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Abstract

This paper deals with discrete time-varying systems with state-delayed and saturating actuators. A robust state feedback
control gain is designed through convex methods ensuring the local stability of the time-varying system with interval time-
varying state delay. The estimate of the set of admissible initial conditions is characterized by three convex sets allowing less
conservative estimates. Through two numerical examples, we compare our approach with others in the literature and illustrate

the better behavior of the proposed methods.
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1 Introduction

Processes in the real-world are affected by delays, usually
coming from energy, mass, or information transporta-
tion. As a consequence, degradation on the performance
may occur as well as the stability of the closed-loop sys-
tem [4]. Additionally, the presence of saturating actua-
tors [19], constraints on the state [18], or switched modes
[7] requires the local stability investigation because of
some initial sequence of state can lead to different equi-
librium points or even to unstable behavior. Thus, it is
necessary to estimate a subset of the initial conditions
ensuring the respective trajectories to go to the origin
asymptotically [19].

It is possible to find several works dealing with the sta-
bility of the discrete-time delayed systems in the litera-
ture. Recently, a key issue in the research on this field is
to obtain less conservative bounds on some integral or
summation inequalities, yielding less conservative sta-
bility conditions. The reader may refer for instance to
[8,9,14,21]. While these aspects have now been addressed
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properly in the literature, the problem of providing non-
restrictive constructive stabilization conditions, i.e., con-
ditions that deliver as an output a state feedback control
gain, is still an open issue. Indeed, transforming stability
LMI conditions to constructive stabilization conditions
is usually made possible at the price of introducing tun-
ing parameters, which imposes conservative restriction
as in [5], to cite only one.

To show that this method goes to beyond linear systems
with delays, we will also consider additional difficulties
in the paper, which consist of having nonlinear dynam-
ics. Indeed, nonlinearities in a system are well known to
easily degenerate performance and turn the closed-loop
unstable. See [18] for the design of a group of adaptive
controllers and a switching law to asymptotically regu-
late of state-constrained high-order switched nonlinear
systems by using multiple-barrier Lyapunov functions.
In [16] and [17], a fuzzy-based approach has been used
with the generalized sector condition to handle nonlin-
earities and constraints on the region of model validity.
In particular, saturating actuators in discrete-time de-
layed systems have received attention as one can see in
[22,24,1,15,2,3]. Due to saturating actuators, the study
of the closed-loop behavior and the characterization of
the set of initial admissible conditions (usually called
domain or region of attraction) require the local stabil-
ity analysis. Such a characterization is in practice much
more difficult to handle for time-delay systems than for
delay-free systems. This is because the initial condition
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of a discrete time-delay system is a sequence of vectors
specifying the position of the system for negative time
instants. Therefore, it is more complicated to efficiently
characterize this domain of attraction because one has
to constraint the whole sequence of initial conditions,
which can be done in several ways. For instance, the
region of attraction provided in [22] is defined by im-
posing that all the components of the initial conditions
are uniformly bounded. An alternative characterization
was provided in [2], where the initial conditions are con-
straints to lies into two balls, one for the norm of the se-
quence of initial conditions, and the other related to the
norm of the variation between two consecutive compo-
nents. Extending this idea, the authors of [3,15] provided
a more general characterization through the definition
of augmented state space and an associated ellipsoidal
set, at the price of a high computational burden. Such
an approach was considered first in [6], where the time-
delay system is rewritten as a switched delay-free sys-
tem, and the delay is the switching function. In contrast
with other switching approaches, such as that in [7], the
one in [3,6,15] does not require dwell-time to achieve the
stabilization.

Differently from [3,15], we would like to avoid consider-
ing the augmented switched delay-free system approach
to keep a low numerical complexity on the proposed
conditions. Interestingly, [16] proposed an intermediate
characterization, based on useful and simple sets, such
as an ellipsoidal one for the current state and a ball con-
cerning both the norm of the initial conditions’ sequence
and its variations. However, in particular, the Lyapunov-
Krasovskii functionals (LKFs) employed in [2,16] do not
consider the coupling between the current state and the
previous ones, leading to independent (and conservative)
estimates of the region of attraction.

The contributions of the paper are two-fold. After pre-
senting a summation of inequality accounting for sys-
tems with time-varying delays similarly as in [14] for the
continuous-time case, a method to derive a new construc-
tive stabilization criteria is provided. Second, we provide
a new characterization of the admissible set of initial se-
quences for linear systems subject to time-varying de-
lays and input saturation. It consists in the definition of
three sets, allowing a more relaxed characterization of
the admissible set of initial conditions than approaches
usually encountered in the literature. Finally, two aca-
demic examples evaluate our method, where insightful
comparisons with recent methods from the literature are
established.

Notation: Sets N, R, R”, and R"*™ denote, respec-
tively, the sets of positive integers, real numbers, real n-
dimensional vectors, real matrices of dimensions n x m,
and real square symmetric positive semi-definite matri-
ces of dimensions n x n. For any integers a < b, nota-
tion Z[a,b] stands for [a,b) N N. P € S (or S") and
P =0 (= 0) denotes that P is a positive definite (semi-

definite) matrix. Matrices I and 0 refers to as the iden-
tity and null matrices of appropriate dimensions, respec-
tively. For any matrices A and B, AT represents the
transpose of matrix A and diag(A, B), the block diag-
onal matrix [4 %]. Moreover, if A is a square matrix,
He(A) stands for A+ AT. Symbol * in a square matrix
represents the symmetric entry of a symmetric matrix.

For any vector (matrix) G, G (s denotes the " com-
ponent (line) of G, and, to avoid any confusion, G(Té)
stands for the transpose of the ¢"-line of G. The Eu-

clidean norm is denoted as | - [. Set E} is the set of se-

quence of d + 1 vectors in R™. More precisely, the el-
ements of @9 € Ef are d + 1 vectors z; € R", with
j € Z|—d,0], being denoted as py = {z—j}jez0,q and
wo(j) = z—j. o = wo\{zo} is obtained from the se-
quence o with the element zy removed. The sequence
variation is noted by Ay, = @ry1 — @k, and is com-
posed by d elements Ay = {Tg4j — Thtj—1}je7i0,d-1]-
ekl = max;czp g [vk—;| denotes the norm is associ-
ated to E7}.

2 Problem formulation

Consider the discrete-time system with time-varying
state delay and saturating actuator given by

{ Tpy1 = Axp + Adzk—dk + Bsat(uk), Vk € N,

r—j = @0(])7 VJ EI[O,CZL

(1)
where 3, and uy are the instantaneous state vector and
the control input, respectively. Matrices A and Ay €
R™" and B € R™ ™ belong to a polytope given by the
convex combination of N known vertices, such that

[A Aa B} - EN:%@) [Ai Adi Bz} ; (2)

i=1

where matrices A;, Ag;, and B; are constant and known,
and «y, belongs to the unitary simplex

N
= {ak e RN : Zak(i) = 1,0%(@) > 0,14 EI[l,N]}

i=1

The saturation function sat(uy,) is considered component-
wise so that

sat(uk) () = sign(up) min(lugel, (4@)),  (3)

for £ = Z[1, m]. We recall that notation uy g and 4y > 0
stand, respectively, for the ¢/ component of vectors uy,
and u € R™ that contains the maximum magnitudes al-
lowed to each control signal. Sequence ¢ in E}} denotes



the initial conditions of the time-delay system. We as-
sume that there exist two nonnegative integers d < d
such that -

di € I[d,d], Vke€N. (4)
The following state-feedback control law is used to sta-
bilize the system (1):

Ug = ka:v (5)
where K € R™*"™ is the control gain to be defined.

Because of the saturation, guaranteeing the global sta-
bility of the closed-loop system is not possible in general.
One has to derive a local stability analysis consisting of
the characterization of allowed or admissible sequences
of initial conditions, g, which ensure that the closed-
loop trajectories do not leave the region of attraction,
Ra C E7. As the computation of the set R 4 is a chal-
lenging task, even for low order and delay-free systems
(see [19] for more details), one can only compute an es-
timate of such a region, Re € R4 and try to make this
estimation as large as possible.

There exist many ways to derive estimates of the region
of attraction. For instance, in [22], R¢ is characterized
as the sequences such that ||pg|| < r1, meaning that all
elements of sequence are uniformly bounded. A more
relaxed characterization was provided in [2] which con-
siders an additional uniform bound r5 on the sequence

variation, i.e. _Hllaxg|:v,j — z_j41| < 7o, respectively.
J=1,

In the present paper, we address the following problem:

Problem 1 Given the state-feedback control gain K,
verify the local robust stability of the closed-loop system
(11). Furthermore, estimate Rg C R 4 ensuring that all
trajectories emanating from oo € Re converge to the
origin without leaving Rg.

Problem 2 Determine the control gain K and an esti-

mate Reg C R4 that ensures the local robust stability of
the closed-loop system (1)-(5) for any sequence ¢y € Re.

3 Preliminary Results
3.1 Generalized sector condition [19]

Let consider the dead-zone function ¢ € R™ defined by

o(u) = sat(u) — u, Yu € R™. (6)
Following [19], a polyhedral set can be defined to handle
the saturation (1) with the help of an auxiliary signal
w € R™:

S(w,u) = {u € R™ : [(u—w)(p)| < U,V € Z[1,m]}.

(7)

It is worth noting that introducing w relaxes the bounds
on u, allowing it to go beyond the limits +u.

Lemma 1 For given auxiliary vector w and saturation
bounds, u, if vectoru belongs to S(w, @), then the function
o(u) defined in (6) satisfies the following inequality:

¢(u) ' Tp(u) +w] <0, (8)
for any positive defined diagonal matriz T € S7'.

Therefore, Lemma 1 guarantees that having signals u
and w belonging to S(w, @) ensures (8). This property
will be used in the next section to relax the stabilization
conditions.

3.2 A summation inequality free of slack variables

In the sequel, we present a lemma that helps us to es-
tablish our main result in the next section.

Lemma 2 Let R € S and g a sequence in E%. Then,

for any integer ¢ € I[d, d], inequality

—d—1

(d—d) Yy Ry = QI RO (9)
j=—d

holds where

Vj € I[—d +1,0],
jeI] 7 ] (10)
Ve € Z[d, d).

Y = Tj —Tj-1,

Qe =x_g—20_+x_g

Proof : The proof is first based on the Jensen inequality’s
application to the left-hand side of (9) after splitting the
summation into two parts. More precisely, we have that

—d—1 —c—1
J:=(d—d) | Y vy Ry;+ > v Ry,
1 S T
T _T _
> aﬂj RQj+mQC RQ),

[IS9

where Of =2 g -2, Q. =2 . —x_g and a =
Following the principle of the reciprocally convex combi-
nation lemma [11], the previous expression can be rewrit-

ten as follows

-
O+
J>1°
Q7

Let us now note that the first term is positive semi-

ep R
R —1faR

u

R —R
—-R R

f
Q-

C

ep R
R =R

11—«

definite since inequality [ } > 0 is equivalent



by Schur complement to 1= (R — R) = 0. The result is
then derived from

-
Qr R —R| |QF

‘ ‘l=@F -9)TROF - 7)),
Q7 —-R R | [Q;

which proofs the lemma. &

Remark 1 Note that, taking c = —d in (9) yields the
usual Jensen inequality for discrete-time delay systems.

Remark 2 The benefits of the inequality in Lemma 2
over the reciprocally convex combination lemma from [11]
are a lower number of decision variables and less LMIs
to solve since no additional slack variables, and no addi-
tional constraints are required. Moreover, it was shown
in [12], that the same level of conservatism as in [11] was
obtained for varying-delay systems, in the case of Jensen-
based stability conditions. A discussion on the conser-
vatism of the previous summation inequality is presented
later in this paper concerning more advanced summation
inequalities.

3.8 Stabilization of the closed-loop model

Because of the saturating actuator in (1) the local sta-
bility is required to handle the design of the robust state
feedback control gain K in (5). Following the general-
ized section conditions provided in Lemma 1 from [19],
we rewrite system (1) using the dead-zone function as
follows

Th1 = Acexr + AaTh—a, + Bo(uk), (11)
where A,y = A+ BK is still an uncertain matrix belong-
ing to the polytope (2), and ¢ is the dead-zone function

given in (6).

We address the stabilization of system (11) by using the
following simple LKF candidate given by

Vi(er) = Viler) + Valer) + Valer), (12)

where
Vi(er) =y Py, (13)
k—1 k—d—1
Va(en) = ] Qi + Z z) Qomi,  (14)
i=k—d i=k—d
0ok
Vslpr) =d > > ] Zuy (15)
i=1—d j=k+i

where y; is defined in (10), px € E}} refers to the func-
tional state of the time-delay system given by ¢y (i) =
xp—; for all j € 0,d, and matrices P, Q;, and Z;, for
i = 1,2, belonging to S’} .

4 Main results
4.1  Constructive stabilization conditions

In this section, we provide two main results, where one
concerns the local stability analysis of the closed-loop
system (11), and the other provides a convex control
synthesis condition for the local stabilization of (1).

Theorem 1 Consider the uncertain system (1) under
the control law (5) with a given control gain K. Suppose
that there exist matrices W, Q1, Q2, Z1, and Zy in S,
G € R™*47 g positive diagonal matriz T € ST, and a
scalar € € [0, 2| that satisfy the following LMIs

Dy; Doy ,
HOTEL 2 0vi e I[1,N], (16)
* (I)3_

e

Lol

*

~G
)(/) = 0.0 € I[1,m], (17)

U (e

where

®y; = He (F\' @y, — Fy GE) + Q2 — 2F; TF;
Z1 0
* Zg

- II

)

By — [AiW L BKW —W 0 AW 0 BJ]T, (18)
D3 = —(2¢ — )W + (d°Zy + (d — d)*Z),

Q1 = diag(Q1,Q2,Q2),

Qy = diag(Q1,—Q1 + Q2,0,—-Q2,0),

with the following matrices
F = [I 000 0}

Fs,:[ooooﬂ.

Then the closed-loop system (11) is locally asymptotically
stable for any sequence of initial conditions o verifying

Vipo) <1}, (19)

where V' is the functional in (12)-(15) with, fori=1,2

@0 €Cy:={po €EY s.t.

P=wWw1'Q =w1'Qw*Z =w"'tzw (20



Proof : Consider the LKF candidate V(¢y) given in
(12)-(15) with the parameters provided in (20). Clearly,
since matrices P, @;, and Z; are assumed to be symmet-
ric positive definite, the functional is also positive def-
inite. Let us compute the increment of the functional,
AV (pr) ==V (pr+1) — V(gx). Following the usual com-
putational methods, the increment of the functional can
be expressed as follows

AV(¢k) = x;r+1W_1WW_1xk+1
+yl;r+1W71(d2Z1 + (d = d)? Zo)W " Lypia
—xf WY W 4+ Q)W ~Lay,
—il?g,QW*l(Ch — Q)W gy
—ac;—_d—W_ngW_lxkfg
k

—d > oy W Wy,

i=k—d+1
k—d
—(d=d) > W ZW .
i=k—d+1

The next steps consist in replacing xx41 by yr4+1 — ok in
the first term of AV, and in applying Lemma 2 to the
last two negative terms of the previous expression. Then,
by introducing the augmented vector & defined by

Wﬁlmk
ka[ P 1, Pr = Wiz ;
T Yy, Wtz _q,

Wla_g

several manipulations allow us to write the following up-
per bound:

AV () < & 16 + He(o) T (o1, + GEE))  (21)

where we have used yg41 = Zi\; ak(i)q);;fk and with

T N
k(i) P1it <Zak( ‘1’21> Yl(Z%(i)%i)
=1

(W &2+ (d—d)*Z,) " W

R N
b1=3

=1
Y =W

Then, the Schur complement ensures that matrix Py is
negative definite if and only if we have

CDh (1)21
-Y

N N
> arn®r Y o Pai
i=1 i=1

* -Y

N
Z k(i)

<0,

Moreover, since (W — Y)Y 1(W — €Y) > 0 for any
matrix Y and scalar ¢, selecting Y = W + d221 +(d—
d)%Z,, we get that Y is greater than @3, given in (18),
which is ensured if conditions (16) are verified.

Therefore, local stability of the closed-loop system is
guaranteed if the term ¢ 71 (¢x + GEE) is also neg-
ative. To do so, we use the generalized sector condition
provided in Lemma 1, where we have implicitly intro-
duced the auxiliary vector wy, = GEE, = Gpg. Let us
first apply the Schur complement to the last line and
column of (17), for a given ¢ and then multiply from
the right side by pj and its transpose from the left side,
leading to:

T
P 0

Lo ([V]e) e
! 0
KW
<([V]-), o
0 )

_ I p T 9 T 9
= x;, Pxy, +mk_gQ1xkfg+$k_de2$k7dk

-
T A o (Kap—wi) ) (Kzp—we) o)
tx, Q2Tp_g— o2

©
< V(o)

0<pp

— ) |(ur, — wr) o)

for g verifying (19). Therefore, with ¢ € C, we ensure
that uy, belongs to S(wy, @) so that the generalized sec-
tor condition in Lemma 1 holds. Hence in this situation,
one can guarantee that the increment of the functional
is negative defined for any ¢ € C,. Since a level surface
of the LKF' defines the set C,, the solutions cannot leave
this region, which concludes the proof. &

Remark 3 Observe that the conditions proposed in The-
orem 1 with € = 1 recovers the particular case where the
inequality (W — Y)TY =YW —Y) > 0 is used (see, for
instance, [16]). Therefore, the parameter ¢ delivers an
extra degree of liberty to solve the analysis conditions.

A relevant comment is related to the application of the
generalized sector conditions. In the literature of time-
delay systems, the auxiliary vector w is usually selected
as Gmk, with G € R™>" while here we were able to also
include more 1nf0rmat10n about the functional state of
the delay system by including in this auxiliary vector
Tk—d, Tk—d, and z,_gz. This modification is made possi-
ble through the introduction of the matrix Q; in condi-
tion (17).

Replacing variable product KW by L in the LMI con-
ditions (16)-(18) yields to an equivalent one, allowing
the local stabilizing controller design. Therefore, we for-
malize the design conditions based on the Theorem 1 as
follows.



Theorem 2 Consider the uncertain system (1). Assume
that there exist matrices W, Q1, Q2, Z1, and Zy in ST,
matrices L € R™*" G € R™*4"  and a positive diagonal
matriz T € ST, and a scalar € € [0, 2] that satisfy the
LMIs (16) and (17) replacing therein KW by L. Then,
the control law (5) with static feedback gain

K=LWw1 (22)

ensures the local robust local stability of the closed-loop
system system (1)-(5) for any sequence of initial condi-
tions g € C, given in (19), which is defined by the LKF
given in (12) with (20).

4.2 Geometrical characterization of Rg

Theorems 1 and 2 provide constructive conditions to
ensure that the closed-loop system (11) with the static
feedback control laws (5) or (22) is locally asymptotically
stable. They also provide an estimate Rg = C, of the
region of attraction. A main issue is to understand how
to optimize the parameters of the LKF to enlarge the
Cy, C E7. Therefore, the initial condition ¢y is a function,
which has n(d + 1) degrees of freedom. Inspired by the
approach in [16] and [17], we propose a characterization
of the estimate of the region of attraction taking into
account the couplings between zy and x_1, namely yq
calculated by (10). Here, the admissible sequences of
initial conditions ¢q are such that:

Yo = {SO S EE 1 Xg € C7 Yo S V7 @0 S B(Irhr?)}) (23)
where C and V are ellipsoidal sets confining the admis-
sible values of zy and yq, respectively, and the delayed
states, @g, belong to B(ry,r3), thus ensuring ||@o|| < 1
and [[Agp|| < re. Therefore, sets C, V, and B(rq,r2)
jointly yield a possible geometrical characterization of
Re. The following lemma is used to define the sets C,
V and B(r1,r2) mentioned in (23) which jointly charac-
terize the allowed initial conditions for the closed-loop
system (11).

Lemma 3 If (12) is an LKF ensuring the local robust
stability of (11), then the initial sequences o verifying
(23) with

C= {.T() eR"” VI(CUO) <1 —’y}, (24)
V={y €R" : yg Jyo < 1}, (25)
B(ri,r2) ={0 € Ej_:ll@oll < 71, [AG0]| < 72}, (26)
v = pill@oll® + p2l Adoll” + yg Tyo, (27)

and r1 and ro chosen such that
0 < p17? + pars +yg Jyo < 1, with (28)
J=d*Z1 + (d—d)*Zs, (29)

p1 =dn + (d —d)n2, and (30)
p2 = 0.5(d*(d —1)ns + (d — d)*(d+d — 1)ns), (31)

where m = Amax(Ql); N2 = )\max(Q2); N3 = /\max(Zl);
N1 = Amax(Z2), are such that the respective trajecto-
ries do not leave the estimate region of attraction and go
asymptotically to the origin.

Proof : By hypothesis, (12) is an LKF for the closed-
loop system (11). Consequently, we can define a level set
given by C = Ly, (1—7) = {zx € R" : x| Pxy < 1—~},
with v given in (27). By using Va(¢o) and V(@) given
in (14)-(15), we get

Va (o) + Va(wo)
< dAmax (@) |01 + (d = d) Amax (Q2) [P0l ?
+0.5d*(d — 1) Amax(Z1)[| Ao |
+0.5(d—d)*(d+d—1)Amax(Z2)[| A@o 1>+ Jyo
= p1ll@oll3 + p2ll AgollZ + o Jyo, (32)

with J, pi, and py given by (29)-(31). To ensure
0 <+ < 1, it is required that (28) be satisfied. &

Observe that, the set V in Lemma 3 handles the tran-
sition between the current state and the previous one,
which allows to get a less conservative estimate for the
ball B(rq,r3). Therefore, for each choice of yg verifying
(25) we get an estimate for C and B(ry,72). If we are in-
terested in the largest admissible g, then we need to es-
timate it through set V. In this case, we get [yo| < 1/,/p3
with ps = d’ns + (d — d)?ns. Moreover, the region of
attraction can be casted in a ball belonging to R"” with
radius 7 (see [20], [10], [2]) by taking ry = r and 7o = 2r,
and from (24), we have Vi (zg) < 1 — =, which yields to

r < ()‘max(P) +p1+ 4(p2 + p3))71/2'

Observe that, theorems 1 and 2 encompass the case of
uncertain and time-invariant delay, i.e. d = d. In such
a case, the expressions in (30) and (31) are rewritten as
p1 =dn and po = 42(1 + d)ns/2, respectively.

4.3 Optimization procedure

An optimization procedure can be associated to Theo-
rems 1 and 2, which only treat a feasibility problem, to
maximize the size of the sets C and B(ry,r2). To this end,
we propose the following optimization procedure, where
Bj > 0 are weights, H; € R"*", and X corresponds to



the 5" matrix in the list {W, Q1, Q2, Z1, Z2}:
5

min trace(ZBjHj)
j=1

H; I
s.t. (16),(17), and | 7 > 0.
I 2W — X,

J— (33)

Observe that, if (33) is feasible, then from Schur’s com-
plement, we get H; > (2W — X]-)’1 - W’lXjW*.
Because of X; = W1X; W~ with X; the j'* matrix
in the list {p,Ql,QQ,Zl,ZQ}, we have Hj i Xj and
thus the minimization of trace(H;) leads to the mini-
mization of trace(X;). Additionally, 3; can be used to
ponder the effects of each matrix of the LKF candidate.

Remark 4 [n this paper, the stabilization conditions re-
sults from the application of Lemma 2. This lemma can
be seen as a conservative tools since many summation
inequalities have been proposed in the recent literature of
discrete-time delay systems [13,21,23]. Using these new
results would eventually lead to better numerical results.
However this would distract the reader about the main
message of the paper, which is the introduction of a new
method for the estimation of the region of attraction for
saturated systems. These improvements are kept for fu-
ture works.

5 Numerical Examples

The examples were programmed in the Matlab using
YALMIP and the solver lmilab.

Ezample 1: Consider the discrete-time system (1) with
known matrices given by

1.1 0.15 0 -0.1 1
A= ,Ag = , B = , (34)
0.03 0.8 0 0 0.1

constant delay d = d = 5, and 4 = 15. The objec-
tive here is to design the saturating control law (5) such
that the closed-loop system has the largest set of ini-
tial conditions. By using the optimization procedure J,
with fo = 1 and By = 3 = B4 = B85 = 0, and ¢ =
1.9052 we get p; = 5.8972 x 107°, po = 3.0851 x 1077,
p3s = 1.5426 x 10~7. As we argued before, Theorem
1 can be used to estimate the set of initial conditions
as a ball. In this case, we get r = 74.3493, which is
greater than those computed in [2] (r = 72.596), [24]
(r = 73.693),[22] (r = 63.029, with E = 0, a(1y=0.5,
o1 = 0.15 and oo = 0.14), and [1] (r = 68.491, with
g1 = 2 and € = 2 x 10%). Therefore, this illustrates that
our approach leads to a larger ball of initial conditions.
However, our approach allows us to propose more gen-
eral sets than the ones compared here. For instance, if

we choose 71 = 74 and ro = 0, we can pick as a sequence
of initial conditions

—68.3| (37| |37| |37 [37| |37
<p = b ) b b b b
’ 68.4 64| |64| |64| |64| |64
which has a norm 31.1% greater than the best estimate
among [1,2,24,22] with ||¢g|| = 96.6615. Therefore, our
approach allows the designer to handle sequences with

norm much greater than those found in the mentioned
works.

Ezample 2: Consider the time-varying system (1) with
two vertices given by

0.38 0.20 0.01 —0.03 1.98
JAa = B, = )
0.09 1.00 0.02 0 0.99

0.42 0.20 0.05 0.09 2.02
A2 = ,Ad2 = ,BQ = .
0.11 1.00 0.04 0.06 1.01

The delay verifies dj, € Z[2,4], and saturating control
signal with @ = 10. As done in the Example 1, we firstly
use the optimization procedure J with g1 = 82 = 53 = 0,
B4 = B5 =1 and e = 1.678 to compute the bigger ball in
R? (r; = r and ro = 2r) for initial conditions ¢g. In this
case, we found r = 55.2278 which yields the ball B; and
the ellipsoid C; shown in Figure 1 (dashed black line).
If the delayed states are assumed to be the half of this

A =

100

80 r
60 -
40
20

Tk, (2)

20 b
40 |
60 |
.80 |

-100
-150

150

Fig. 1. Region of attraction.

value, i.e., 7 = 27.6139, then we get the ball By and the
ellipsoid Cy shown in Figure 1 (solid blue line). In this
last case the sequences (y can have norm as great as
139.2372. Also note that, as the radius rq (with ry = 2r1)
shrinks, the size of the region C grows up.

We have investigated this effect by taking equally spaced
values of 5.52278 < r < 55.2278: for each value of r, with



r1 = r and ro = 2r, we take vectors x_; € R? in the
border of the set B(r, 2r) (thus, x_; with modulus equal
to r and angle 6 with the horizontal axis swiped over a
half cycle). For each pair (r,0) we have calculated the
area of the respective set C: S¢ = 7(1 —7)/vdet P and
~ given by (27). The achieved areas are shown in Figure
2 where it is clear the area’s size improvement of the set

4.5

x10*
T

s —— |

2.5»\—/<

r = 55.2278

15 L L L L L L L L
-60 -40 -20 0 20 40 60 80 100 120

0

Fig. 2. Area of C, Sc, for 5.52278 < r < 55.2278 and x_1
taken on the border of B(r, 2r).

C (associated with () as the norm of the delayed states
is reduced. Thus, this illustrates how our proposal of the
region of attraction’s estimate can yield less conserva-
tive results concerning other conditions found in the lit-
erature.

6 Conclusion

We have provided a new convex delay-dependent condi-
tion robust local controller design for a class of discrete
time-varying delayed state systems under saturating ac-
tuators. We also gave less conservative conditions to ro-
bust local stabilize the considered class of systems from
new bounds on sum inequalities and a new set charac-
terization of initial admissible sequences. We illustrate
how the proposed conditions can be used to get larger
sequences of initial conditions through numerical exam-
ples.
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