shown that the auxiliary system determined by
the spectral potential vSF(r,ω) is capable to yield, in principle
exactly, the local spectral function

A(r,ω) =
1
π
|ImG(r,r,ω)|, (5)

together with all the observables that can be derived from it, such
as the electron density:

n(r) =
∫

µ

−∞

dωA(r,ω) (6)

(with µ the Fermi energy), and the total spectral function A(ω)

measured by angle-integrated photoemission (PES)47:

A(ω) =
1
π

∫
dr |ImG(r,r,ω)|= 1

π

∫ dk
8π3 |ImG(k,ω)|. (7)

The auxiliary system with the spectral potential vSF(r,ω) rep-
resents already a significant simplification with respect to ap-
proaches based on the self-energy Σxc(r,r′,ω). However, if one
is interested only in a frequency-dependent excitation spectrum
like A(ω), it is also conceivable to look for further simplifications.

Therefore, we consider here the idea of a purely frequency-
dependent and real effective potential vpes(ω). In contrast to the
local spectral potential vSF(r,ω), vpes(ω) is a number in any basis.
vpes(ω) has to connect the spectral function A0(ω) that is known
in some approximation with the target A(ω). For simplicity, we
assume that the Hamiltonian that gives rise to A0(ω) is real and
static. In such a case, the spectral function associated to vpes(ω)

is simply Apes(ω) = A0(ω− vpes(ω)). If the range of A(ω), namely
the set of values of A(ω) for varying ω, is a subset of the range of
A0(ω), the effective potential vpes(ω) can be defined on the same
frequency domain such that:

A(ω) = Apes(ω) = A0
(
ω− vpes(ω)

)
. (8)

This amounts to looking for the frequency ω̃ = ω − vpes(ω) such
that Apes(ω) = A(ω) = A0(ω̃).

In the next sections we will use Eq. (8) to perform a reverse-
engineering study and determine vpes(ω) for three prototypical
solids: sodium, aluminum and silicon. On the basis of this analy-
sis, we will then suggest a route for possible constructive approx-
imations.

3.3 Dependence on the choice of the spectral function A0

For each material, we fix a target spectral function A = Atarget for
which we adopt the HSE06 functional as a cheap, but realistic
descriptor of the electronic structure of the three materials. In all
panels of Figs. 1, 2, 3, for sodium, aluminum and silicon, respec-
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tively, the blue lines are the target HSE06 spectral functions.

We first examine the starting-point dependence of vpes. Accord-
ing to the choice of the approximated spectral function A0 in Eq.
(8), a different vpes is required to give the same target A(ω). We
consider two different spectral functions A0, namely the Hartree
approximation or the LDA. In Figs. 1, 2, 3, the green lines are
the starting spectral functions A0, corresponding to the Hartree
approximation in the left panels and the LDA in the right panels
of each figure.

In each case, we numerically invert the equation

A(ω) = A0
(
ω− vpes(ω)

)
(9)

to determine the potential vpes(ω) that sends A0(ω)→ A(ω). The
result is represented in each panel of Figs. 1, 2, 3 by the red
plot. For each frequency ω many solutions of the inversion are
possible, since for a given value of A, there are usually several
frequencies at which A0 = A. However, it is often possible to iden-
tify a particular solution by inspecting the two spectral functions
and connecting corresponding features (e.g., the band bottom of
A with the band bottom of A0). In such a way, with respect to
the raw potential, which is a mere collection of points, we can
distillate a function of ω, however discontinuous, which we call
the physical potential vpes(ω). In particular, this physical poten-
tial emerges (notably after 10 eV in sodium, or after 25 eV in
aluminum) as the (almost) flat line that represents the center of
gravity of the other solutions that are instead always scattered on
a wide range. As expected, in these cases we find that the closer
is the starting point to the target spectral function, the smaller is
this physical potential. Whenever an important structure appears
in the target spectral functions, like a dip as for aluminum or the
gap for silicon, the physical potential vpes(ω) has to undergo wild
oscillations. These sudden variations of vpes(ω) are larger for the
left panels compared to the right panels, as the Hartree spectral
function is farther from the HSE06 target than the LDA. This is
most evident for the band gap region of silicon (around 0 eV),
where in the Hartree case the only possible solution undergoes a
large jump (until∼ 12 eV), while for the LDA there is also another
solution at ∼ 0 eV that does not require such a large oscillation.
We can therefore conclude that vpes(ω) seems more amenable to
a simple approximation if one considers the LDA as the starting
point rather than the Hartree approximation. We will examine
this possibility more closely in the next section.

3.4 A path for approximations

A great share of the popularity of the Kohn-Sham scheme in DFT
derives from the fact that the xc potential vxc(r) has been accu-
rately calculated once and for all in the HEG36 and that simple
prescriptions like the LDA are available for its use in inhomoge-
neous materials. A similar approach has been investigated re-
cently also for the dynamical local spectral potential vSF(r,ω) in
Ref.22. So it appears sensible to explore the same path also in the
present case for the scalar potential vpes(ω).

Also in the HEG, for each density nh, we can establish a relation

analogous to Eq. (8):

Ah(ω) = Ah
0(ω− vh

pes(ω)) (10)

where vh
pes(ω) is the scalar potential that in the HEG allows one

to obtain Ah(ω) from Ah
0(ω). The great advantage of the HEG as

a model is that, besides being a universal limit of all extended
systems, all the spectral functions considered here are monotonic
functions of frequency and hence uniquely invertible: as a conse-
quence, the potential vh

pes(ω) is a smooth function of ω.

Following the connector theory37, one should look for a pre-
scription that for each frequency associates the effective potential
vpes(ω) to the HEG vh

pes(ω) with a different density nh:

vpes(ω) = vh
pes|nh=F (ω,[n]) (ω) . (11)

If the two functions span the same range of values, there exists in
principle at least one exact connector37 nh = F (ω, [n]).

Here we consider the simplest possible connector approxima-
tion that is obtained by setting for all frequencies nh equal to the
average density n̄ of each material and by aligning the frequency
axes in such a way that vpes(ω +µ) = vh

pes|nh=n̄

(
ω +µh), so that at

ω = 0 both sides refer to their Fermi energy. This gives:

vpes(ω) = vh
pes|nh=n̄

(
ω−µ +µ

h). (12)

We examine this approximation for the three prototypical materi-
als. As in Sec. 3.3, the scalar potential is meant to send the spec-
tral function A0 (either Hartree or LDA) into the target HSE06
spectral functions. In all cases, we observe that the approxima-
tion (12) gives already a good estimation (see purple lines in Figs.
1, 2, 3) of the effective potential vpes obtained directly from the
inversion of Eq. (9). The agreement between the potential im-
ported from the HEG and one reference solution (what we called
the physical potential in Sec. 3.3) is almost perfect for sodium
(Fig. 1), as expected since sodium is very close to the HEG, and
also for aluminum (Fig. 2). It remains good even for the onset
of the valence band of silicon (Fig. 3), but it degrades towards
the band gap region, where a more elaborate connector would be
needed. In any case, as discussed in Sec. 3.3, the LDA is a bet-
ter starting point than the Hartree approximation as vpes(ω) can
more easily approximated by vh

pes(ω), even in the region of the
gap of silicon.

We can now test this possibility in practice, and use vh
pes(ω)

to calculate the spectral function from Eq. (9), to be compared
with our target spectral function. If the results are promising,
this would open interesting perspectives, since such an approach
requires only 1) a low-effort starting-point spectral function A0,
2) a frequency-dependent scalar potential in the HEG, which can
be evaluated once and for all for different values of densities and
then tabulated, and 3) the chemical potential µ to set up the con-
nector. Thanks to this procedure, the calculation and the use of
the HSE06 non-local potential, which is computationally the most
demanding part of a standard calculation, is completely bypassed.

The results are shown in Figs. 4 and 5. For the two metals,
there is hardly a difference in starting from Hartree or from the
LDA. The overall shape is an exceptionally good approximation to
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Fig. 1 Spectral functions of sodium: the target HSE06 (blue lines) is obtained from the starting spectral functions (green lines) thanks to the potential
vpes(ω) (red lines, in eV). The starting spectral function is calculated within the Hartree approximation (left panels) or the LDA (right panels). The
approximated vpes(ω) obtained from the HEG following Eq. (12) is represented by the purple lines.

Fig. 2 Spectral functions of aluminum:the target HSE06 (blue lines) is obtained from the starting spectral functions (green lines) thanks to the
potential vpes(ω) (red lines, in eV). The starting spectral function is calculated within the Hartree approximation (left panels) or the LDA (right
panels). The approximated vpes(ω) obtained from the HEG following Eq. (12) is represented by the purple lines.

Fig. 3 Spectral functions of silicon: the target HSE06 (blue lines) is obtained from the starting spectral functions (green lines) thanks to the potential
vpes(ω) (red lines, in eV). The starting spectral function is calculated within the Hartree approximation (left panels) or the LDA (right panels). The
approximated vpes(ω) obtained from the HEG following Eq. (12) is represented by the purple lines.
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Fig. 4 Using Eq. (9) and (12) to build the spectral function of Na (upper
panel) and Al (bottom panel), starting from the Hartree approximation
(green) or the LDA (purple). The shaded area is the target HSE06
spectral function.

Fig. 5 Using Eq. (9) and (12) to build the spectral function of Si,
starting from the Hartree approximation (green) or the LDA (purple).
The shaded area is the target HSE06 spectral function.

Fig. 6 Upper panel: in purple, the spectral function of Si, obtained
by replacing eq. (12) with a two-parameters connector, eq. (13). The
shaded purple area is the target result, while the green area is the starting
point spectral function (LDA). Lower panel: the fitting of the potential
via eq. (13).

the target result, considering the minimum effort required. The
improvement with respect to the LDA result is clear. On the other
hand, other small features (see, e.g., the bunch of peaks at ∼3
eV in sodium, or the ones around the Fermi energy in aluminum)
are not well reproduced. In fact, those features correspond to
gaps that open up in correspondence of Brillouin zone bound-
aries22. Those features are intrinsically related to the presence
of the potential of the crystal. Therefore, it is expected that a
more elaborate connector, with more physical information from
the material, is needed in these regions.

Also for silicon, see Fig. 5, the bottom of the valence band
is quite well reproduced by this effective method. However, the
difference in the choice of the starting point is noteworthy: while
starting from the Hartree spectral function results in a good value
for the bottom of the band, starting from LDA results in a true
quantitatively agreement. Also for the rest of the spectrum, the
choice of LDA as a starting point offers a much better result with
respect to Hartree. The latter is in fact not able to open a gap,
while the former does, even though at too high energy, around
3 eV. The fact that the results in silicon are not as good as in
metals is not suprising. Silicon is much farther from the HEG
than sodium and aluminum, and the connector of Eq. (12), a
rigid shift and a single value for the density (the average density),
is too crude.

A simple improvement is, for instance, adding a scaling factor
in the frequency argument of the HEG potential, and fitting the
physical potential with two free parameters a and b at the bottom
of the valence band and the gap region, see lower panel of fig. 6.
This gives as a result:

vpes(ω) = vh
pes|nh=n̄

(
a(ω−µ +µ

h)+b
)
. (13)

This reminds a quasiparticle expansion of the spectral function
around the Fermi energy in Fermi liquids56. The parameter a
acts as renormalization factor, while b as further corrector to the
Fermi level alignment. This renormalization effectively changes
the bandwidths. The fact that a 6= 1 implies that the renormali-
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sation in the frequency-dependent potential occurs differently in
the HEG and in silicon. The reason why this occurs and how the
connector approximation should take it into account is a very in-
teresting open question that is worth further investigation beyond
the present work. The result, obtained with a= 0.39 and b=−8.7
eV, is shown in Fig. 6: both the valence as well as the conduction
band are very well reproduced. Only in the gap region, the HEG
potential is not strong enough to considerably depart from the
starting point.

To summarize, simple modifications on the HEG potential are
enough to yield very good results in the spectral function. From
our analysis we can conclude that the simple connector (12) is al-
ready a promising starting point to devise approximations for the
scalar potential vpes(ω). Therefore, this new efficient auxiliary
potential is a route that is worth to explore further. In particular,
we can imagine to know the spectral function of a given material
(from experiment or an accurate calculation) and we can think of
using vpes(ω) to have a very good estimation of the spectral func-
tions of materials belonging to same class of materials. Here we
have shown that knowing the potential in the HEG leads to very
good spectral functions for sodium and aluminum at an almost
zero computational cost. On the other hand, we also see a limit
in the design of effective potentials that have such a simple math-
ematical form. For materials that are far from the model system,
finding a good connector could become a difficult task.

4 Optical spectroscopy

4.1 State of the art: TDDFT and BSE

Absorption spectra of solids are described by the imaginary part
of the macroscopic dielectric function εM(ω), which can be calcu-
lated from1

εM(ω) = 1− lim
q→0

vG=0(q)χ̄G=0,G′=0(q,ω) (14)

where G and G′ are reciprocal-lattice vectors. In the long-
wavelength limit q→ 0, absorption spectra are hence given by
the imaginary part of the product between the long-range term
(G = 0) of the Coulomb interaction v and the head (G = G′ = 0)
matrix element of the density response χ̄ to the total macroscopic
classical potential.

Within TDDFT χ̄ can be obtained as a solution of the Dyson-like
equation1,57:

χ̄(12) = χ0(12)+χ0(13)[v̄(34)+ fxc(34)]χ̄(42) (15)

where χ0 is the Kohn-Sham density-response function, v̄ is the
Coulomb interaction without its long-wavelength component,
and fxc is the xc kernel. In Eq. (15) repeated indexes are in-
tegrated over and we have adopted the short-hand notation (1)
for the space-time indexes (r1, t1).

In Eq. (15) the fxc kernel needs to be approximated. Set-
ting fxc = 0 corresponds to the random-phase approximation58

(RPA): χ̄ = χ̄RPA, which completely misses excitonic effects. The
most widely used adiabatic local density approximation (ALDA)
to fxc improves over the RPA in the description of plasmon ex-
citations in loss spectra, but still fails to capture excitonic ef-

fects in the optical spectra of extended systems59. In line with
literature, here we also introduce a many-body xc kernel f mb

xc ,
formally defined by replacing χ0(12) by the independent-particle
P0(12) = −iG(12)G(21) in (15), where G are interacting Green’s
functions. In practice, P0 is usually built from a quasiparticle band
structure in the GWA, which makes the task of the remaining part
of the kernel easier, since one starts from the correct band gap.

Within MBPT χ̄ instead is obtained from the diagonal

L̄(1122) = χ̄(12), (16)

where the (modified) two-particle correlation function L̄(1234) is
the solution of the Bethe-Salpeter equation60,61 (BSE):

L̄(1234)=L0(1234)+L0(1256) [v̄(57)δ (56)δ (78)+Ξ(5678)] L̄(7834)
(17)

in the charge sector. Here L0(1234) = −iG(13)G(42) is the
independent-particle correlation function whose diagonal is
L0(1122) = P0(12), and Ξ is the electron-hole interaction kernel.
In the most widely used approximation62–65, the GWA is adopted
to calculate G and the derivative that yields Ξ. Moreover, the
quasi-particle approximation is used for G, and Ξ is approxi-
mated by the statically screened Coulomb interaction Ξ(5678) =
−W st(56)δ (57)δ (68).

The solution of the BSE in the GWA represents the state-of-
the-art approach for the successful calculation of optical spec-
tra and exciton properties in a large variety of materials1,5. In
the strongly correlated regime DMFT analysis of the BSE within
the Hubbard model shows divergence of BSE at the Mott tran-
sition66,67. Singularities of the irreducible vertexes which enter
as a kernel in BSE68 are found within the same formalism. How-
ever these divergences, which occur inside the Fermi-liquid phase,
though not necessarily related to the proximity of a Mott transi-
tion, are certainly associated to a non-perturbative behaviour of
strongly interacting system69, which is beyond the scope of the
present paper. In the following we will consider only sp semi-
conductors and insulators, where the GWA-BSE is in very good
agreement with experiments1,5.

The goal of much work over the last two decades has been
directed to combine the best of the two frameworks1, namely to
reduce the computational cost of the BSE thanks to the use of
TDDFT, while keeping the same level of accuracy. By defining a
four-point TDDFT response function 4χ̄ such that

4
χ̄(1122) = χ̄(12), (18)

it is possible to formally combine the TDDFT and BSE Dyson-like
equations (15) and (17) to give

L̄(1234) = 4
χ̄(1234)+

4
χ̄(1256)

[
Ξ(5678)− f mb

xc (57)δ (56)δ (78)
]

L̄(7834). (19)

By imposing the conditions (16) and (18) in Eq. (19), we obtain
a generalized Sham-Schlüter equation19,38 for f mb

xc :

f mb
xc (34) = χ̄

−1(31)4
χ̄(1156)Ξ(5678)L̄(7822)χ̄−1(24) (20)
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which establishes an exact connection between TDDFT and MBPT
quantities.

The Nanoquanta f mb
xc kernel19,41–46 of TDDFT is obtained from

a first-order linearization of Eq. (20), with χ̄ → P0 = −iGG and
L̄→ P0, and the usual GWA to the BSE kernel Ξ =−W st :

f mb
xc (12) = P−1

0 (13)G(34)G(53)W st(45)G(46)G(65)P−1
0 (62). (21)

This kernel (21) gives results close to BSE ones. However, al-
though it is used within the formalism of TDDFT, calculations are
still cumbersome. In the next subsection we will investigate the
possibility to design effective kernels for optical absorption that
are simpler than the fxc or f mb

xc of TDDFT.

It is interesting to investigate the relation between the
Nanoquanta approximation and the non-locality of the self-
energy. Schematically, the contribution L̄χ̄−1 in (20) is(

δG/δvcl,m

)(
δvcl,m/δn

)
with vcl,m the sum of external and

macroscopic Hartee potential. Changing the chain rule, this is
equal to

(
δG/δveff

)(
δveff/δn

)
, where veff can be any local po-

tential that is in one-to-one relation with the density, such as, e.g.,
the Hartree potential, or the Kohn-Sham potential. If G was the
result of a total local potential vtot, then one could use veff = vtot

in the chain rule, and (21) would be exact. However, G cannot
be obtained from any local potential. Indeed, the more the self-
energy is non-local, the more the Nanoquanta approximation will
degrade the spectra. This also has practical consequences: the
non-locality of the GW self-energy is encoded in the non-locality
of W . In reciprocal space, this is reflected in the contributions
W (q) for small wavevector q. In practice one uses a discrete sam-
pling of the Brillouin zone, and the most problematic, long-range
contribution is the one due to the region around q→ 0. Since this
is just a constant, it can be included in P0 from the beginning, as
explained in Ref.44, and is therefore not approximated. This is
also the strategy used in the present work. However, for an in-
creasingly dense sampling of the Brillouin zone more and more
contributions with small q arise that cannot be avoided in this
simple way. This limits the degree to which a spectrum based on
the Nanoquanta kernel can be converged.

4.2 Effective kernels for absorption

While TDDFT is aimed at giving the whole two-point polarizabil-
ity χ̄(12) and the BSE the whole four-point correlation function
L̄(1234), optical absorption only measures an integral over a di-
agonal, namely the imaginary part of the frequency-dependent
function Aq(ω), defined for each wavevector q as:

Aq(ω) = χ̄G=0,G′=0(q,ω) =
∫

dr1dr2χ̄(r1,r2,ω)eiq(r1−r2)

=
∫

d12 L̄(1122)eiq(r1−r2)eiω(t1−t2).

(22)

We can hence identify Aq(ω) as our target for which we can in-
troduce other effective kernels for new auxiliary systems that are
simpler than TDDFT and the BSE. The design of a new auxiliary
system always implies finding a compromise between the simplic-
ity of the ansatz for the effective kernel and the difficulty one has

then to face for its approximation. To illustrate this general issue,
in the following we will compare three different possibilities for
effective kernels designed to yield Aq(ω), in principle exactly.

The simplest choice, for each wavevector q, is a scalar ker-
nel70,71:

f abs
q (ω) =

1
ARPA

q (ω)
− 1

Aq(ω)
(23)

or
f abs,mb
q (ω) =

1

ARPA,mb
q (ω)

− 1
Aq(ω)

(24)

depending whether the RPA quantities ARPA
q (ω)= χ̄RPA

G=0,G′=0(q,ω)

or ARPA,mb
q (ω) = χ̄

RPA,mb
G=0,G′=0(q,ω) include Kohn-Sham or MBPT

ingredients. These new effective scalar kernels for absorption
spectroscopy have a much simpler form than the corresponding
TDDFT kernels (see Sec. 4.1):

( fxc)G,G′(q,ω) = (χ̄RPA)−1
G,G′(q,ω)− (χ̄)−1

G,G′(q,ω) (25)

( f mb
xc )G,G′(q,ω) = (χ̄RPA,mb)−1

G,G′(q,ω)− (χ̄)−1
G,G′(q,ω) (26)

which are instead matrices in reciprocal space. On the other
hand, being a more compact object, the frequency dependence
of a scalar kernel may be wilder than for the full TDDFT kernel,
since f abs has to fold the spatial non-locality of fxc into its fre-
quency dependence19. In particular, f abs is generally different
from the head element of fxc (see also Ref.70).

At the place of the TDDFT Dyson equation (15), one has:

Aq(ω) = A0
q(ω)+AH

q (ω)+A0
q(ω) f abs,mb

q (ω)Aq(ω) (27)

where A0
q(ω) is the head matrixelement of P0:

A0
q(ω) = P0

G=0,G′=0(q,ω). (28)

and
AH

q (ω) = ∑
G1

P0
G=0,G1

(q,ω)v̄G1(q)χ̄G1,G′=0(q,ω). (29)

We can now make a direct comparison with the head (G=G′ = 0)
matrix elements derived from the BSE (17):

Aq(ω) = A0
q(ω)+AH

q (ω)+ABSE,xc
q (ω) (30)

where we have used the fact that P0 and χ̄ are the diagonal of L0

and L̄, respectively (see Sec. 4.1), and we have defined:

ABSE,xc
q (ω)=

∫
d123456 L0(1134)Ξ(3456)L̄(5622)eiq(r1−r2)eiω(t1−t2)

(31)
(where the space-time integrals have been made explicit for clar-
ity). In this way we can easily relate the two frameworks (see
Eqs. (27) and (30)) and find:

f abs,mb
q (ω) =

ABSE,xc
q (ω)

A0
q(ω)Aq(ω)

. (32)

Eq. (32) is very appealing: for each frequency, it is just a ratio of
two complex numbers. So far no approximation has been made:
by construction this kernel gives the same spectra as those ob-
tained from the BSE. However, since it is defined in terms of the
same quantities that one aims to calculate, Eq. (32) is of no direct
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practical use. Still it remains very useful as a starting point to de-
rive valuable approximations. Here we follow the same strategy
outlined in Sec. 4.1 for the Nanoquanta kernel (21) of TDDFT.
We adopt the first-order approximations: L̄=P0 =−iGG, and take
the static GWA for the BSE kernel Ξ =−W st . This for ABSE,xc

q (ω),
i.e. the numerator of Eq. (32), leads to:

AGWA−BSE
q (ω) =

∫
d1234G(13)G(41)W st(34)G(32)G(24)

× eiq(r1−r2)eiω(t1−t2). (33)

In order to benefit from error cancelling, we make the corre-
sponding approximation to the quantities appearing at the de-
nominator of Eq. (32). The result is the approximated expres-
sion:

f abs,mb,0
q (ω) =

AGWA−BSE
q (ω)

[A0
q(ω)]2

. (34)

In a system with a non-zero band gap (i.e., a semiconductor or an
insulator), in the optical limit q→ 0 both AGWA−BSE

q and A0
q(ω) go

to zero41,72,73 as q2. As a result, in this limit the scalar kernel (34)
is proportional to f (ω)/q2. In Ref.74 the particular form of the
function f (ω) =−α +βω2 was proposed for the dynamical long-
range contribution of the TDDFT fxc kernel, where the parameters
α and β were empirically related to the dielectric constant and
the plasma frequency. It was shown that the absorption spectra
of large gap insulators are improved with respect to calculations
where the kernel is taken to be static75. We can also compare
the kernel (34) with the scalar version of the bootstrap TDDFT
kernel76,77 f BO

xc = 1/[εM(ω = 0)S0
q(ω = 0)]. Both share the same q

dependence, but the bootstrap TDDFT kernel is static (and hence
also real). This property of bootstrap kernels has been identified
as the reason why it leads to spectra with excitonic features with
too large intensities¶ in the spectra77,78.

The scalar kernel f abs
q (ω) (23) is not the only possible choice.

In the 1970s, a contact exciton model was put forward for optical
spectra of semiconductors that was based on a contact electron-
hole interaction71,79–81: Cδ (r−r′). Here we can make this model
exact if we introduce an ansatz for another auxiliary system with
a kernel that is diagonal in reciprocal space‖: f conex

q (ω)δG1,G2 ;
each matrix element in the reciprocal space is the same complex
frequency-dependent function. To this end we formulate a new
Dyson equation:

XG,G′(q,ω) = P0
G,G′(q,ω)+

∑
G1,G2

P0
G,G1

(q,ω)
[
v̄G1(q)+ f conex

q (ω)
]

δG1,G2 XG2,G′(q,ω). (35)

In this new relation the effective susceptibility X is designed
in such a way that, for each q, its head matrixelement is:

¶The bootstrap kernel gives also too small binding energies for bound excitons, which
can be improved with refined variants 77,78.
‖The real and static ALDA kernel of TDDFT has the form: fxc(r,r′) = f (r)δ (r− r′),

which becomes a matrix in reciprocal space: f xc
G,G′ = f (G−G′).

XG=0,G′=0(q,ω) = Aq(ω) = χ̄G=0,G′=0(q,ω). All other elements
G,G′ 6= 0, in principle, may instead differ from the TDDFT re-
sponse function χ̄.

By making use of these properties, the contact exciton kernel
f conex can be related to the BSE, analogously to what has been
done for the scalar kernel f abs,mb,0 in Eq. (32). The result is:

f conex
q (ω) =

ABSE,xc
q (ω)

∑
G1

P0
G=0,G1

(q,ω)XG1,G′=0(q,ω)
. (36)

Compared to Eq. (32), the numerator remains the same, while
the denominator is now built with the new effective function en-
tering the Dyson equation (35). We can therefore make similar
first-order approximations as in Eq. (34) and obtain:

f conex
q (ω) =

AGWA−BSE
q (ω)

∑
G1

P0
G=0,G1

(q,ω)P0
G1,G=0(q,ω)

. (37)

The product of two head matrixelements of P0 at the denominator
of Eq. (34) is now replaced by a scalar product of two wings of
P0, i.e. the elements of the matrix in the reciprocal space for
which either G or G′ are zero. The wing matrixelements of P0 in
an insulator for q→ 0 go to 0 as q. In contrast to the scalar kernel
(34), this contact exciton kernel (37) in the optical limit is hence
not divergent. If instead of the Dyson equation (35) one solved a
scalar equation for the head elements G =G′ = 0 only, the contact
exciton kernel (37) in an insulator would not change the RPA
spectrum obtained from χ̄RPA,mb. The contact exciton kernel (37)
can produce a visible effect on the calculated spectrum because it
is employed for all the diagonal elements G1 = G2 in the double
sum in the second line of Eq. (35). Indeed, a static version of
(36) was already examined in Ref.81. The conclusion was that a
static contact exciton kernel is able to create a bound exciton in
the band gap, but at the same time is incapable to produce more
than one bound exciton or describe excitons in the continuum
of electron-hole transitions above the band gap. The dynamical
contact exciton (36), and its approximated version (37), can in
principle overcome these limitations.

One could also explicitly impose to the new effective kernel
some known properties of other more complex kernels. In par-
ticular, it is well known41,73 that the TDDFT f mb

xc kernel in insu-
lators needs to have a long-range contribution in real space as
the Coulomb interaction. So one could exploit this specific de-
pendence on the momentum transfer q of f mb

xc to design a bet-
ter ansatz in the Dyson equation (35). The question would be
whether a linear approximation would be less severe leading to
better results. To this end, we replace the contact exciton kernel
in the Dyson equation (35) with a kernel that explicitly displays
a long-range component:

X̃G,G′(q,ω) = P0
G,G′(q,ω)+

∑
G1,G2

P0
G,G1

(q,ω)

[
v̄G1(q)+

f LR
q (ω)

|q+G1|2

]
δG1,G2 X̃G2,G′(q,ω). (38)
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Here the kernel has the same long-range term as the f mb
xc kernel,

but is still designed to yield only the head of χ̄ and not the whole
matrix. Introducing a first-order approximation along the same
lines as Eq. (37), we finally get to:

f LR
q (ω) =

AGWA−BSE
q (ω)

∑
G1

P0
G=0,G1

(q,ω)P0
G1,G=0(q,ω)

|q+G1|2

. (39)

In the next section we will compare the three kernels (34)-
(37)-(39) and we will benchmark the three approximations for
the optical absorption spectra of silicon, LiF and solid argon.

4.3 Absorption spectra
Fig. 7 shows the scalar kernels f abs(ω) and f abs,mb(ω) for q→ 0
obtained by reverse engineering. To this end, we directly use the
definitions (23) and (24), where Aq(ω) is calculated within the
GWA-BSE that gives accurate absorption spectra in silicon, LiF
and solid argon (see black lines in Fig. 8). The difference be-
tween the two effective kernels is that while f abs,mb(ω) has only
to describe attractive electron-hole (i.e. excitonic) effects, f abs(ω)

also has to account for the band-gap opening from the LDA to the
GWA. As also previously found70,71, both kernels are strongly fre-
quency dependent. In the low-energy region (before strong oscil-
lations start to develop in correspondence to poles of the response
functions), the signs of the two kernels f abs(ω) and f abs,mb(ω) are
opposite: they effectively shift the weight of the absorption spec-
tra to larger or smaller energies, respectively. The imaginary part
of f abs,mb(ω) is zero until the onset of the spectrum (see Fig. 8),
while the imaginary part of f abs(ω) is as important as its corre-
sponding real part already beyond the LDA direct band gap (see
vertical dotted lines in Fig. 7): its contribution is needed in order
to achieve the band-gap opening82,83.

We can now examine in detail the two aspects: (i) what is the
effect of their imaginary parts? (ii) how important is their fre-
quency dependence?

To answer the first of these questions, we calculate the absorp-
tion spectra of the three materials by using only the real parts
of the kernel and compare the results with the GWA-BSE spectra
that would be instead obtained with the full kernels. The results,
shown in Fig. 8, are completely different for the two effective
kernels. The absence of the imaginary part of f abs(ω) kernel com-
pletely destroys the spectrum (see orange lines), thus indicating
its key contribution. On the contrary, the real-only many-body
version of the kernel f abs,mb(ω) is still capable to produce spectra
with excitonic features at the correct positions (see green lines).
Its imaginary part now has only a minor role: it mainly gives rise
to the damping of the peaks, which are too intense and narrow if
one neglects its contribution.

To answer the second question, we recalculate the spectra by
using two static kernels obtained by evaluating f abs,mb(ω), respec-
tively, at ω = 0 or at ω = Eλ , where Eλ are the energies of the
prominent exciton peaks in Si (Eλ = 3.2 eV), LiF (Eλ = 13.1 eV)
and Ar (Eλ = 12.3 eV). The static kernel f abs,mb(ω = 0) has only
a non-zero real part: in all cases, it is incapable to produce a
sensible spectrum (see blue lines in Fig. 8). The other static ker-

nel f abs,mb(ω = Eλ ) instead gives rise to a single bound exciton
peak (see magenta lines in Fig. 8). Its binding energy is slightly
overestimated with respect to the BSE in LiF and Ar, while its
width is exaggerated as a consequence of the large imaginary part
of f abs,mb(ω = Eλ ). By suppressing it, the peak position doesn’t
change but the peak becomes too narrow (not shown), confirm-
ing the previous analysis. We can therefore conclude that the
frequency dependence of the effective kernels plays a key role in
order to obtain spectra of the same quality of the BSE. The ability
to reproduce this frequency dependence will determine the qual-
ity of the approximations.

We can now assess the validity of the Nanoquanta-like approx-
imations to the various effective kernels introduced in Sec. 4.2:
(i) the scalar kernel f abs,mb,0

q (ω), see Eq. (34) (red line in Figs. 9-
10); (ii) the contact exciton kernel f conex

q (ω), see Eq. (37) (blue
line in Figs. 9-10) ; (iii) the long-range kernel f LR

q (ω), see Eq.
(39) (orange line in Figs. 9-10).

Fig. 9 compares the real and imaginary parts of these three ap-
proximations with the same reference effective many-body kernel
f abs,mb(ω) that we have analysed in Fig. 7. In both their real and
imaginary parts, they all qualitatively follow the reference kernel,
with oscillations of the same sign that begin after the onset of
the spectra. However, in all the cases, quantitative discrepancies
among the different kernels are apparent in both the locations
and the amplitudes of these oscillations. In order to appreciate
the importance of these differences, we have to examine the spec-
tra that they produce.

Fig. 10 compares the BSE reference spectrum (black line)
with the absorption spectra obtained within the Nanoquanta ap-
proximations to different kernels. The only reliable result is ob-
tained from the Nanoquanta approximation to the TDDFT xc ker-
nel f mb

xc (r,r′,ω), see Eq. (21)(see magenta line). All the other
spectra, obtained by applying analogous approximations to the
other effective kernels, are not accurate enough. They are all ca-
pable to reproduce excitonic effects to a certain extent, resulting
in spectra shifted to lower energies with respect to the GW-RPA
starting point. However, they are all in qualitative disagreement
with the BSE, with results that are best in silicon and worst in
argon, where the spectra even become negative.

This comparison illustrates how much the frequency depen-
dence of the effective kernels turns out to be sensitive, and at
the same time essential, to provide good results. Already at the
TDDFT level, it can be understood19 as the result of an approxi-
mate folding of the spatially non-local but static BSE kernel into
the frequency dependence of f mb

xc . Operating similar linear ap-
proximations onto more compact objects, like the kernels intro-
duced in Sec. 4.2, produces poorer results. Other more involved
approximations would be needed to make them reliable as well.

5 Conclusions
In summary, we have investigated different choices of effective
kernels and potentials in auxiliary systems that are designed to
target specific excitation spectra, in principle exactly, while they
do not necessarily yield other observables correctly. We have con-
sidered two important spectroscopies: angle-integrated photoe-
mission and optical absorption. We have introduced new effective
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q→ 0 in the optical limit). These reference kernels f abs(ω) and f abs,mb(ω) are obtained from Eqs. (23) and (24), respectively, where Aq(ω) gives the
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respectively. The spectra calculated with the full kernels f abs(ω) and f abs,mb(ω) (see Fig. 7) by definition would be equal to the GWA-BSE results
(and hence are not shown).

Journal Name, [year], [vol.],1–15 | 11



ω (eV) ω (eV)ω (eV)
0 5 10 15 20

-40

-30

-20

-10

0

-20

-10

0

10
Argon

x10

x10

Real part

Imaginary part

0 5 10 15

-20

-10

0

10

-20

-10

0

Lithium Fluoride

x10

x10

Real part

Imaginary part

0 1 2 3 4 5 6

-0.4

-0.2

0

0.2

-0.2

0

0.2

Silicon

x10
-2

x10

x10
-2

x10

Real part

Imaginary part

Fig. 9 Real parts (bottom panels) and imaginary parts (top panels) of the effective kernels for the absorption spectra of silicon (left), LiF (center)
and Ar (right). The reference kernels f abs,mb

q (ω) (black lines, same as black and green lines in Fig. 7) are compared with the approximate kernels: (i)
the scalar kernel f abs,mb,0

q (ω), see Eq. (34) (red lines); (ii) the contact exciton kernel f conex
q (ω), see Eq. (37) (blue lines) ; (iii) the long-range kernel

f LR
q (ω), see Eq. (39) (orange lines). All the kernels, except the latter two cases, are multiplied by q2.

3 4 5 6
0

20

40

60

Silicon

10 11 12 13 14 15 16
0

10

20

Lithium Fluoride

11 12 13 14 15 16 17

0

5

10

Argon

ω (eV) ω (eV)ω (eV)

GW-BSE

Fig. 10 The absorption spectra for silicon (left), LiF (center) and Ar (right), calculated within the GWA-BSE (which is the reference result, black
line) are compared with the spectra obtained using the Nanoquanta approximations to: (i) the TDDFT xc kernel f mb

xc (r,r′,ω), magenta line, Eq.(21);
(ii) the scalar kernel f abs,mb,0

q (ω), see Eq. (34) (red line); (iii) the contact exciton kernel f conex
q (ω), see Eq. (37) (blue line) ; (iv) the long-range kernel

f LR
q (ω), see Eq. (39) (orange line).
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quantities and we have examined whether they remain amenable
to approximations on the basis of physical properties of mate-
rials. To this end, we have followed two exemplary strategies
of approximation for the two spectroscopies: for photoemission,
we have imported the effective potential from the HEG into real
materials, following the LDA philosophy of DFT and its formal
generalization to the concept of connector theory; for optical ab-
sorption, inspired by the successful Nanoquanta approximation to
the TDDFT kernel, we have derived approximations to the effec-
tive kernels that can be obtained, within the framework of gen-
eralized Sham-Schlüter equations, from quantities that can be ac-
curately calculated from the BSE of MBPT. The analysis of the
different choices with results for prototypical solids has allowed
us to identify which are the the most important properties that
the kernel/potential should have built in from the beginning and
which are the features that can be most easily approximated. No-
tably, the frequency dependence of both the scalar photoemission
potential and the effective absorption kernels turns out to be their
most important feature. Therefore, its accurate modeling will be
the most delicate aspect for their use.

This investigation leads us to argue that there is much room
for working directly with reduced quantities and the correspond-
ing auxiliary systems targeting specific excitation spectra for spec-
troscopy. Having at disposal a palette of effective potentials and
kernels with different degrees of complexity opens up the possi-
bility to choose, in each situation, the good compromise between
the required accuracy and the available computational resources.

A Computational details
For the computational details of HSE06, LDA and Hartree calcu-
lations of spectral functions in Sec. 3 we refer to Ref.22.

For what concerns the optical spectra of bulk silicon, lithium
fluoride and solid argon (see Sec. 4), all calculations have been
done with the following procedure: ground-state calculations
with Abinit84, using plane waves (see Table 1), the local den-
sity approximation (LDA)85 and Troullier-Martins pseudopoten-
tials86; a scissor operator (SO) has been applied to the empty
bands to simulate many-body band-gap opening effects (see Table
1); a Bethe-Salpeter calculation constitutes the reference calcula-
tion, obtained with the EXC code87; the TDDFT calculations with
all kernels have been carried out using the DP code88. Both BSE
and TDDFT spectra results have been evaluated using 7 bands (4
occupied and 3 empty bands) and by sampling the Brillouin zone
with 256 inequivalent k-points.

Table 1 Energy cutoff (Ecut) for the ground-state calculations is shown
in Hartree. The scissor operator (SO) is shown in eV (like the spectra).
The number of G-vectors (G-vec) taken into account in the TDDFT
(and BSE) calculations refers to the size of the matrices P,χ, χ̄,etc. and
gives the amount of crystal local field effects. The number of plane
waves (Npw) used to describe the single particle wavefunctions used to
construct the χ0 is also reported.

Si LiF Ar
Ecut 13 40 35
G-vec 59 137 137
Npw 169 561 561
SO 0.8 5.25 6.23
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