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Abstract

Durbin’s three transport equation model, the so-called v2–f model,
has been implemented in an industrial finite element code, N3S, de-
veloped at the research and development department of Électricité de
France, enabling the use of unstructured meshes. Validations by com-
parison with other codes have been performed in the cases of the chan-
nel flow at Reτ = 395, and the backward-facing step at Re = 5, 100.
The test case of the 2D periodic ribbed-channel flow has then been
computed, without heat transfer at ReH = 37, 200, and with a con-
stant heat flux imposed at the ribbed-wall at ReH = 12, 600. The
results obtained show the ability of the model to predict accurately
the enhancement of heat transfer due to the ribs, which is of primary
interest for industrial applications.

Keywords: v2–f model; low-Reynolds number; heat transfer; un-
structured mesh; backstep; ribbed channel.



Notation

De Hydraulic diameter

DT
ij Turbulent diffusion tensor

e Rib height

f Variable related to energy
redistribution in the
equation of the scalar
velocity scale v2

h Characteristic length scale
of the flow

k Turbulent kinetic energy

L Length scale used in the
v2–f model

n Unit vector normal to the
wall

Nu Nusselt number

Nus Nusselt number for the
turbulent flow in a smooth
circular pipe

p Mean pressure

P Production of turbulent
kinetic energy

Pr Prandtl number

PrT Turbulent Prandtl number

q̇ Heat flux

ReH Reynolds number UbDe/ν

Reτ Reynolds number uτh/ν

Re Reynolds number Ubh/ν

s curvilinear coordinate

Sij Deformation rate tensor

T Time scale used in the
v2–f model

Ub Bulk velocity

uτ Friction velocity

v2 Scalar velocity scale of the
v2–f model

Greek

α Thermal diffusivity

∆t Time step

ε Turbulent kinetic energy
dissipation rate

εij Dissipation tensor

λ Thermal conductivity

ν Molecular cinematic
viscosity

νT Eddy viscosity

νTlm
Generalised eddy viscosity

θ Fluctuating temperature

Θ Mean temperature

φh
ij Homogeneous model for

the redistribution term

Superscripts

(n) Value of the variable at the
nth time step
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Subscripts

b Bulk value

n Wall-normal component

w Wall value

Operators

ϕ Ensemble mean of a
variable ϕ

ϕ̃ Convected value of a
variable ϕ

D/Dt Substantial derivative
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1 Introduction

In industrial applications of computational fluid dynamics, turbulence mod-
els have been so far generally restricted to high-Reynolds number regions,
and the wall vicinity accounted for by wall functions. However, the latter
are based on the assumption that the near-wall flow satisfies a universal
behaviour, which is not the case in most of the applications of industrial in-
terest, such as flows with low-Reynolds, separation or impingement regions.
In particular, this approach is not suitable to heat transfer calculations in
nuclear engineering. Therefore, models integrable down to solid boundaries
are needed.

Low-Reynolds models are generally derived from high-Reynolds models
by introducing damping functions or extra nonlinear terms to account for
the effect of the wall on turbulence (i.e. Craft et al., 1996; Iacovides and
Raisee, 1999). However, such methods are rather ad hoc, since the high-
Reynolds-number models are based on the assumptions that the variations
of the velocity gradient can be neglected in the rapid part of the redistribu-
tion term (quasi-homogeneity) and that terms involving the pressure can be
modelled by algebraic expressions (locality): both assumptions are not valid
in the wall region (Manceau, 1999). In particular, the kinematic effects of
the wall, such as the blocking of the normal fluctuating velocity component,
are fundamentally non-local, and cannot be properly reproduced by an alge-
braic model without introducing an explicit dependence on the wall-distance.
This is at the origin of the success of the so-called wall-echo terms. Unfor-
tunately, such terms are ill-behaved in general geometries and are therefore
not suitable to industrial cases.

The elliptic relaxation method (Durbin, 1991) allows the derivation of
wall-proximity models which does not suffer from the previously emphasized
shortcomings: the quasi-homogeneous assumption is not used and the re-
distributive term is given by a differential equation, the so-called elliptic

relaxation equation, which enables the reproduction of the non-local effect.
Moreover, this method is related to a theoretical analysis, which proved to
be consistent with DNS data (Manceau et al., 2000).

The v2–f model is an elliptic relaxation model reduced to three trans-
port equations. It is based on a turbulent viscosity hypothesis, but contains
and uses information on the anisotropy of the flow in the near-wall region
through the evaluation of the turbulent scale v2, which is locally similar to
the normal Reynolds stress u2

n in the vicinity of the wall. In the frame of
industrial applications, this model represents a good compromise between
two-equation models, which are widely used for their simplicity and robust-
ness, and full Reynolds stress models, closer to the physics, but very stiff
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numerically. Moreover, the v2–f model has been successfully applied in
many complex situations (Durbin, 1995; Parneix et al., 1998a; Parneix et

al., 1998b; Lien et al., 1997; Behnia et al., 1998; Behnia et al., 1999). This
model has thus been selected for use in the industrial code N3S, developed at
EDF, for its ability to reproduce accurately the near-wall turbulence and to
predict heat transfer.

The distinctive feature of this work is the use of unstructured meshes: all
previous v2–f computations used structured meshes. The first section of the
paper describes briefly the v2–f model. More details, and in particular the
justification of the model, are given by Durbin (1991) or Manceau (1999).
The second section presents the implementation of the model in the finite
element code N3S and in particular how the boundary conditions are han-
dled, as well as the validation which has been conducted for the cases of the
channel and backstep flows. The third section is devoted to the test case
of a 2D periodic ribbed-channel, which is relevant for turbine cooling. Two
sets of experiments are available for this case: the first one, with flow mea-
surements, from Drain and Martin (1985), at ReH = 37, 200; the second one,
with heat flux measurements on the ribbed-wall, from Liou et al. (1993), at
ReH = 12, 600. Both cases were computed separately and the influence of the
temperature boundary conditions for the second case has been investigated.

2 The V2F model

High-Reynolds-number turbulent viscosity models need strong corrections
to be applicable down to solid boundaries. The v2–f model is explicitely
derived in order to avoid the use of ad hoc damping functions. In particular,
the function fµ, which corrects the strong overestimation of the turbulent
viscosity in the vicinity of the wall and, consequently, of the shear stress uv,
is not needed.

In this purpose, Durbin (1991) suggested to use the following expression
for the turbulent viscosity close to a solid boundary, 2 being the direction
normal to the wall:

νT = Cµu2u2T (1)

with T = k/ε. This expression is similar to the standard Prantl–Kolmogorov
formula, in which k is replaced by u2u2, which provides the expected damping
of the turbulent viscosity (e.g. Launder, 1988).

However, the Reynolds stresses are not calculated in a two-equation model.
Since the evaluation of u2u2 by the Boussinesq equation is obviously not pos-
sible in this case, Durbin proposed to solve a transport equation for a scalar
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velocity scale (called “v2”), directly derived from the transport equation of
the wall-normal Reynolds stress u2u2 in a channel:

Du2u2

Dt
= k f22 −

u2u2

k
ε+∇ · ((ν + νT )∇u2u2) (2)

where the term kf22 stands for the redistributive term. In order to preserve
the non-local effect in this equation, f22 is modelled by the following elliptic
relaxation equation:

f22 − L2∇2f22 =
1

k
φh
22 (3)

in which the slow and rapid parts of the source term φh
22 are respectively

given by Rotta and IP models (Naot et al., 1973).
The dissipation term ε22 has been split into two parts: ε u2u2/k and

ε22 − ε u2u2/k. The second one is also assumed to follow an elliptic relaxation
equation and is thus included in the term kf22. Hence, the homogeneous
source term (ε u2u2/k − 2/3 ε) /k is added in Eq. (3):

f22 − L2∇2f22 =
1

k

(
φh
22 +

u2u2

k
ε−

2

3
ε
)

(4)

Since kf22 goes to zero at the wall, the total dissipation ε22 is ε u2u2/k in the
near-wall region and tends to its isotropic value 2

3
ε far from the wall.

The use of the elliptic equation (4) allows the integration of the model
down to solid boundaries, since u2u2 and thus the eddy-viscosity is cor-
rectly damped, when the appropriate boundary condition for f22 is provided
(Durbin, 1991):

f22 = −
20 ν2 u2u2

ε x4
2

(5)

In the model, called v2–f , u2u2 and f22 are replaced by scalars denoted
v2 and f in equations (2) and (4), which are solved in addition to equations
for k and ε. v2 is then no longer comparable to the corresponding Reynolds
stress component u2u2, but must be considered as a scalar velocity scale,
tending to unun near any solid wall, n being th normal direction to this
wall, thus providing an estimation of the turbulence anisotropy near all solid
boundaries. Equations (2) and (4) has been derived from the equations of
u2u2 and f22 in a channel, but are applicable in arbitrary geometries.

The model consists in the following equations:

• Equations:

DU

Dt
= −∇p+∇ ·

(
(ν + νT )(∇U +∇tU)

)
(6)
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Dk

Dt
= P − ε+∇ · ((ν + νT )∇k) (7)

Dε

Dt
=

C ′

ε1
P − Cε2ε

T
+∇ ·

(
(ν +

νT
σε

)∇ε
)

(8)

Dv2

Dt
= k f −

v2

k
ε+∇ ·

(
(ν + νT )∇v2

)
(9)

f − L2∇2f = (C1 − 1)
(2/3− v2/k)

T
+ C2

P

k
(10)

νT = Cµv2T ; P = 2νTSijSij (11)

• Length and time scales:

L = CLmax


k3/2

ε
; Cη

(
ν3

ε

)1/4

 ; T = max

(
k

ε
; 6
(
ν

ε

)1/2
)

(12)

• Coefficients: C ′

ε1
= 1.4

(
1 + 0.045(k/v2)1/2

)

Cµ = 0.22 ; C1 = 1.4 ; C2 = 0.3 ; Cε2 = 1.9 ;

σε = 1.3 ; CL = 0.25 ; Cη = 85.0
(13)

• Boundary conditions at walls:

Ui = 0 ; k = 0 ; v2 = 0 ; ε =
2νk

y2
; f = −

20 ν2 v2

ε y4
(14)

• Realisability constraints:

T ≤
0.6k

61/2Cµv2SijSij

; L ≤ CL
k3/2

61/2Cµv2SijSij

(15)

These equations are based on the standard k–ε equations and only some
comments are needed: the time and length scales are bounded by Kolmogorov
scales in order to suppress singularities in the ε and f equations, respectively;
a variable coefficient C ′

ε1
has been introduced in order to enhance the gen-

eration of ε at the wall (it goes to infinity as y−2 in the vicinity of the wall
but since P behaves as y4 in this model, the product C ′

ε1
P goes to zero,

so no unstability problem were expected and have been encountered); the
source term of the f equation is exactly derived from (4), replacing φh

22 by
the Rotta+IP model; the coefficients of the model are those used by Parneix
et al. (1998b).
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Figure 1: P1–isoP2 element divided into four sub-elements. ◦ pressure nodes;
• velocity nodes.

3 Implementation and validation

3.1 The N3S code

N3S is an industrial code developed at the research and development depart-
ment of EDF. It uses finite elements, which are triangles in 2D and tetrahedra
in 3D. The discretization is P1–isoP2: the pressure is evaluated at the nodes
of the element (P1 nodes) and for all other variables, discretization points
are added at the middle of each edge (P2 nodes). For instance, in 2D cases,
there are three P1 nodes and six P2 nodes per element, as shown in Fig. 1.

The terminology iso means that the P2 variables are not projected on
quadratic but linear basis functions: in 2D, by adding nodes at the middle
of the edges, four sub-elements are defined, in which linear basis function
are used. P1–isoP2 elements have the advantage of satisfying the inf–sup

condition.
The time discretization is based on a fractional step method. The first

step is the convection step, resolved by the characteristic method with a
fourth order Runge–Kutta algorithm. The second step is the diffusion of all
scalar variables. The third and last one is the resolution of the generalized
Stokes problem (velocity–pressure system) by either a Chorin or a Uzawa
algorithm. More details about the method used in the code can be found in
Chabard et al. (1996). Only the points peculiar to the v2–f model will be
described.
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Figure 2: Method used for the evaluation of the limiting values involved
in the wall boundary conditions. ◦ point where the boundary conditions
ε = 2νk/y2 and f = −20ν2v2/εy4 are applied; • point where the limiting
values k/y2 and v2/y4 are evaluated.

3.2 Boundary conditions

The method to be used for the resolution of the turbulence equations is
mainly imposed by the boundary conditions of the model. Indeed, whereas
the conditions k = 0 and v2 = 0 are simply accounted for by a projection
method, those on ε and f require the solving of a coupled system for k and
ε on one hand, and for v2 and f on the other hand.

The wall boundary conditions on v2 and f involve the limiting values
limy→0 k/y

2 and limy→0 v2/y
4, respectively. With a Cartesian grid, these

values can be simply evaluated at the first node inside the domain. With
triangular finite elements (only 2D cases are considered herein), this method
is not directly applicable, since no other node of the element is generally lo-
cated in the wall-normal direction. However, as shown on Fig. 2, the limiting
values can be evaluated by interpolation at the point where the first edge of
the mesh is encountered in the normal direction. This simple method, similar
to a finite difference method, has been totally satisfactory.

The boundary conditions on ε and f thus involve the values of k and v2,
respectively, in the two points inside the domain defining the first encoun-
tered edge. The simplest solution would be to account for this coupling in an
explicit manner. Unfortunately, this method can lead to numerical instabil-
ities: the ratios k/y2 and v2/y4 can take large values when k and v2 deviate
from their asymptotic behaviour in y2 and y4, respectively. Therefore, it has
been found necessary to couple implicitly the k and ε equations on one hand,
and the v2 and f equations on the other.
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3.3 Resolution of the coupled systems

Two coupled systems k–ε and v2–f are thus to be solved. With the con-
vection being accounted for by the method of characteristics, the substantial
derivatives in the transport equations of these four variables can be recast as

Dϕ

Dt
=

ϕ(n+1) − ϕ̃(n)

∆t
(16)

where ϕ is any of the variables, the bracketed exponent indicates the iteration
number, ∆t the time step and ϕ̃(n) the convected value of ϕ(n).

In the resolution of the systems k–ε and v2–f , the coupling enables the
implicitation of terms which are usually taken explicit, such as ε in the k
equation and f in the v2 equation. The method can be summarized as





k(n+1)

∆t
− k̃(n)

∆t
= P (n) − ε(n+1) +∇ ·

(
(ν + ν

(n)
T )∇k(n+1)

)

ε(n+1)

∆t
− ε̃(n)

∆t
=

C
′(n)
ε1

P (n) − Cε2ε
(n+1)

T (n) +∇ ·

(
(ν +

ν
(n)
T
σε

)∇ε(n+1)

) (17)





v2
(n+1)

∆t
− ṽ2

(n)

∆t
= k(n) f (n+1) − v2

(n+1)

k(n) ε(n) +∇ ·
(
(ν + ν

(n)
T )∇v2

(n+1)
)

f (n+1) − L(n)2∇2f (n+1) = (C1 − 1)
(2/3− v2

(n)
/k(n))

T (n) + C2
P (n)

k(n)

(18)

The boundary conditions for ε and f are taken implicit:

ε(n+1) = 2ν
k(n+1)

y2
(19)

and

f (n+1) = −
20ν2

ε(n)
v2

(n+1)

y4
(20)

and are evaluated as described in Fig. 2. These boundary conditions are
directly imposed in the matrices of the systems whose solutions are obtained
by a BI-CGSTAB algorithm (Van der Worst, 1992).

3.4 Validation

3.4.1 Channel flow

In order to validate the implementation of the v2–f model, the results given
by N3S have been compared to those given by a 1D code developed at the
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Figure 3: Validation of the implementation in N3S. Channel flow at
Reτ = 395. k and v2 profiles. • 1D code; N3S; ◦ DNS.

Center for Turbulence Research, in Stanford University. The case of the
channel flow at Reτ = 395 has been chosen, and the results can be thus
compared with the DNS (Moser et al., 1999).

The problem is resolved on a 2D periodic domain, with only three nodes in
the direction of the flow. The mesh is made of triangles obtained by dividing
rectangles by one of their diagonals. The mesh has been intentionally chosen
very fine in the y-direction, in order to ensure that the discretization error
is negligible. The first point inside the domain is located at y+ = 0.5 and
the mesh contains 200 velocity nodes in the half-height of the channel. A
symmetry boundary condition is applied at the centre.

The results obtained for k and v2 are shown in Fig. 3. A perfect coinci-
dence between the profiles given by N3S and the 1D code is observed. This
validates the implementation and in particular the way the boundary condi-
tions are handled. It can also be seen that the results are in good agreement
with the DNS data. Note that the v2–f model is able to reproduce natu-
rally the fluctuations of normal velocity, thus providing the right scaling for
turbulent transport near the wall without any ad-hoc damping functions.

3.4.2 Backward-facing step

The second test case that has been chosen in order to validate the imple-
mentation of the v2–f model in N3S is the backstep flow at Re = 5, 100, for
which the DNS data of Le et al. (1993) are available. The simulation with
N3S is validated by comparison against results (Durbin, 1995) given by the
finite difference code INS2D developed at the NASA Ames Research Center.

A symmetry boundary condition is applied since the calculation domain
used for this configuration is symmetric (double backstep). DNS profiles are
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−3 0 40
0

1

6

Figure 4: P1 mesh used for the backstep flow.

imposed at the inlet for all the transported variables, including v2, which is
equal to the wall-normal Reynolds stress in this portion of channel. Regard-
ing f , the Neumann boundary condition ∂f/∂n = 0 is applied at the inlet,
n denoting the unit vector normal to the inlet plane.

The P1 mesh is shown in Fig. 4. It contains 6,229 nodes, which corre-
sponds to 24,637 P2 nodes. Similarly to the channel flow, the mesh has been
chosen excessively fine in order to avoid numerical errors.

The results obtained for the streamwise mean velocity are shown in Fig. 5.
Again, a quasi-perfect coincidence between the profiles given by N3S and
those given by the reference code can be observed, in spite of the different
meshes and numerical techniques. This result achieves the validation of the
implementation. However, a slight discrepancy appears in Fig. 6 in which
the friction coefficient Cf is plotted: it probably comes from the a posteriori

evaluation of the velocity derivative at the wall on different meshes and not
from the different numerical methods. The mesh used here is actually highly
non-uniform and demonstrates the robustness of the current v2–f implemen-
tation.

By comparison with the DNS, it can be seen that the predictions of the
v2–f model are very satisfactory in this case. Even if the turbulence inten-
sity is slightly overestimated in the recirculation bubble and underestimated
above it (not shown here), the velocity profiles are in excellent agreement
with DNS data. The main characteristics of this flow, which turbulence mod-
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Figure 5: Validation of the implementation in N3S. Backward-facing step at
Re = 5, 100. Mean velocity profiles. • NASA code; N3S; 2 DNS (Le et al.,
1993).
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Figure 6: Validation of the implementation in N3S. Backward-facing step at
Re = 5, 100. Friction coefficient on the lower wall. See Fig. 5 for legend.
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Figure 7: Ribbed-channel flow. Geometry of the test case (2H=5e; L=7.2e).

els generally fail to predict simultaneously, namely the recirculation length,
the back-flow intensity and the recovery of the boundary layer, are correctly
reproduced here.

The correct predictions of the back-flow intensity and the friction coeffi-
cient is a very interesting result in the frame of nuclear engineering. Indeed,
the accurate reproduction of the near-wall region leads to the hope of quan-
titative accurate predictions of heat transfer between the fluid and the wall.

In the next section, a case more relevant for industrial applications (tur-
bine cooling, for instance) will be investigated: the case of a channel in which
ribs are periodically mounted on one wall in order to enhance heat transfer.

4 Test case: periodic ribbed-channel

The geometry of the problem is shown in Fig. 7. Two sets of experimen-
tal data have been selected: the first one, from Drain and Martin (1985),
containing only velocity measurements, corresponds to the Reynolds num-
ber ReH = 37, 200, based on the bulk velocity and the hydraulic diameter;
the second one, from Liou et al. (1993), with temperature measurements at
ReH = 12, 600. Two different simulations have been performed on the same
mesh, shown in Fig. 8, containing 11,548 P1 nodes and 45,738 P2 nodes.
Periodic boundary conditions are applied, since only the fully-developed flow
is considered here.
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Figure 8: P1 mesh used for the ribbed-channel flow.
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Figure 9: Ribbed-channel flow at ReH = 37, 200. Mean streamwise velocity
U . ◦ Experiments (Drain and Martin, 1985); v2–f model; Standard
k–ε model with wall functions.
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4.1 Case at ReH = 37, 200 without heat transfer

Only U , u2, v2 and uv are available in the database. Accordingly, the only
variable of the model that can be directly compared with the experiments
is the mean streamwise velocity U , which is plotted in Fig. 9. Results ob-
tained with the standard k–ε model with wall functions are also shown. Note
that the mesh used for the latter simulation (not shown here) is significantly
coarser than that shown in Fig. 8 in order to comply with the y+ require-
ments.

It can be seen that the velocity profiles given by the v2–f and the k–ε
models are very similar in the main part of the flow, except in the recir-
culation bubble. Actually, in the rest of the domain, the flow is mainly
determined by the geometry induced pressure field. Turbulence plays a sig-
nificant role only in the recirculation bubble and in the shear layer between
the latter and the rest of the flow.

Compared with experiments, both models seems to slightly overpredict
the velocity in the upper part of the channel, and to underpredict it in
the region just above the ribs, located approximately between y/e = 1 and
y/e = 2. However, this is a feature common to all the results obtained with
different models and presented by different teams, using different codes at
the seventh ERCOFTAC/IARH workshop on refined turbulence modelling in
Manchester (1998). This shows that the experiments probably exhibit 3D
effects: counter rotating eddies in the x-direction located between the top of
the ribs and the upper wall of the channel can indeed induce an acceleration
of the flow in the measurement plane where they converge and a deceleration
where they diverge. It is thus dangerous to draw any conclusion about the
performance of the model in this flow region.

Close to the lower wall between two consecutive ribs, it can be seen that
the v2–f model, correctly reproduces the intensity of the back-flow, even if
a slight underestimation is observed. At the location x/e = 5.32, the exper-
iments exhibit a very weak back-flow, which shows that there is probably
no reattachment: the two recirculation bubbles, after one rib and before the
next one, may be actually connected. This feature has been confirmed by a
Large Eddy Simulation performed at EDF and also presented at the work-
shop. The merging of the two bubbles is observed in Fig. 10, in which the
streamlines obtained with the v2–f model are plotted. As far as the k–ε
model is concerned, it predicts too small separated bubbles and a much too
weak back-flow. This result is consistent with the standard behaviour of this
type of turbulence model in such separated flows.

Since the v2–f model uses the turbulent viscosity concept, it is interesting
to compare against experiments the shear stress obtained by the Boussinesq
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Figure 10: Streamlines obtained with the v2–f model. Ribbed-channel flow
at ReH = 37, 200.

y
/e

0 2 4 6 8 10
0

1

2

3

4

5

−uv/U2
b

Figure 11: Ribbed-channel flow at ReH = 37, 200. Shear stress given by the
Boussinesq equation. Irregularities are not due to numerical problems but
to the post-processing (velocity gradients calculations on an unstructured
mesh). ◦ Experiments (Drain & Martin, 1985); v2–f model; Stan-
dard k–ε model with wall functions.
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Figure 12: Ribbed-channel flow at ReH = 37, 200. Comparison between the
v2 of the model and the Reynolds stress component u2u2. ◦ Experimental
u2u2 (Drain & Martin, 1985); v2 from the v2–f model; Reynolds
stress u2u2 given by the Boussinesq equation.

approximation. The −uv profiles are shown in Fig. 11. With the v2–f
model, as well as with the k–ε model, the prediction by the Boussinesq
equation is very far from the experiments just above the rib, in particular
at x/e = 0.1. The profiles at the locations x/e = 4.18 and x/e = 5.32 are
globally correctly reproduced, but the discrepancy remains significant, for
both models, between y/e = 1 and y/e = 2.5.

The v2–f model also contains a transport equation for a scalar velocity
scale v2 which gives an indication of the anisotropy. Even if this v2 and the
Reynolds stress component u2u2 are strictly similar only in the case of the
channel flow, it can be interesting to compare them in the present case. It
is observed in Fig. 12 that the v2 of the model is rather close to u2u2 in the
upper part of the domain, where the flow is similar to a channel flow. In
the recirculation bubble, the two quantities are quite different. However, it
can be seen that the v2 of the model gives a good estimate of the anisotropy,
contrary to the Reynolds stress u2u2 evaluated by the Boussinesq equation,
also plotted in the figure. This shows that v2 is a much better estimator of
near-wall turbulence transport levels than k.

The lack of experimental data and the doubt about the perfectly 2D
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character of the experiment do not allow to draw definitive conclusions about
this case. However, the correct prediction of the intensity of the back-flow is
encouraging for the following heat transfer case.

4.2 Heat transfer case at ReH = 12, 600

In this case, a constant heat flux q̇w is imposed at the lower wall (cf. Fig. 7).
The Nusselt number is available from the experiments by Liou et al. (1993).
It is defined by

Nu =
q̇wDe

λ(Θw −Θb)
(21)

where De is the hydraulic diameter, λ the thermal conductivity, Θw the mean
temperature at the wall and Θb the bulk temperature defined by

Θb =
∫ 2h

0
Θ |U | y dy /

∫ 2h

0
|U | y dy (22)

The temperature being considered as a passive quantity, its calculation
and that of the dynamic field are uncoupled. First, the velocity field is
evaluated at ReH = 12, 600 and secondly, the energy equation is solved with
a frozen velocity field.

In the latter simulation, two different types of boundary conditions can
be applied. The first one consists in coupling the fluid problem with the con-
duction problem in the rib. The second one consists in considering that the
constant heat flux imposed at the lower face of the rib is equally distributed
on the other faces. The first solution is closer to the physics, but more dif-
ficult to apply; the second one is simpler, allowing the use of a constant
heat flux q̇w/3 on the rib faces. The first solution has been chosen in order
to respect as much as possible the experimental conditions. The coupling
between the Syrthes code, also developed at EDF, and N3S, enables the reso-
lution of fluid–solid heat transfer problems. However, in order to investigate
the influence of the boundary conditions in this case, a simulation with the
constant heat flux q̇w/3 at the rib faces has also been performed.

The thermal field is obtained by solving the transport equation of the
mean temperature Θ:

DΘ

Dt
= α

∂2Θ

∂xk∂xk

−
∂ukθ

∂xk

(23)

where θ is the fluctuating temperature and α the thermal diffusivity. The
thermal fluxes are simply modelled by a turbulent diffusivity hypothesis:

ukθ = −αT
∂Θ

∂xk

(24)
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Figure 13: Ribbed-channel flow at ReH = 12, 600. Heat transfer enhance-
ment. s is the curvilinear coordinate. s = 0 corresponds to the upstream
upper corner of the rib. ◦ Experiments (Liou et al., 1993); Computa-
tion with coupled fluid–solid heat transfer resolution; Computation with
imposed flux on the rib faces.

where the turbulent diffusivity αT is expressed as a function of the eddy
viscosity:

αT =
νT
PrT

(25)

The turbulent Prandtl number PrT is given by the Kays and Crawford (1993)
correlation

PrT =
1

0.5882 + 0.228(νT/ν)− 0.0441(νT/ν)
2[1− exp(−5.165/(νT/ν))]

(26)

This correlation has been derived in order to fit the variations of PrT from
about 1.2 at the wall to 0.85 far from it, and provide reasonable values in
most of the applications.

The predicted Nusselt number Nu is shown in Fig. 13, normalised by Nus,
the Nusselt number for the turbulent flow in a smooth circular pipe, given
by the Dittus–Boelter correlation:

Nus = 0.023 Re0.8Pr 0.4 (27)

where Pr is the molecular Prandtl number of the fluid. The ratio Nu/Nus

characterizes the heat transfer enhancement due to the ribs.
It is observed in Fig. 13 that the Nusselt number distributions obtained

with the two different types of boundary conditions are identical, except on
the rib faces and in the vicinity of the lower corners of the rib. This shows
that the boundary conditions on the rib do not significantly influence the
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heat transfer on the main part of the wall. The accuracy of the results is
thus not only due to the accounting for the heat conduction in the rib, but
also to the turbulence model.

On the rib faces, the results are very different from the experiments.
However, on these faces, the heat flux is not known and it is not clear in
the paper how the Nusselt number has been evaluated. Again, no definitive
conclusions can be drawn as regards the heat flux through these faces.

At the lower wall of the channel, between two consecutive ribs, two parts
can be distinguished: the first one, between s/e = 2 and s/e = 5, where
Nu is predicted with an excellent accuracy (less than 5% error locally); the
second one, between s/e = 5 and s/e = 8, where Nu is underestimated (up to
30% error). However, the accuracy of the results is very satisfactory, taking
into account the simplicity and robustness of the dynamic and heat transfer
models. The average heat transfer level along the ribbed wall, one of the
most important parameters for design, is actually quite accurately predicted
(about 10% error, certainly below the measurement uncertainty).

The results obtained with the fluid–solid coupled simulation exhibits a
negative Nusselt number on the main part of the downstream face of the
rib. It comes from the fact that the upstream upper corner is cooled by the
flow, whereas the heat accumulates in the vicinity of the downstream lower
corner due to the very low velocities in this region. There is then a flux in
the rib which transports the heat from the downstream lower corner to the
upstream upper corner (see Fig. 14).

5 Conclusion

The possibility of implementing the v2–f model in an industrial code based
on a finite element discretization and using unstructured meshes has been
demonstrated. Moreover, the ability of the model to reproduce the turbulence
characteristics in a case of industrial interest, and, in particular, the heat
transfer coefficient, has been shown.

First, the validation cases, the channel and backstep flows, have confirmed
that with sufficiently fine meshes, the v2–f results do not depend on the
code, even if the numerical methods are completely different, which is not
always the case for all turbulence models. The questionable point, i.e. the
finite difference approximation to handle the coupled boundary conditions
has been proved to be totally successful.

The test case of the ribbed-channel has demonstrated that the v2–f model
is a good compromise between the simplicity needed to reduce the cost of the
simulations and the accuracy required to reproduce the physical processes,
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Figure 14: Ribbed-channel flow at ReH = 12, 600. Dimensionless mean tem-
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especially the near-wall turbulence anisotropy, decisive for quantitative accu-
racy in heat transfer predictions. It appears that a very simple model for the
heat fluxes is sufficient to successfully predict the Nusselt number distribu-
tion, which shows that it is mainly important to use a model that correctly
reproduces the dynamic field, especially the turbulence transport levels near
solid walls.

The success of the implementation of the v2–f model in a code using
unstructured meshes and its ability to predict heat transfer are of primary
importance in the context of nuclear engineering. Indeed, it suggests that the
model is suitable to “real life” application, in complex geometries, in which
the Nusselt number is often the most important quantity to estimate.
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