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Abstract—With the growth of demands for quasi-instantaneous
communication services such as real-time video streaming, cloud
gaming, and industry 4.0 applications, multi-constraint Traffic
Engineering (TE) becomes increasingly important. While legacy
TE management planes have proven laborious to deploy, Segment
Routing (SR) drastically eases the deployment of TE paths and
thus became the most appropriate technology for many operators.
The flexibility of SR sparked demands in ways to compute
more elaborate paths. In particular, there exists a clear need
in computing and deploying Delay-Constrained Least-Cost paths
(DCLC) for real-time applications requiring both low delay and
high bandwidth routes. However, most current DCLC solutions
are heuristics not specifically tailored for SR.

In this work, we leverage both inherent limitations in the
accuracy of delay measurements and an operational constraint
added by SR. We include these characteristics in the design of
BEST2COP, an exact but efficient ECMP-aware algorithm that
natively solves DCLC in SR domains. Through an extensive
performance evaluation, we first show that BEST2COP scales
well even in large random networks. In real networks having up
to thousands of destinations, our algorithm returns all DCLC
solutions encoded as SR paths in way less than a second.

I. INTRODUCTION

The fundamental challenge addressed by a routing scheme
is about deploying best paths. Internet Service Providers (ISPs)
usually compute such paths according to a single additive
metric, the IGP cost, which models the available resources
of the network. Generally, the IGP distance takes into account
the bandwidth of each link and is further tuned to reflect the
specific needs of the ISP. While it is sufficient for best-effort
traffic, real-time flows have strong additional requirements
in terms of delay. Our discussions with network equipment
vendors indeed revealed a strong demand for ways to compute
paths providing the maximal possible amount of bandwidth
(to ensure a high flow quality) among the ones verifying
a constraint on the end-to-end delay (the maximal latency
for interactive real-time flows). In practice, the considered
delay metric is the measured propagation delay. However,
the bandwidth is not considered per se. Actually, the second
considered metric is the IGP cost. Indeed, since the latter is
representative of the bandwidth as well as the ISP’s specific
needs, finding paths minimizing the IGP cost among the paths
respecting the delay constraint allows the user to experience
a low propagation delay and high bandwidth route while
preserving the ISP resources.

Computing such paths requires to solve the problem known
as DCLC (Delay Constrained Least Cost). This problem has
attracted a lot of attention from the research community [L1]].

Despite only considering two (additive) metrics, DCLC is
known to be NP-hard [2]. Indeed, two dimensions are enough
to turn the total ordering existing with a single metric into
a partial one, as any path better on at least one metric
compared to currently known paths may be part of the solution
and thus has to be explored. These paths are referred to as
non-dominated paths and make up the Pareto front of the
solution. To solve DCLC exactly, the whole Pareto front (2-
dimensional because the problem is limited to 2 metrics) must
be explored. Since the latter may grow exponentially, this
family of problems is considered intractable.

Several approximations schemes exist to solve DCLC. How-
ever, these latter have never been deployed by operators as they
do not provide sufficient guarantees in term of performance
and rely on a technology that does not scale well. In this work,
we show that DCLC can be solved exactly and efficiently
without neglecting the practical deployment of constrained TE
routes. As long as two reasonable practical assumptions are
verified, it is possible to build an efficient algorithm.

Our first assumption concerns the nature of the metrics.
Due to the apparent intractable nature of DCLC, most current
solutions rely on heuristics, which are complex to deploy and
do not offer strong guarantees in all cases. However, although
DCLC is computationally expensive, its complexity is often
misinterpreted. Exponential cases are unlikely to occur in prac-
tice (3] thanks to the structures of ISP networks and the fact
that their metrics lead to a limited number of distinguishable
distances. As soon as there exists few distinct values in the
Pareto front, it is possible to bring strong guarantees without
relying on heuristics. Our first assumption then is that either
the IGP cost or the delay metric is bounded and discrete.
While this requirement may seem strong, we argue that these
metrics already meet it, the delay in particular. Indeed, IGP
distances only provide relative bounds on the Pareto front size
as they ultimately depend on the ISP configurations (although
limited by the routing protocol itself). Conversely, the bounds
provided by the delay are absolute (as they do not depend
on any configurations) and often even stricter than the IGP
routing limits, due to both physical limitations and the nature
of delay-constrained flows. A real-time interactive flow must
meet strict guarantees regarding its delay (at least < 100ms,
usually closer to 10 or even 2ms). In addition, even though
the precision in memory of the measurements can be high,
i.e., nanosecond, no delay measurement technique can claim
to be that accurate in worst-case scenarios. ISPs are aware that
measured delays are an estimation, not a guarantee. These
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delays (usually measured with OWAMP [4]/TWAMP [3])
have a limited trueness (as defined in ISO 5725-1 [6]) or
accuracy, even with efficient hardware PTP time stamping
systems or accurate two-way delay estimators. Due to both
its inherent variation depending on physical properties, clock
synchronization or inconstant packet processing delays [7],
[8l], we argue that truly distinguishing the delay of a path at the
granularity of the micro-second is difficult if not impossible
nowadays. Even the finest delay estimation is bounded and
discrete by essence, allowing us to predict the size of the
Pareto front and control the complexity of our algorithm.

Our second assumption concerns the technology at play.
Current solutions do not usually consider the deployment of
the computed paths. Consequently, they rely on RSVP-TE
which does not impose any additional constraints on the paths
to deploy. However, they thus scale poorly as RSVP-TE suffers
from well-known scalability issues since both the number of
control-plane messages and of forwarding states scale with
the quantity of TE paths [9)]. We thus design our algorithm
for a specific technology, Segment Routing [9] (SR). SR is
the new state-of-the-art TE and fast-reroute technology now
deployed in most ISPs. SR relies on a very lightweight control-
plane as forwarding states are carried within the packets.
More precisely, SR implements source-routing by translating
forwarding paths into lists of segments (routing instructions).
This list is then encoded within each packet and used by
routers to forward said packet. However, the size of this list is
limited, as only SEGMAX ~ 10 segments may be imposed
on each packet at line-rate with today’s best hardware. If
handled naively, this new constraint can considerably increase
the problem’s complexity, as it may seem necessary to explore
a now three-dimensional Pareto front. We design our algorithm
with SR in mind by exploring the solution space in a way
that leverages the SEGMAX constraint. We are thus able to
efficiently deploy segment lists that respect both a constraint
on their sizes and their delay while minimizing the IGP
distances.

In summary, we leverage the two aforementioned properties
(the inaccuracy of delay measurements and the SEGMAX con-
straint) to provide a straightforward, efficient algorithm suited
for practical TE usage: BEST2COP (Best Exact Segment
Track for 2-Constrained Optimal Paths). BEST2COP is,
to the best of our knowledge, the first algorithm able to solve
DCLC efficiently in any scenario for large SR domains, and
thus the first deployable DCLC scheme ever. In short, it com-
putes all the paths verifying two constraints (delay and number
of segments) while optimizing the IGP distances. BEST2COP
can provide DCLC solutions for large realistic networks in a
time period acceptable for the routing convergence, i.e., way
less than a second.

In Sec. we formally define the 2COP problem for
solving DCLC in an SR domain. Sec. [[Il| sketches BEST2COP
before we evaluate its performance in Sec. We conclude
the paper discussing the related work in Sec. [V| and summa-
rizing our achievements and future works in Sec.

II. 2COP, OR SOLVING DCLC WITHIN A SR DOMAIN

In this section, we formally introduce and define all nota-
tions and concepts used to design BEST2COP. More precisely,
we detail the problem we aim to solve, the construct we use
to encompass Segment Routing natively, and how it is used to
our advantage along with the delay characteristics.

A. Problem Statement, or the Need for an SR Graph

We aim to solve an SR variant of the DCLC problem,
considering the IGP cost, the propagation delay, and the
number of segments. We refer to this problem as 2COP. For
readability purposes, we denote:

o M the metric referring to the number of segments, with
the constraint cg = SEGMAX

o M; the delay metric, with an arbitrary constraint cy;

e M5 the IGP metric being optimized.

We also rely on these generic notations to highlight that the
problem remains the same for any couple of metrics. Besides,
the problem keeps the same complexity even if My is also a
constrained metric.

Definition. 2-Constrained Optimal Paths (2COP): Given a
source s, 2COP consists in finding, for all destinations, a
segment list verifying two constraints, cy and c;, on the
number of segments (My) and the delay (M;) respectively,
while optimizing the IGP distance (Ms). We denote this
problem 2COP(s, cg, c1). [ ]

BEST2COP solves 2COP by looking for all feasible dis-
tances (i.e., satisfying ¢y and c;) optimizing Ms. Note that
2COP is distinct from DCLC because of cy. For example, let
us refer to Fig. [T] and consider DCLC for ¢; = 7 from node
s to p. The solution is the path (s1,n)-(n1,0)-(0,p) having
an IGP cost of 4 and a delay of 6.49. However, the latter is
not a solution of 2COP(s, 2, 7) towards p. Indeed, we will see
that this path translates to three segments and violates cg = 2.

SR implements source routing by pre-pending packets with
a stack of segments. Segments can be seen as a list of
checkpoints the packet has to go through sequentially, be it
a node or a specific interface. SR mainly uses two types of
segments: node segments and adjacency segments. A node
segment specifies a node as a checkpoint. A node segment
representing a destination v is interpreted by a router as
forward the packet to v (through the best IGP path(s)).
Since SR enables ECMP by design, flows are load-balanced
among best paths to v. On the contrary, an adjacency segment
indicates that the router has to forward the packet through a
specific local interface.

Thus, to encompass SR natively while solving DCLC, we
rely on a structure for which the IGP costs, delays, and the
number (and type) of segments used to build the segment lists
are direct and natural properties. We call this structure an SR
graph. An SR graph represents the segments as edges, whose
weights are the (M; ; M) distances of the underlying path or
adjacency encoded by the segment.

Exploring paths on the SR graph is equivalent to exploring
stacks of segments and the paths they encode. A path requiring
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r segments is represented as a path of x edges in the SR
graph (agnostically to its actual length in the raw graph). Thus,
within an SR graph, one can simply check that = < ¢y to
verify the constraint on My. In an SR domain, the SR graph is
computed by default for any TE usages including fast-reroute.
In our case, only some extra information needs to be added
in order to correctly handle multiple metrics, which does not
generate a significant overhead to the SR graph computation.

B. The SR Graph Construction

Throughout this section, we use Fig. [T] and [2] to illustrate
the SR graph construction. While the former provides an
arbitrary raw graph, the later gives its resulting SR counterpart.
We start by describing the notations we use, in particular
regarding multigraphs, as both the SR and raw graphs fall
in this category.

Let G = (V,E) be the original graph, where V and F
respectively refer to the set of vertices and edges. As G can
have multiple parallel links between a pair of nodes (u,v),
we use F(u,v) to denote all the direct links between nodes
u and v. When necessary, we denote a specific link (u,v),
x specifying the considered interface (a local number to w).
Each link possesses two weights: its delay and its IGP cost.
The delay and the IGP cost being additive metrics, the My
and M, distances (d§' ; d$') of a path are simply the sum of
the weights of its edges.

From G, we create a transformed multigraph, the SR graph
denoted G’ = (V, E"). While the set of nodes in G’ is the same
as in G, the set of edges differs. Indeed, G’ encodes segments
as edges representing either adjacency segments (blue dashed
edges encoding some adjacencies of ) or node segments,
encoding sets of best ECMP paths. For instance, in Fig.
there exist three paths in G from n to r which have an
optimal IGP-cost of 3: (n1,0)—(o,r) with distance (6.2;3),
(n1,8)—(s,r) with distance (2.3;3) and (ng2,s)—(s,r) with
distance (2.4;3). They are thus all represented by the unique
link (n,7)e (in plain black in G’). When using a node
segment specifying the destination r from n, the traffic is load
balanced across the three paths.

Note first that we do not use 6.2 as the delay value in
G’ but 62. Indeed, while the delay can be represented as a
precise floating number, its actual accuracy is limited. We can
safely round the M;-weights (delays) without losing relevant
discriminating information, reducing so the complexity of
2COP as we will detail in the following. Thus the path from
n to r, relying on the best IGP distance (a node segment in
G"), has distances (62;3) = (40 + 22;1 + 2), where 22 is the
delay 2.15ms times 10 rounded up at the 0.05 accuracy grain.
Second, we chose 62 in particular as the delay of the node
segment because the only delay guarantee of a node segment
is to not exceed the worst delay of all its ECMP paths.

In summary, a node segment encoding the whole set
Pg(u,v) of ECMP best paths between two nodes w and v is
represented by exactly one edge in E'(u,v). Its My-weight,
wS ((u,v)), being the common M,-distance of Pg(u,v),

Figure 1: The raw network graph G = (V, E) is a multigraph,
with weighted edges. The weight of the edges is represented as
a couple (delay;IGP cost). While there sometimes only exist a
single edges between two nodes, such as (s,r), we otherwise
distinguish between parallel nodes such as (s1,n) and (s2,n).

its My-weight, w® ((u,v)), is defined as the maximum M -
distance among all the paths in Pg(wu,v). Thus, links repre-
senting node segments in G’ verify the following:

w?:((u7 U)) = MaXpepg (u,v) d?(P)
wS ((u,v)) =d§(P) for any P e Pg(u,v)

In addition to this unique node segment, E'(u,v) may
contain adjacency segments (dashed blue edges in Fig. [2)
to force the packet to go through a specific interface. An
adjacency segment corresponds to an edge in the graph G
and is represented by an edge (u;,v) in E'(u,v) whose M-
weight, resp. My-weight, is exactly the M;-weight, resp. Ms-
weight, of the corresponding link in GG. Note that if the node
segment between two nodes has both a better delay and a
better cost than any direct link between them, there is no point
in using an adjacency segment. More generally speaking, an
adjacency segment exists in G’ only if it is not dominated by
other segments. Formally, an adjacency segment is represented
by an edge (uy,v)g if it is not dominated by the node
segment (u,v)qr, ie., if d5((u,v)) > w ((ug,v)), or by
any other non-dominated adjacency segments numbered vy,
(uy, ), i.e., if W ((uy,v)) > wS ((ug,v)) or ws ((uy,v)) >
w$" ((ug,v)). For example, in Fig. |1| the best path from n to
o has a distance of (4;1) and is translated to the node segment
as a link with same values in Fig. 2] Since there exists another
direct link between both nodes with a lower delay, (3.9;2),
we add an edge (n1,0) with distances (39 ; 2) to G’. One can
then force the corresponding adjacency segment to save delay.

In practice, the SR graph G’ can be built for all sources
and destinations thanks to any APSP algorithm to compute
the weights of each node segment in G’. We consider this
construction as a shared input for BEST2COP, as this trans-
formation is inherent to SR and applies network-wide. Note
that this computation is unlikely to be performed by the router
itself, but rather by a Path Computation Element [10], which
may be located within a controller. The overhead added to
this construction by our specific transformation is negligible;
it consists in the addition of the delay information, in particular
to select non-dominated (adjacency) segments.
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Node Segment
A(Ijacency’ Segrpem
(w§;uf")

Figure 2: The SR graph G’(V, E') encodes segments as edges.
Plain black edges represent node segments, i.e., , sets of
ECMP best path, while dashed blue edges represent link in the
original graph GG, making G’ a full-mesh at least. Adjacency
segments, e.g., (s1,n), are only represented if they are not
dominated by other segments.

Thanks to this specific construct, we can now illustrate the
sets of paths we want to retrieve when solving 2COP. We said
in Sec. that while path (s1,n)—(n1,0)—(o,p), having
a distance of (6.49 ; 4), solves DCLC for ¢ = 7 and for
destination p, it does not solve 2COP(s, 2, 7). Indeed, we
can now clearly see in G’ (Fig. [2) that to achieve this path,
3 segments are required: (s1,n)|(n,0)|(o,p), which makes it
non SR-feasible with a segment budget of 2. The solution to
2COP(s, 2, 7) is a list of 2 segments (i.e., a path of 2 edges
in G'): (s,7)|(r,p), encoding the path (s,r)—(r1,0)—(0,p) in
G. Note that this physical path has a distance of (4.6 ; 6).

C. An SR Graph with True Measured Delays

In this section, we explain how the characteristics of real
ISP networks are used to our advantage and translate in the
construct we have detailed.

DCLC is pseudo-polynomial [11]. More precisely, it is
polynomial in the smallest largest weight of the two metrics
M; and M (once translated to integers). As long as one
of the metrics possesses only a limited number of distinct
values, the problem is tractable and can be solved efficiently,
since the limited range of the metric restricts the number
of non-dominated distances. The metric (and so, the number
of distinct distances a path can have) can be bounded and
its accuracy coarse by nature, or c; can be small enough
to sufficiently reduce this number of values. Although our
solution can be adapted to fit any metric, we argue that My,
the propagation delay, is the best candidate and will, most of
the time, have the lowest number of distinct values.

The delay is usually constrained through a strict bound
(always lower than 100ms in practical cases). In addition,
while the delay of a path is generally represented by a precise
number in memory, the actual accuracy of the measured delay
of an edge in G is far lower. Indeed, due to the inherent
lack of accuracy of any delay measurements, discriminating

paths having less than a 0.1ms difference can be challenging
if not impossible in the worst conditions. In that case, floating
numbers representing the delays can be rounded to integer
taking 0.1ms as unit. Since the delay is also bounded through
its constraints, the number of distinct, discriminable delay
values is likely to be very limited. This allows us to easily
bound the number of possible non-dominated distances to
c1 x t, with t being the level of accuracy of M; (the inverse of
the delay grain). For example, with c¢; = 10 (in ms) and a delay
grain of 0.01 ms, we have ¢t = ﬁ = 100 and so only 1000
distinct (rounded) values to manipulate with BEST2COP.

In practice, this numerical value is controllable for solving
2COP even if ¢y is not a strict constraint. Indeed, let us recall
that we can also leverage the limited number of segments, cg
:= SEGMAX. We are limited to ¢y ~ 10 segments, i.e., paths
of 10 edges in the SR graph G’. Regardless of the constraint
c1, we know that a feasible SR path will not exceed an M;-
distance of the maximum wf' weight on the SR graph times
co. If we denote by S x t the maximum edge delay in G’
— once rounded to integer with an accuracy level of ¢ — we
know that a feasible SR path has a delay of at most 10 xS x ¢.
In any cases, the number of possible distinct M;-weight of
SR-feasible paths in G’ is bounded by I" = min(c¢y, ¢o xS) x .

For a rounded delay, it then becomes sufficient to store only
the best M,-distance (indexed on its respective M;-distance),
leading to a Pareto front that can be stored in a static array
of size I'. In other words, there are at most I" non-dominated
pairs of distances to be stored and 2COP is polynomial in I'.
The complexity of 2COP is thus controllable. With a small
enough delay constraint, the level of accuracy ¢ of the delay
can be increased and 2COP solutions can remain exact since
1/t becomes smaller than the inherent delay measurement
error. Keeping constant the constraint-accuracy product makes
the error margin constant relatively to c;. As an example,
maintaining I' = 1000 with ¢;=100ms results in ¢ = 10 and in
an error margin of 0.lms. With ¢;=10ms, the accuracy level
t can be increased to 100, resulting in an error margin of
0.01ms. In all cases, the error margin is 0.1% relative to c;.
If cq is a loose constraint, keeping I' = 1000 results in weaker
approximations as ¢ has to decrease, making the error margin
become greater than the measurement inaccuracy. However, it
allows the problem to remain tractable.

While the number of paths to manipulate in G’ is limited
thanks to the aforementioned properties, it may be still con-
siderable when V' increases. Fortunately, we can once again
leverage SEGMAX to cut down the exploration space. Since
we are only interested in SR-feasible paths, we do not need to
explore paths requiring more than ¢y segments. Using a variant
of the Bellman-Ford algorithm on the SR graph, this can be
done easily as the path exploration naturally iterates over the
number of segments, thanks to both the algorithm’s design
and the SR graph representing segments as edges. BEST2COP
visits G’ paths of i segments at its i*" iteration, allowing us
to stop after very few iterations at worst (all paths discovered
afterwards exceed cg).
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III. THE BEST2COP ALGORITHM

In this section we describe BEST2COP, our algorithm effi-
ciently solving 2COP by leveraging properties formalized in
the previous section. We propose here a high-level description,
but the interested reader can find its implementation onlin
While the implementation is designed for high performances,
we omit here several details regarding its precise data struc-
tures (even though these latter play an important role in
BEST2COP’s overall efficiency). Like the SR graph compu-
tation, BEST2COP can be run on a centralized controller but
can also be directly launched by each router.

Simply put, at each iteration, BEST2COP starts by extend-
ing the known paths for each node by one segment (i.e., one
edge on the SR graph) in a Bellman-Ford fashion (a not-
in-place version to be accurate); at the main difference that
we consider here all non-dominated paths, i.e., the Pareto
front. Second, newly found extended paths are filtered to
reflect the new Pareto front. The remaining one will then be
extended themselves, but not before the next iteration. Thanks
to SEGMAX, these two steps only need to be performed ~ 10
times. Indeed, since we explore paths segment by segment,
paths of ¢ segments (i.e., ¢ edges in the SR graph) are explored
at iteration 7. All paths not explored before the tenth iteration
require more than SEGMAX segments and can be ignored.

The good performance of BEST2COP does not only result
from a cut in the exploration space, but also from well-
chosen data structures. Since the limited accuracy of the
measurements bounds the number of non-dominated distances
to I' at each step, we can manipulate arrays of fixed size.

Fig. [3] sketches the main steps of BEST2COP. We focus on
the PFcur structure for the sake of simplicity. The number
of elements within PFcur is bounded by I'. PFcur stores,
for the current iteration and each vertex, the Pareto front of
the distances indexed on their delay (M;). Since BEST2COP
explores paths segment by segment, PFcur will contain, at the
it" jteration, all distances within the Pareto front encodable
in exactly ¢ segments. In particular, BEST2COP only needs to
store in PFcur the best Ms-distance for a given M; index, as
we aim to find least-cost paths.

In the initialization, we set that the only known best distance
is the distance to the source src itself, (0,0) (i.e., PFcur[src][0]
=0). At iteration ¢ (and as shown in box 1), for all predecessors
u of each node v (i.e., potentially all u in V since G’ is a full
mesh), BEST2COP extends all the non-dominated distances
to u (PFcur[u]) discovered at the previous iteration ¢ — 1 by
all weights in E’(u,v) (box 1, Line 2). By combining all
distances to u discovered at iteration ¢ — 1 with all weights
of parallel links linking u to v in E’, we compute candidate
distances of 7 segments towards v. Note that since Ms-distance
towards v are indexed on Mj, if a newly discovered M-
distance is worse than the one currently sitting at the same
M1-index, it means that the distance is dominated and that
there is no point in keeping it (in box 1, it is basically the test
performed in the update function of line 4). However, these

Thttps://github.com/talfroy/BEST2COP

new distances to v may not be on the Pareto front as they
can be dominated by other values newly discovered, stored in
other indexes. We thus refer to them as PFcandidates. From
the set of candidate paths, we still need to extract the new
Pareto front of the current iteration (Box 2), which is stored
in PFcur[v] and will in turn be extended at the next iteration.
This is the purpose of the second update function that checks
whether the candidate is actually non-dominated. For a given
node, at the end of an iteration, the best known distances to it
were correctly updated and will serve as a basis for the next
iteration. We can then also safely record the current best path
that minimizes the cost and respects by design the constraint
co (using the array denoted best in the flow chart).

In reality, BEST2COP is far more versatile and able to
optimize any of the three metrics (Mg, M; or Mj) with
possibly constraints on all metrics. For example, referring
back to Fig. [2l BEST2COP is able to return the solution to
2COP(s, 3, 70) towards p optimizing My or My ((s,7)|(r, p))
or optimizing Ma ((s1,n)|(n1,0)|(0,p)). In addition, with
only few adjustments on the returned structured, BEST2COP is
able to return, upon a single run, all non-dominated distances
respecting up to three constraints (cy, ¢; and an additional
co in the most general case). Thus, if one decides to use a
stricter c; constraint, e.g., 2COP(s, 3, 65), the new constrained
path ((s1,n)|(n2,0)|(0,p)) can already be found within the
returned structure.

The time complexity of BEST2COP is showcased in the
flowchart. For the |V| possible neighbors of |V| nodes, we
extend up to I' non-dominated distances by the L direct
parallel links between them. This procedure is repeated
up to SEGMAX times, leading to a time complexity of
O(SEGMAX x |V|?> x L xT).

For the performance evaluations, we will consider that:

e SEGMAX =10 as it matches current hardware capacity;

o« L = 2: on average, in G’, one can expect that the
total number of links in E’ is lower than 2|V|?. Indeed,
adjacency segments are not likely to be numerous within
transformed graphs, as they tend to be dominated;

o« I' = 1000: while controllable to reflect the expected
product trueness-constraint on M, we consider an accu-
racy level ¢ of 10 (0.1ms accuracy) regarding a maximal
constraint ¢; = 100ms.

IV. PERFORMANCE EVALUATION

This section evaluates the computing time performance of
BEST2COP. We focus here solely on BEST2COP’s perfor-
mances rather than relying on a comparison. As mentioned in
Section |I} most solutions rely on heuristics resulting in a poor
exploration of the solution space in worst-cases. Conversely to
these methods, BEST2COP provides controllable results and
very good performance impervious to peculiar worst-cases.
Furthermore, no existing schemes are specifically designed for
SR. Upgrading them to handle SR raises several challenges,
as minimal modifications would drastically increase their
execution times. Such a fair comparison is left for future work.
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for the Pareto-Front of this iteration (PFcandidates)
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Figure 3: BEST2COP algorithm. BEST2COP works by exploring paths of increasing length on G’. Non-dominated paths are
extending by one edge. The algorithm ends at the SEGMAX'" iteration or when progress stops.

First, it is worth to notice that without any graph-based
assumptions except the ones mentioned above (i.e., just setting
V] = T' = 1000 and with an average of two parallel links
per connection, L = 2), BEST2COP never takes more than
one minute to explore its full iteration space. That is, when
BEST2COP is forced to performs its maximum number of
operations on any graph having these characteristics, solving
2COP cannot exceed one minute. This extreme upper bound is
far from BEST2COP’s real performance, as its data structures
were virtually filled up to push it to its limits. In practice,
when considering concrete underlying networks, even random
ones, BEST2COP can easily deal with average or worst-cases
in less than half a second.

Conversely to the vast majority of existing evaluations
related to TE routing algorithms, we focus on challenging
scenarios implying large networks. Moreover, we do not rely
on a strict delay constraint to simplify the problem. First, we
only consider the largest one that is practically relevant to
DCLC, ¢; < 100ms. Second, we do not ignore distances whose
pruning in the SR graph can reduce the exploration space,
which stresses our solution as much as possible. Formally, our
evaluations are designed such that BEST2COP returns, for all
n €V, the whole 2COP(s,10,100) set.

Given the difficulty to find real or inferred graphs having
two valuation functions, we leverage the characteristics of
SR Graphs (namely, their fully-meshed structures) to generate
numerous scenarios. We nevertheless conclude on evaluations
performed on real ISPs with real IGP costs and delays. For all
the evaluations, we rely on a 4,2 GHz Intel Core i7 CPU.
While parallelizing BEST2COP through slight tweaking is
possible, this additional evaluation is left for future work. We
show here only the results of a purely sequential approach.

A. SR Graph with Random Valuation

An SR Graph G’ is at least a full-mesh when the original
graph G is connected. We use this convenient property to ease
the generation of SR graphs for our evaluations.

We generate complete graphs of |V| nodes having |E’'| =
2|V|? edges, creating so a double full-mesh graph. One system-
atic additional link is enough to mimic unfavorable practical
cases, as realistic topologies tend to possess a low average
number of adjacency segments once converted. Regarding
IGP weights, we chose them uniformly at random between
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Figure 4: BEST2COP worst-case when considering ran-
domly weighted SR graphs with three spreading valuations.
BEST2COP remains always under the second and scales
decently regarding |V|.

1 and 2% (the maximum possible IGP cost with current
IGPs). Propagation delays are uniformly distributed at random
between 1 and S = {100,500, 1000}.

Since we set I" at 1000, picking delay weights higher than
1000 (with a higher delay spreading) is too advantageous
by design as many distances will exceed the constraint. We
perform these tests for |V| ranging from 100 to 1000 (with
steps of 100). To account for the randomness of both valuation
functions, we generate, for each |V, 30 differently weighted
distinct topologies, and run BEST2COP on |V| x 0.1 nodes
as sources. This evaluation is not advantageous as we do not
benefit from any pattern generated by realistic networks. The
resulting computing times are shown in Fig. [}

This random weights evaluation exhibits the efficiency of
BEST2COP: its execution time stays under one second in all
of its runs. BEST2COP scales well enough with the dimension
of the network which is the critical performance parameter
(quadratic in |V]). It is also worth noticing that a spreading
value of 500 leads to the worst time results (label S = 500),
while a value of 1000 or only 100 leads to a slightly better or
a very notable decrease in execution time respectively.

The M» distance spreading has indeed a great impact on the
filling rate of our data structures as it can mitigate the growth
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of the Pareto front. When & = 100, which is the best-case
scenario shown in Fig. [] the first iterations of BEST2COP
have a Pareto front size bounded by only i x 100 < I". With
larger spreading values (and so weights), the full distance
spreading regarding I" comes faster (i.e., with a smaller 7) but
only to some extent. This means that large spreadings can also
be advantageous: many paths within the network are bound to
have a delay higher than 1000. The number of ignored paths
thus increases significantly because many distances become
greater than the constraint c;. Since there is no need to store
them, BEST2COP can ignore many paths and thus end up with
a very fast execution time.

We have shown that BEST2COP performs well with random
weighted SR graphs even when valuation bounds are not
favorable. However, we considered here SR graphs that were
not constructed through the translation of an existing raw
graph G. In the next section, BEST2COP will benefit from real
raw networks’ structures and valuations. SR graphs translated
from real topologies are likely to be vastly simpler, with more
sparse and possibly aligned valuations.

B. More Realistic Scenarios

The performance of BEST2COP being already promising on
non-advantageous scenarios, we now analyze its performance
in realistic cases. Our basic settings are left unchanged,
i.e., I' = 1000 and BEST2COP still does not take advantage
of any distance pruning to reduce G’. We first evaluate
BEST2COP’s execution times on a large network topology
with real IGP weights but random delays. Then, we consider
real but smaller network structures having both real IGP
weights and delays. Our goal is to show at which extent
BEST2COP can benefit from concrete network characteristics,
making it efficient enough to be deployable for real-life cases.

The first ISP, ISP1, consists of more than 1100 nodes and
3000 edges. While we do possess the IGP costs of each link in
E, we do not have their delays. Thus, we select random values
and set them directly on F (and not on E’ as in the previous
evaluation). More precisely, we consider here a maximum
delay leading to the worst experimental computing time, which
is 70. We then also consider two other real ISP networks, ISP2
and ISP3, with respectively around 400 and 200 nodes, having
real valuations for M; and M,. The execution time results are
shown in Fig. [5] as violin plots, whose widths represent the
number of executions taking the time shown on the y-axis (in
ms). We run BEST2COP for all sources.

BEST2COP clearly benefits from ground graph properties.
Its execution time rarely exceeds 250ms in the most dis-
advantageous experiments on ISP1. For ISP2 and ISP3, the
computing is almost negligible, mostly because |V| is limited.
The execution times were greatly enhanced thanks to the
realistic network structures and weights leading to small Pareto
fronts (few distances dominate all the others because metrics
are often aligned). Even though the delay is still random for
ISP1, simply using a realistic network structure divided the
execution time by two when compared to a randomly-weighted
full-mesh of similar size (see Fig. ). BEST2COP already
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Figure 5: BEST2COP’s performances on realistic topologies
with realistic weights (but random delays for ISP1). Execution
times remain mostly under 100ms, even though some of the
delays are still randomized for ISP1.

shows great improvements regarding its execution time on
ISP1, although it does not benefit from real-life delays as in
ISP2 and ISP3. In such cases with few nodes, BEST2COP
solves 2COP in a negligible amount of time. In realistic cases,
it seems thus possible to increase I' to reach a delay accuracy
on the order of the micro-second while keeping the execution
time in the hundreds of milliseconds.

V. RELATED WORK

QoS routing and TE being popular subjects for several
years, it is impossible to showcase here all past work. How-
ever, there are several extensive surveys [1], [12], [L3] that
exhibit a lot of the solutions developed in the past decades.

Specific to DCLC, DCUR [14] explores the network by
extending paths either through the least-delay or the least-
cost path. DCUR has been combined with Bellman-Ford to
create DCBF [15], which guesses promising paths through
an estimated cost. Closer to our work, Constrained Bellman-
Ford [16], solves DCLC exactly by exploring paths in a greedy
fashion through a priority queue indexed on their delay. CBF
was extended in [17]], which adds two heuristics to ease the
problem, first by discretizing all metrics but one, second by
only extending k best paths.

Segment Routing also attracted a lot of interest from the
research community, as can be seen in [18]]. While some SR-
TE works are centered around the constrained paths prob-
lem [19], [20], most of the work related to SR does not
focus on DCLC, but rather bandwidth optimization [21],
[22], path encoding [23], [24], or network resiliency [25],
[26]. In addition, they usually rely on complex parametrizable
techniques such as constraint programming or ILP which may
lead to high computation times [18]. Some works do however
use a construct similar to ours in order to prevent the need to
perform conversions from network paths to segment lists. [27]],
in particular, proposes a multi-metric construct that does not
however take advantage of dominated segments. In addition,
they do not aim to solve DCLC, but simply use the construct
to discover paths before sorting them lexicographically.
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We propose an all-in-one solution, that solves 2COP and
returns the corresponding list of segments. Our approach is an
exact algorithm with a straight-forward bounded worst-case
time complexity, with no parameters requiring tuning. While
other works solving DCLC usually detach path computations
and their deployment, we are, to the best of our knowledge,
the first ones to propose an algorithm that leverages SR
deployment constraints to solve DCLC for SR. In addition,
while not all works evaluate the time complexity of their
solution, or do so on limited topologies, we provide extensive
evaluations on random and real large topologies, bounding the
worst-case time complexity of BEST2COP.

VI. CONCLUSION

While the management overhead of MPLS-based solutions
leads to a TE winter in the past decade, Segment Routing
marked its rebirth. In particular, SR enables the deployment
of a practical solution to the well-known DCLC problem.
In this paper, we proposed an efficient multi-metric SR con-
struct onto which our algorithm, BEST2COP, iterates to solve
DCLC in SR domains. Relying on adaptive simple structures,
BEST2COP leverages both an SR operational constraint and
the inherent limited accuracy of measured delays. By natively
encompassing such limits, we efficiently handle all scenarios.
Through extensive evaluation, we showed that BEST2COP
performs well with both random and realistic cases.

While we believe BEST2COP is already efficient enough
to be deployed, several improvements are possible to make
it even more scalable. First, its parallelizable nature and
smart strategies for cache reuse can be exploited. Similarly, to
deal with really high trueness requirements, more advanced,
and flexible structures can be envisioned. Finally, for large
ISPs relying on subdivision in areas, partitioning DCLC into
smaller sub-problems seems promising to further reduce the
complexity of BEST2COP.
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