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Abstract
Aim: Plankton diversity is a pivotal element of marine ecosystem stability and func-
tioning. A major obstacle in the assessment of diversity is the lack of consistency 
between patterns assessed by molecular and morphological data. This work aims to 
reconcile the two in a single richness measure, to investigate the environmental driv-
ers affecting this measure, and finally to predict its spatio-temporal patterns.
Location and time period: This is a global scale study, based on data collected within 
the 2009–2013 interval during the Tara Oceans expedition.
Major taxa studied: The focus of this study is diatoms. They play an important role in 
several biogeochemical cycles and within marine food webs, and display high taxo-
nomic and functional richness.
Methods: We integrate measures of diatom richness across the global ocean using 
molecular and morphological approaches, giving particular attention to ‘the rare 
biosphere’. We then perform a machine-learning-based analysis of these reconciled 
patterns to extrapolate diatom richness at the global scale and to identify the main 
environmental processes governing it. Finally, we model the response of diatom rich-
ness to climate change.
Results: By filtering out 0.3% of the rarest operational taxonomic units, molecular-
based richness patterns show the best possible match with the morphological ap-
proach. Temperature, phosphate, chlorophyll a and the Lyapunov exponent are the 
major explainers of these reconciled patterns. Global scale predictions provide a first 
approximation of the global geography of diatom richness and of the possible impacts 
of climate change.
Main conclusions: Our models suggest that diatom richness is controlled by different 
processes characteristic of distinct environmental scenarios: lateral mixing in highly 
dynamic regions, and both nutrient availability and temperature elsewhere. We pre-
sent herein the effects of these processes on richness and how these same effects 
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1  | INTRODUC TION

The role of plankton diversity in marine ecosystem functioning is 
recurrently debated in view of ongoing climate change (Beaugrand, 
Edwards & Legendre, 2010; Tittensor et al., 2010). To better un-
derstand the relationship between plankton diversity and its 
roles in environmental functioning, a more resolved mapping of 
plankton distributions and diversity in the contemporary ocean 
is needed. However, diversity assessments are not as straightfor-
ward as they may appear. Traditional methods to classify the dif-
ferent units of diversity rely on morphological analyses, from the 
classical Utermöhl method (Utermöhl, 1958) to the more detailed 
scanning electron microscopy and transmission electron micros-
copy (Tomas, 1997) methods. Molecular screening based upon me-
tabarcode-based information is a more recent method to identify 
units of diversity (Leray & Knowlton, 2016; Zimmermann, Glöckner, 
Jahn, Enke & Gemeinholzer, 2015). The morphology- and metabar-
code-based approaches are differentiated by their measuring unit, 
which is the species in the traditional morphological sense (e.g., 
Tomas, 1997) – to the extent to which species can be defined (De 
Queiroz, 2007) – for the former, and the operational taxonomic 
unit (OTU) for the latter. However, OTUs, independently of the 
clustering method implemented for their definition, are not always 
a good proxy for morphological species, since: (a) different mor-
pho-species may be clustered in the same OTU (Ratnasingham & 
Hebert, 2013); (b) others may be clustered across multiple OTUs 
(Ratnasingham & Hebert, 2013); and (c) artefacts [e.g., sequencing 
errors, polymerase chain reaction (PCR) amplification artefacts, 
chimaeras; Brown et al., 2015] might be misunderstood as OTUs. 
The reconciliation of morpho-species-based and OTU-based di-
versity assessments is one of the current challenges in marine 
ecology as there could be great advantages for community com-
position assessments (Muller-Karger et al., 2018). In brief, recon-
ciling the two sources of information would merge their strengths 
and would provide a more robust estimate of the number of taxa 
present in a location of interest. Once taxonomic units have been 
selected, the diversity within an assemblage can be quantified by 
several indices. Among them, richness is the optimal, unbiased 
descriptor of how many different species co-occur at a given site 
at a specific time (Magurran, 1988). This value results from the 
interplay of biotic interactions and physicochemical factors, pro-
viding clues to understand communities at ecological and biolog-
ical levels. Richness may be controlled by bottom-up processes, 
as higher nutrient availability fosters higher richness (Dutkiewicz, 
Follows & Bragg, 2009), but also by water dynamics whenever the 

local strength of oceanic mixing and transport is sufficiently high 
(Barton, Dutkiewicz, Flierl, Bragg & Follows, 2010; Lévy, Jahn, 
Dutkiewicz, Follows & d’Ovidio, 2015). Moreover, richness is the 
key information to unravel the Hutchinson (1961) plankton para-
dox. The evidence that many more species than those expected 
considering the competitive exclusion principle can coexist in a 
small, homogeneous water volume is still puzzling the scientific 
community, even though several hypotheses have been proposed 
(Roy & Chattopadhyay, 2007).

Richness values are dramatically affected by the presence of rare 
species and, therefore, are extremely sensitive to the sampling and 
analytical effort (Cermeño, Teixeira, Branco, Figueiras & Marañón, 
2014). Rare species, which are intentionally underrated by other met-
rics of diversity (e.g., Shannon H diversity index), represent an incred-
ibly large quota of microbial communities (Caron & Countway, 2009) 
to the point that they have been named ‘the rare biosphere’ (Sogin 
et al., 2006). Even though they have a minor cumulative impact on 
total abundance, they are the main component of richness and the 
primary determinant of phylogenetic diversity. The rare biosphere 
has been interpreted as a vast diversity reservoir, presumably made 
up of ecologically redundant species that, although maybe on their 
way to extinction, are able to rapidly interact with the environment 
and thus quickly drive community structure rearrangements (Caron 
& Countway, 2009; Lynch & Neufeld, 2015). Nevertheless, the po-
tential contribution of the rare biosphere to ecological resilience is 
often neglected. Moreover, a fundamental question in ecology and 
evolution is whether taxonomic and genotypic units are discriminat-
ing organisms that we would classify as diverse because of their dif-
ferent responses to the same ecological context, which again leads 
to the plankton paradox. Setting the number of players in the game 
in a robust way is, therefore, a prerequisite to answering this ques-
tion and it can be achieved by producing a consistent, unified picture 
of the units, even when very rare.

Diatoms (Bacillariophyta) are one of the major phytoplanktonic 
groups and are among the most diverse classes of organisms on Earth 
(Mann & Vanormelingen, 2013). While recent studies have already 
shown how comparison of molecular and morphological taxonomic 
units can lead to greater analytical precision (Malviya et al., 2016; 
Zimmermann et al., 2015), we herein aim to integrate the two dia-
tom richness estimation approaches, to assess how co-occurrence 
of many diatom species varies at the global scale, by adequately 
considering the different ways the rare biosphere is accounted for 
by these methods. Our analysis builds on Tara Oceans data, which 
have already demonstrated the potential of metabarcode analy-
sis for several taxa (de Vargas et al., 2015; Le Bescot et al., 2015) 

differ from other diversity indices because of the main component of richness: the 
rare biosphere.
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including diatoms (Malviya et al., 2016; Pierella Karlusich, Ibarbalz, & 
Bowler, 2020). The unified view of diatom richness patterns that we 
obtain by reconciling morphological and molecular markers allows 
us, through machine learning approaches (a) to describe diatom vari-
ability at the global scale, (b) to analyse how such variability matches 
with spatial patterns of environmental variables and, finally, as a 
proof of concept, (c) to attempt a prediction of how climate change 
might affect the observed richness patterns.

2  | MATERIAL S AND METHODS

2.1 | Metabarcoding data

Metabarcoding data for Tara Oceans samples were exploited for the 
present study. Total nucleic acids (DNA + RNA) were extracted from 
all the samples, and the hypervariable V9 region of the nuclear 18S 
ribosomal DNA was amplified through PCR (see Alberti et al., 2017; de 
Vargas et al., 2015). A quality filtering based on reads quality checks 
and a minimum number of occurrences of three copies in at least two 
different samples was implemented to reduce PCR and sequencing er-
rors. Within this dataset, 237,565 V9 diatom-assigned ribotypes were 
detected (de Vargas et al., 2015). We focus on the 20–180 μm size 
fraction dataset, which contains 183 net samples encompassing 125 
stations sampled at the subsurface (5 m) and 58 of them at deep chlo-
rophyll maximum depth (DCM).

2.2 | Bioinformatics pipeline

The initial taxonomic assignation of reads was confirmed and re-
fined using a custom version of the Protist Ribosomal Reference 
database (PR2; Guillou et al., 2013) containing a selection of new 
and curated reference sequences available for diatoms in GenBank 
in December 2018. Taxonomic assignment to diatoms of ribotypes 
was performed in two steps. We first made a local blast against 
the custom version of the PR2 database retaining only results 
showing similarity >90% over a query coverage with the refer-
ence > 109 bp. Reference and environmental sequences were 
aligned with mafft v.7 (Katoh, Rozewicki & Yamada, 2017) using 
the experimental service for large numbers of highly similar and 
short sequences (https://mafft.cbrc.jp/align ment/serve r/large.
html?aug31). Poorly aligned sequences and hard-to-align blocks 
within the alignment were removed. Ribotypes taxonomically 
annotated to diatoms were furthermore filtered through a phy-
logenetic approach. Phylogenetic analyses were performed using 
the approximately-maximum likelihood method (Yang, 1994) im-
plemented in the fasttree2 software (Price, Dehal & Arkin, 2010). 
Ribotypes validated by the taxonomic and phylogenetic check 
(Supporting Information Data S1) were clustered into OTUs ap-
plying the Swarm approach (Mahé, Rognes, Quince, de Vargas & 
Dunthorn, 2014). Swarm aggregation was performed at differ-
ent clustering levels (d) from 1 to 5, using the standard values 

for all the other parameters through the swarm software (Mahé 
et al., 2014). Moreover, OTUs in the range 95%–99% were calcu-
lated using the vsearch distance-based greedy clustering algorithm 
(method = dgc) through mothur (Rognes, Flouri, Nichols, Quince, & 
Mahé, 2016; Schloss et al., 2009).

2.3 | Morphology-based data

Morphology-based counting was implemented for subsamples of 
the same size fraction used for molecular analyses (20–180 μm), 
obtained from a few to more than 100 L of seawater, at surface 
and DCM depth from the stations in the Cape Agulhas region, the 
South Atlantic transect, South Pacific Ocean and the Southern 
Ocean (Malviya et al., 2016). Additional samples were analysed 
from the Atlantic, Indian and Pacific Oceans, the Mediterranean 
Sea and the Arctic. Up to 3 mL of each net sample was placed 
in an Utermöhl chamber. The whole sedimentation chamber bot-
tom was observed and cells (> 5 µm) were identified up to the 
species level whenever possible using a light inverted microscope 
(Axiophot200, Carl Zeiss, Oberkochen, Germany) at 400 × mag-
nification (Utermöhl, 1958). The morphology-based richness was 
computed as the number of different taxa identified in the sam-
ples (Supporting Information Data S2).

2.4 | Filtering process of molecular data

The process was repeated using ribotypes, or differentially clus-
tered OTUs (see ‘Bioinformatics pipeline’ in Materials and meth-
ods): Swarm OTUs at five different clustering levels (d) and vsearch 
OTUs at five different distance thresholds (s). Each molecular 
sample was filtered at a series of ordered thresholds (from 1% to 
100%). Ribotypes or OTUs were discarded from the rarest to the 
most abundant in the sample in order to progressively exclude an 
increasing amount of reads. Filtering thresholds were thus meas-
ured in terms of the total relative abundance maintained by the 
filtering. Pairwise Pearson correlations of the richness computed 
over the 11 types of differently clustered metabarcode informa-
tion filtered at different thresholds were performed against the 
morphology-based richness. A false discovery rate p-value adjust-
ment of the p-value was implemented. The optimal correlation 
between morphology-based richness and any barcode-based rich-
ness at different thresholds was selected as the most significant 
correlation (adjusted p-value < .05) with the highest correlation 
coefficient (rho). This optimal correlation drove the choice of 
the molecular data type other than of the filtering threshold to 
be applied to the whole dataset. This latter filtered information 
will be used for all downstream analysis in this paper. The filtering 
process is schematized in Supporting Information Figure S1. The 
cumulative threshold globally applied corresponded to a different 
absolute threshold for each station, computed as the maximum 
relative abundance of the discarded OTUs of each station.

https://mafft.cbrc.jp/alignment/server/large.html?aug31
https://mafft.cbrc.jp/alignment/server/large.html?aug31
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2.5 | Discarded OTUs

OTU frequency is measured as the number of stations where 
each OTU is detected. OTUs were classified into three classes 
according to the filtering results: (a) OTUs always discarded, 
(b) OTUs always kept and (c) OTUs that are kept or discarded 
depending on the station. Taxonomic annotation of discarded 
OTUs was compared to the annotation of the pool of OTUs re-
tained by the filtering.

2.6 | Environmental data

Nine environmental variables were considered to investigate the 
processes behind diatom richness dynamics. Variables included de-
scriptors of hydrodynamic mixing, nutrient availability, temperature 
and chlorophyll a concentration. Local confluence and mixing were 
estimated through the finite-size Lyapunov exponent, a measure 
of the front intensification rate computed as the backward-in-time 
relative separation of water parcels from altimetry-derived surface 
currents (Lehahn, d’Ovidio & Kohen, 2018). An altimetry-based 
three-days advection scheme was also applied to 25-km resolu-
tion infrared sea surface temperature (SST) images to estimate the 
SST gradients at km scales at sampling sites (d’Ovidio, De Monte, 
Alvain, Dandonneau & Levy, 2010). Temperature, salinity, silicate, 
phosphate and nitrate availability were extracted at 5-m depth from 
the World Ocean Atlas 2013 (WOA13) database, while iron avail-
ability was derived using the pelagic interactions scheme for carbon 
and ecosystem studies (PISCES)-v2 model (Aumont, Ethé, Tagliabue, 
Bopp & Gehlen, 2015). Chlorophyll a concentration was extracted 
from the World Ocean Atlas 2001 (WOA01) database (Conkright 
et al., 2002). When no data were available at the latitude and longi-
tude coordinates of the sample, a search was done within a 2° square 
around the sampling location and values found within this square 
were averaged.

2.7 | Earth system models

WOA and PISCES-v2 data were used to obtain present-day global 
environmental conditions. Future environmental conditions were 
derived by computing the mean of six Earth system models over 
the 2006–2015 (present-day) and 2090–2099 (end of the century) 
decades under the greenhouse gas emission scenario RCP8.5. The 
models included in the analysis are IPSL-CM5A-LR/MR, GFDL-
ESM2G/M, MPI-ESM-LR/MR, CESM1-BGC, HadGEM2-ES and 
NorESM1. We considered the average value of the models as it 
tends to smooth errors and incongruences between models (Bopp 
et al., 2013). The delta between the end of the century and the 
present-day mean models was computed (Supporting Information 
Figure S2) and added to the WOA and PISCES v2 global scale data to 
obtain future environmental conditions.

2.8 | Machine learning modelling integration

In order to model surface diatom richness, as measured by the op-
timally filtered molecular information, we integrated four machine 
learning approaches: boosted regression tree (BRT), random forest 
(RF), fully connected neural network (NN) and generalized addi-
tive models (GAM). The parameterization of each model was opti-
mized (Supporting Information Text S1). The final models were then 
trained on the whole dataset. Model performance was investigated 
by computing the mean residuals and the Pearson correlations be-
tween the observed and predicted richnesses for the whole dataset 
(Supporting Information Table S2). Models with a cross-validated 
root-mean-square deviation below 50 and mean residuals below 30 
were selected as significant. Two sets of models were built and op-
timized: one including all the nine variables previously described to 
investigate the roles of the variables on the model and a second one 
excluding the hydrodynamic parameters (SST gradient and Lyapunov 
exponent) to allow the projection at global scale, as we lack global 
scale data for these two variables. In both cases, three out of four 
models were considered as significant, excluding the GAM model 
from both exercises (Supporting Information Table S2). The pro-
jection of the seven-variable models was performed at the global 
scale using both the present time and the end of the century condi-
tions. The variable importance (Fisher, Rudin & Dominici, 2018) was 
computed for the nine-variable models using the DALEX R package 
(Biecek, 2018) as the difference between the loss function calcu-
lated for validation data with every variable being shuffled and the 
loss function calculated for the validation dataset.

Furthermore, with the iBreakDown R package (Gosiewska & 
Biecek, 2019) we computed the variables contribution to single 
predictions and we averaged it across models. We used the nine- 
variable models to evaluate Tara Oceans stations predictions and the 
seven-variable models to evaluate global scale predictions. Using the 
seven-variable models, the local variable contributions were com-
puted on global scale data seven more times (one per variable), using 
each time the future conditions of all the parameters except one, 
which kept present-day condition. Finally, the difference between 
the future-present-day variation of richness using all the future con-
ditions and the future-present-day variation of richness using as fu-
ture conditions all the future parameters except one was computed. 
All data-mining and statistical analyses were performed in R (version 
3.4.1; R Core Team, 2017).

3  | RESULTS AND DISCUSSION

3.1 | Integration of morphological and 
metabarcoding counts

Our first step was to strengthen the consistency among dia-
tom richness estimates from molecular and morphological data. 
There have been previous efforts to compare metabarcoding- and 
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morphology-based information for diatoms (e.g., Malviya et al., 2016; 
Piredda et al., 2018; Zimmermann, et al., 2015). However, while pre-
vious studies limited their analysis to a descriptive comparison check, 
here we follow a different approach, proposing a reproducible pro-
cedure to reasonably reconcile the two measures. The Tara Oceans 
metabarcode dataset, following a stringent quality filtering, contains 
174,267 ribotypes annotated as Bacillariophyta. This study focuses 
on diatoms from 183 sampling stations addressing the 20–180 µm 
size fraction, because for those net samples morphology-based data 
adequately cover richness, thus allowing a reliable comparison with 
metabarcoding data. This size fraction actually contains a wide va-
riety of diatoms including small-sized ones, which may be trapped 
because of net clogging and cell aggregation (Leblanc et al., 2018; 
Piredda et al., 2018). Indeed, because of the wide intraspecific size 
variability during their life cycle and their pronounced shape ani-
sotropies, size fractionation has a limited applicability to diatoms, 
which are recorded in all size fractions regardless of their nominal 
size (Piredda et al., 2018). Within the 20–180 µm size fraction, the 
clustering produced different numbers of OTUs depending on the 
clustering threshold (Supporting Information Table S1), resulting in 
up to 5,830 Swarm OTUs (clustering d = 1), and up to 41,381 vs-
earch OTUs (clustering s = 99%), while morphology-based identifi-
cation resulted in a list of 256 units at genus or species levels. The 
most represented genus was Chaetoceros (23% of the total OTUs), 
followed by Pseudo-nitzschia (12%) and Proboscia (8% of the total 
OTUs, Supporting Information Data S3). These results only partially 
match those of Malviya et al. (2016), which were, however, based on 
all size classes.

The mismatch between metabarcoding- and morphology-based 
information is due to multiple reasons. Metabarcoding has a much 
higher resolution and detection power (Leray & Knowlton, 2016), 
being capable of identifying both cryptic and rare species largely un-
resolved or missed by morphological methods. On the other hand, 
the remarkably larger number of units detected by metabarcoding 
could reflect intraspecific or even intraclonal diversity in some cases, 
although closely related species are at times clustered in the same 
OTUs (Piredda et al., 2018). From the quantitative viewpoint, a re-
markable match of relative abundances between morphological and 
metabarcoding information has been observed for diatoms (Malviya 
et al., 2016; Piredda et al., 2016, 2018), although this is not usually 
the case for protists (Abad et al., 2016; Massana et al., 2015).

The rationale of the approach herein proposed was to obtain a suf-
ficient covariance between the results of the two methods in order to 
have a similar spatial pattern of richness while still retaining the high 
resolution of the metabarcoding. In addition, this will allow compar-
ison with patterns based on microscopic counts (e.g., Righetti, Vogt, 
Gruber, Psomas & Zimmermann, 2019). With these goals, the datasets 
obtained through different clustering algorithms were progressively fil-
tered (see Materials and methods, Supporting Information Figure S1), 
and the resulting richness correlated to the morphology data (Figure 1a, 
Supporting Information Figure S3a, Data S4). The removal of the least 
abundant OTUs produced a progressive improvement of the Pearson 
correlation value across all the different clustering thresholds (Figure 1a), 
as expected since microscopy-based analyses are much less likely to 
detect rare species than metabarcoding. The maximum rho = .68 was 
obtained by the Swarm d = 1 removing only the cumulative 0.3% of the 

F I G U R E  1   Tuning and validation of the 
filtering process. (a) Pearson rho between 
diatom morphology-based richness and 
diatom metabarcode-based richness 
(according to the colour: ribotypes or 
Swarm clustering) progressively filtered. 
Correlation results are ordered along the 
x axis according to the filtering threshold 
applied. The ‘×’ symbols indicate 
non-significant correlations (adjusted 
p-value > .05). On the right a blow-up 
of the grey panel in the 99%–100% 
threshold range. (b) Scatterplot of diatom 
richness as measured through the optimal 
filtering procedure and as obtained by the 
rarefaction exercise, subsampling to 3,000 
reads per sample [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a)

(b)

www.wileyonlinelibrary.com
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total abundance of OTUs. The station-specific relative abundance under 
which OTUs were discarded varied across stations with a median of only 
0.02% (Supporting Information Figure S3b), highlighting how rare units 
were largely preserved by the filtering at most sites.

To further test the reliability of our filtering method, results 
were compared to those obtained with a standard rarefaction anal-
ysis, a classical approach to validate richness comparisons (Gotelli & 
Colwell, 2001). Samples were rarefied to 3,000 reads, which reduced 
the number of stations to 102 from the initial 183 because of the 
lower read abundances of 81 stations. The rarefied richness strongly 
correlated (rho = .86) with the filtering process above (Figure 1b).

3.2 | The identity of discarded OTUs

Under the hypothesis that filtering mainly discarded genetic variants of 
more abundant haplotypes, we investigated the nature of the excluded 
OTUs by assigning both retained and discarded OTUs to named species. 
Only 24% of the OTUs filtered out belonged to species that were not 
detected in the retained dataset, while the vast majority of them were 
presumably variants of more abundant haplotypes at the same station 

(Figure 2). Further support for this hypothesis comes from the strong rela-
tionship between the abundance of diatoms in a sample and the number 
of discarded OTUs (Figure 3). This relationship suggests a higher intraspe-
cific variability in diatom-rich stations, which can be explained by (a) a 
lower detectability of variants in samples with low abundance of diatom 
reads (Elbrecht, Vamos, Steinke & Leese, 2018), (b) high intraspecific di-
versity in conditions favourable to diatom growth as a consequence of cell 
proliferation, sexual reproduction and resting stage germination (Godhe & 
Rynearson, 2017; Lebret, Kritzberg, Figueroa & Rengefors, 2012), or both.

The distribution of discarded OTUs further supports their interpreta-
tion as genetic variants. The majority of OTUs (57%) were discarded by 
the filtering process and mostly found in only one or two samples (orange 
in Supporting Information Figure S4a–c). However, 29% of the OTUs dis-
carded in one sampling site were relatively more abundant at other stations, 
more widely distributed across the sites (green in Supporting Information 
Figure S4a,b), or both. Only 14% of the OTUs were never discarded, 
being at times even almost ubiquitous (blue in Supporting Information 
Figure S4a,b). All the above suggests that the filtering procedure has re-
moved units that would have increased the richness (see next section).

3.3 | The reconciled distribution patterns of diatom 
richness in the global ocean

Because of the above-mentioned relationship between the abundance 
of diatom sequences in a sample and the number of discarded OTUs, 
the filtering procedure applied in this study has a higher impact over sta-
tions with a large diatom population size and, hence, primary productiv-
ity. Indeed, upon filtering, the strong monotonous relationship between 
richness and relative abundance of reads (as a proxy of diatom produc-
tivity) was replaced by a unimodal relationship (red, Figure 3). The de-
cline of richness in diatom-dominated stations recalls the relationships 
observed between phytoplankton richness and biomass (e.g., observed 
when excluding rare species by Vallina et al., 2014) generally explained 
by the dominance of a few species in the case of intense blooms 
(Mittelbach et al., 2001). However, we rather believe that the decline in 
richness observed in the cited reports may reflect poor sampling of the 
rare biosphere, as it is unlikely for conditions favouring the accumula-
tion of specific diatom species to be so unfavourable to other species as 
to cause their disappearance. Considering all the above, we hypothesize 
that richness in stations with high diatom abundance is underestimated 
both in general and by our cautious filtering procedure. Indeed, correct-
ing the filtering results with what we previously detected as likely fake 
artefacts (discarded OTUs annotated to a species not present in the cor-
responding retained set and found over the filtering threshold in a sec-
ond station) led to a trend that confirms the general pattern but likely 
fixes the supposed underestimate of richness at high abundance (light 
red, Supporting Information Figure S5a). As this correction did not sub-
stantially impact the results (Supporting Information Figure S5b), down-
stream analyses have been performed on uncorrected filtered richness, 
so as to keep a better comparability with morphology-based datasets.

We investigated the spatial patterns of diatom richness at the 
global scale (Figure 4). As designed, the filtering procedure only 

F I G U R E  2   Overview of the identity and distribution of the 
filtering discards. The boxplots show the discarded operational 
taxonomic units (OTUs) percentage over the total number of diatom 
OTUs discarded. The plot aggregates this information calculated in 
every station and then divided in three classes. The three classes 
are: (a) the discarded OTUs assigned to species still represented in 
a station (green), (b) discarded OTUs assigned to species that are 
not present in the retained set in a given station (yellow) and (c) 
non-annotated discarded OTUs (grey) [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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slightly lowered the metabarcoding resolution but allowed the rich-
ness pattern to be reconciled with that obtained from morphology- 
based data. Indeed, both sets of data showed higher richness in the 
Equatorial Pacific and the Agulhas regions (Figure 4b,c), while the 
peaks of richness that were molecularly identified at the poles by the 
unfiltered metabarcoding data (Figure 4a) are now bevelled to the 
medium–low values observed in the morphology-based data.

To extend the distribution of diatom richness calculated from the 
Tara Oceans stations to the global scale, we applied an integrated 
machine learning modelling approach, using as predictor variables 
physical parameters (temperature and salinity), chemical parameters 
(nitrate, iron, silicate, phosphate) and a proxy of the trophic status 
of the system (chlorophyll a; see Materials and methods). Both ob-
served (Figure 4c) and modelled (Figure 5) results delineated a spatial 
distribution of diatom richness with maxima in the Tropical Pacific, in 
the North Indian Ocean and off South Africa. In particular, peaks in 
diatom richness are observed and modelled near to the well-known 
upwelling regions associated with the Benguela Current (off south-
ern Africa) and the Humboldt Current (off Peru and Chile).

3.4 | Environmental and ecological drivers of 
diatom richness

A long-standing debate on marine plankton communities is how 
the environment modulates their variability. In particular, model 

studies (Follows, Dutkiewicz, Grant & Chisholm, 2007) have con-
sistently proposed hydrodynamic features like fronts as drivers of 
plankton richness, along with traditional variables like nutrients 
and temperature. To further explore this issue, a second set of 
machine learning models was applied, including, in addition to the 
seven physico-chemical and trophic variables, two hydrodynamic 
variables: SST gradient and finite-size Lyapunov exponents, which 
detect fronts as kinematic boundaries (confluences) among con-
trasted hydrodynamic regions (d’Ovidio et al., 2010). Three models 
(BRT, RF and NN) out of four had overall high prediction power 
(Supporting Information Table S2). The scenario slightly changes 
among models but there is a notable coherence in defining tem-
perature, followed by the Lyapunov index, chlorophyll a and phos-
phate, as the most important variables (Supporting Information 
Figure S6).

F I G U R E  3   Diatom richness–productivity relationship. The 
filtered and unfiltered Swarm metabarcoding richness values are 
related to the relative diatom abundance in the sample, expressed 
as the number of diatom reads in that sample over the total number 
of reads sequenced in the same sample. Two regression smoothing 
lines computed by the loess function fit the two types of data and 
the relative shading areas reflect the confidence intervals [Colour 
figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4   Diatom richness distribution in the global ocean. 
(a) Diatom richness from Tara Oceans sites based on the Swarm 
metabarcoding in the size-class 20–180 μm. (b) Diatom richness 
based on morphological data (i.e., light microscopy counts) from 
the same size-class samples (20–180 μm). (c) Reconciled richness 
pattern derived by the filtering of the Swarm metabarcoding in size-
class 20–180 μm optimized over the morphological observations. 
All maps employ the Mollweide’s projection [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a)

(b)

(c)

www.wileyonlinelibrary.com
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F I G U R E  5   Global prediction of diatom richness. (a) World scale map (Mollweide’s projection) of predicted present-day annual mean 
diatom richness computed at each grid point as the average of the predicted richness of the random forest (RF) model. Present-day 
environmental conditions are provided by the World Ocean Atlas database with the addition of pelagic interactions scheme for carbon 
and ecosystem studies-v2 biogeochemical model information for iron. Panel (b) shows the latitudinal distribution of the same measure of 
diatom richness depicted in panel (a). The black line shows the latitudinal median computed for every degree of latitude [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E  6   Relative contribution of environmental variables to the prediction of diatom richness at the Tara Oceans stations. Only 
contributions higher than 20% are taken into account and results from the three employed models [boosted regression tree (BRT), neural 
network (NN) and random forest (RF)] are aggregated. The global scale map employs the Mollweide’s projection. In the background the main 
oceanic currents are depicted by arrows and the areas of high lateral diffusivity (according to Abernathey & Marshall, 2013) are represented 
by light grey areas [Correction added on 24 August 2020 after first online publication: Figure 6 has been corrected to include the missing pie 
in this version.] [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Based on these results, we hypothesize diatom richness to be 
influenced by different processes that vary according to the spe-
cific hydrographic structure, nutrient availability and hydrodynamics 
of the site (Figure 6). The spatial distribution of the contributions 
of major variables (>20%, Figure 6) indeed shows clear geograph-
ical zonation. Temperature, the most crucial variable in the model 
(Supporting Information Figure S6), is dominant at the extremes of 
its range, mostly in the Arctic and tropical regions. More ambiguous 
is the case of the semi-enclosed basins such as the Mediterranean 
and Red Seas where salinity acquires in some parts an important role, 
sometimes concealed by contributions of other factors, due to the 
smaller scales of variability of these basins (e.g., Malanotte-Rizzoli 
et al., 2014). In oligotrophic oceanic regions, high chlorophyll a may 
be a consequence of equatorial upwelling, which may allow phyto-
plankton accumulation, locally increasing the number of r strategists 
species, sensu Margalef, as diatoms are supposed to be. Nutrients 
show high importance across the global ocean. Interestingly, a pre-
dominance of hydrodynamic predictors is observed in regions char-
acterized by substantial lateral transfer due to warm currents such as 
the Brazil Current, the Norwegian Current, the Agulhas Current and 
the strong Gulf Stream.

3.5 | Projecting richness distribution in the 
future ocean

Having characterized and ranked the environmental variables affect-
ing diatom richness distribution patterns, we analysed the impact of 

the climate change predicted by models. To this goal we applied to 
the WOA global dataset the delta values of environmental predic-
tions between 2006–2015 (present-day) and 2090–2099 (end of the 
century) Earth system models (Supporting Information Figure S7; 
see Materials and methods). Our results suggest that climate change 
may lead to a general decrease of diatom richness (with a mean neg-
ative variation of 4%, down to a negative minimum of 56%), with a 
narrowing of hotspot regions (Figure 7a, e.g., Tropical Pacific) and a 
relocation of richer communities towards the poles. A remarkable 
example are the peaks of increased richness in the subtropical zones, 
which at present display very low richness (Figure 7b, Supporting 
Information Figure S7).

We analysed the impact of the different environmental changes 
through computation of the contribution of the different variables on 
the global scale prediction at the present time and at the end of the 
century (Figure 8a). Strongest positive contributions were observed 
for nitrate, whereas lower contributions were detected for iron and 
salinity, which were identified as the least influential variables in the 
models. Widespread contributions, both positive and negative, were 
observed for temperature, nitrates and silicates, highlighting a major 
role played by both physics and the trophic status at individual sites. 
Moreover, comparing the present day with the end of the century 
predictions, a substantial shift in temperature contribution was de-
tected from positive to negative contributions. A similar but minor 
shift is observed for nitrate. This difference supports the fact that ni-
trate availability, together with its interaction with temperature, may 
dramatically affect diatom sensitivity to climate change (Thomas, 
Kremer, Klausmeier & Litchman, 2012). Interestingly, contribution 

F I G U R E  7   Global future prediction of diatom richness. (a) World scale map (Mollweide’s projection) of the percentage of variation of 
richness estimates (delta) from present-day to the end of the century, predicted using the random forest (RF) machine learning technique. 
The percentage of variation is computed as the difference between the two environmental conditions over the present-day conditions. (b) 
Latitudinal distribution of the percentage of variation of richness depicted in panel (a). The black line shows the latitudinal median computed 
for each degree of latitude while the red line represents the null variation, i.e., where the delta is equals to zero and there is no difference 
between the predictions [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)
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F I G U R E  8   Contribution of the environmental variables to future predictions. In panel (a) the boxplots of the mean of each variable 
contribution applied by the three machine learning hydrodynamic-free models [boosted regression tree (BRT), neural network (NN) and 
random forest (RF)] to predict diatom richness at a global scale at the present day (green) and end of the century (red), taking into account 
only the grid available for both times. Outliers have been excluded. In panel (b) the results of the RF predictions are compared in every sub-
panel to the prediction using future conditions for all the variables except one, for which present-day conditions are employed. The delta 
value of variations are expressed in percentage. They corresponds to the difference between the future-present-day predictions variation 
(see Figure 7) and the future-present-day predictions variation using as future conditions all the future variables except one. Negative values 
correspond to regions where climate change variations of the variable lead to a decrease of future richness, and vice versa [Colour figure can 
be viewed at wileyonlinelibrary.com]

(a)

(b)
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variations were detected also for chlorophyll a and silicates, sug-
gesting that climate change may affect the previously documented 
relationship between diatom biomass and their richness.

To investigate the local impact of single environmental vari-
ables in future predictions we investigated the sensitivity of the 
model to future projected changes of each explanatory variable (see 
Materials and methods, Figure 8b). The variables locally playing a 
significant role in changing diatom richness in future conditions are 
chlorophyll a, with a mostly negative role and a maximum effect in 
the tropics, and temperature, which exhibits highly positive longi-
tudinal bands in the subtropics, that is, in oligotrophic regions. This 
patterning corresponds to a specific temperature range (Supporting 
Information Figure S8), suggesting that higher temperatures will 
have a direct impact in very low richness regions (Figure 5). Diatom 
richness strongly deviates from predictions from metabolic the-
ories (Supporting Information Figure S8, Righetti et al., 2019). In 
turn, this implies that predictions based on temperature only do not 
capture the complexity of the response to climate change (Thomas 
et al., 2012). Phosphate and nitrate show similar patterns in their 
impact, displaying negative contributions moving from the North 
Atlantic to the Arctic. Conversely, silicate shows a complementary 
pattern with positive impacts on most of the Atlantic Ocean and the 
Arctic as well.

3.6 | Towards a unified picture

The comparison between metabarcode- and morphology-based dia-
tom richness estimates in the global Tara Oceans survey displayed 
over a 20:1 ratio between the former and the latter. Such imbalance 
highlights the need to clearly specify which kind of richness is herein 
being studied. Since our goal was to characterize spatial patterns of 
diatom richness globally, we decided to integrate both types of infor-
mation assuming that morphological and molecular data could not 
be uncorrelated. To that aim, we selected the threshold below which 
the information provided by the two estimates was consistent: this 
allowed us to include most of the rare biosphere and to reproduce 
the expected unimodal relationship between diatom abundance and 
observed richness. This approach is not purely methodological since 
our filtering procedure allowed a large number of the OTUs to be 
kept, those above the empirically-found threshold of abundance, 
which are cumulatively structured in space very much like the ca-
nonical, morphology-based species. This, in turn, suggests that this 
reconciled OTU dataset follows the same ecological patterns of the 
canonical species on which our knowledge on diatom ecology is 
largely based, while being one order of magnitude richer.

From an evolutionary perspective, species richness may result ei-
ther from neutral or adaptive processes. While the former could pass 
undetected by microscopy counts, the latter might lead to different 
morphotypes and thus increase also microscopy-based richness. We 
posit that microscopic counts always tend to underestimate or miss 
the rare biosphere. Furthermore, even without equating OTUs to 
morphotypes, the OTUs’ distribution is a better representation of 

the diversity of a sample, in the sense of the number of distinct tax-
onomic units, than microscopic counts.

Global estimated patterns of phytoplankton richness, although 
not numerous, have been obtained by model simulations (e.g., Barton 
et al., 2010), or from direct observations (e.g., Righetti et al., 2019; or 
Ibarbalz et al., 2019 based on the same dataset). Our spatial pat-
terns are based on global-scale data using different machine learning 
methods that consider not only the intrinsic structure of spatial vari-
ance, as in geostatistical methods, but also other variables that might 
affect the richness, but without assuming any driving mechanism as 
in biogeochemical models. Our maps mimic the global richness pat-
terns of phytoplankton distributions obtained by biogeochemical 
models (e.g., Barton et al., 2010), albeit with a few discrepancies. 
We interpret some of them as due to inadequate coverage of Tara 
Oceans sampling across specific regions, particularly when those re-
gions have characteristics not present elsewhere (e.g., the Antarctic 
region). This obviously weakens the predictive potential of statisti-
cal models. For areas with sufficient coverage, for example, the Gulf 
Stream, two upwelling systems and the high nutrient low chlorophyll 
regions in the subtropical Pacific, our extrapolations are very close 
to the results of the biogeochemical model. In addition, our analy-
sis, and the derived extrapolations, allowed two remarkable features 
to be captured: a reduction of richness within tropical and towards 
polar oceans and a high richness within intertropical and temper-
ate regions (Figure 5b). The former sets a significant difference be-
tween diatoms and both phyto- (Righetti et al., 2019; Supporting 
Information Figure S8) and whole plankton (Ibarbalz et al., 2019) 
distribution patterns. Diatoms behave similarly to the rest of phy-
toplankton in the equatorial regions or particular tropical hotspots 
regions such as the Indian Ocean and the Peru Current upwelling. 
While diatoms are assumed to be highly diverse in upwelling regions, 
the high richness in equatorial areas is remarkable and hints at the 
presence of a suite of strategies to cope with substrate limitations of 
different origins (e.g., Caputi et al., 2019, Kemp & Villareal, 2018). In 
other tropical regions, where other phytoplankton display high rich-
ness, possibly due to higher metabolic rates (Righetti et al., 2019), 
diatoms display a clear minimum; in temperate and up to the subpo-
lar regions, where other phytoplankton start their decline in richness 
(Ibarbalz et al., 2019; Righetti et al., 2019), diatoms peak again. We 
hypothesize that this behaviour might also be explained by the de-
synchronized seasonal cycles and by the multiphase life strategies of 
many diatoms. Even assuming that we underestimated the richness 
in high latitude regions, as suggested by the correction based on tax-
onomic annotation (Supporting Information Figure S5), diatom rich-
ness in these areas seems lower but still relatively higher than other 
phytoplankton (Righetti et al., 2019). This matches with the general 
perception of diatoms optimally thriving in these regions.

At the first order of approximation, the observed global patterns 
can be explained by three different scenarios in terms of environ-
mental variables or processes. In regions highly active in horizontal 
hydrodynamics (maxima in Lyapunov exponents) richness is likely 
enhanced by the confluence of fronts as conjectured by d’Ovidio 
et al. (2010), or supported by model studies (Lévy et al., 2015). A 
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second scenario is detected in oligotrophic regions, where nutri-
ent availability (Dutkiewicz et al., 2009) strictly controls the phyto 
biomass, that is, the chlorophyll a, and the richness, herein at its 
minimum. Finally, the last scenario is found at the extremes of the 
temperature gradients, in tropical and polar regions, where tempera-
ture stands out as a major explainer of diatom richness. This evi-
dence seems to support the metabolic theory hypothesis (Righetti 
et al., 2019). We believe that the identification of temperature as 
the main predictor is due to the similar richness observed at the ex-
tremes of its range and is not a direct indicator of the processes be-
hind richness increase, likely driven by complex dynamics.

Intriguingly, machine learning results predict a richness increase 
in regions where stratification and oligotrophy should increase in a 
global warming scenario. This forecast seems to contradict the prev-
alent views on diatoms as adapted to nutrient-rich and turbulent 
environments but we think that this is not necessarily a contradic-
tion. In fact, rather than in biomass our machine learning approach 
predicts an increase in richness, which is in line with the view that 
diatoms may persist in oligotrophic areas because they may quickly 
respond to episodic nutrient pulses, as proposed by McCarthy 
and Goldman (1979) and recently also shown in other Tara Oceans 
studies by Malviya et al. (2016) and Caputi et al. (2019). The latter 
authors also demonstrated a broad suite of responses to the same 
environmental perturbation, which highlights the capability of dif-
ferent diatom species to occupy a wide range of ecological niches. 
This evidence expands the potential set of conditions under which 
diatoms may thrive, warranting a higher richness than the one ex-
pected by the prevailing view, which is mainly based on well-known, 
opportunistic coastal species.

Moreover, we point out how the latitudinal variation of diatom 
richness herein described differs significantly from the pattern of 
the Shannon diversity index shown by Ibarbalz et al. (2019) for the 
same group. This highlights the different meanings of the richness 
(how many distinct units) and the Shannon index (how abundance of 
units is distributed) in characterizing diversity and explains why they 
cannot be simply compared. Their differences show that the relative 
weight of rare versus more abundant taxa varies latitudinally, implic-
itly supporting our first scenario, and fosters a more in-depth study 
of the rare biosphere.

4  | CONCLUDING REMARKS

Machine learning tools are useful to integrate extensive, multivari-
ate datasets to set the starting point of a mechanistic interpreta-
tion of patterns that should complement the evidence provided 
by them.

Molecular data strongly suggest that diatoms are less exposed to 
a temperature-dependent latitudinal decrease in richness and, sup-
ported also by microscopic counts, ‘the variation of richness with 
latitude deviates from the pattern of most plankton.

Overall, our analysis confirms and reinforces that even for a 
single phytoplankton group, the apparent paradox of many species 

coexisting in the same water parcel holds true (Hutchinson, 1961). 
There is no unique driver of such patterns, with non-equilibrium 
(first scenario), hump-shaped richness–productivity relationship 
(second scenario), and latitudinal dependence (third scenario) always 
concurring, albeit with different geographical patterns, to modulate 
richness.
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