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A new form of the elliptic relaxation equation to account for wall effects
in RANS modeling
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Department of Applied Physics, Thermofluids Section, Delft University of Technology, Lorentzweg 1,
P.O. Box 5046, 2600 GA, Delft, The Netherlands
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Different methods for improving the behavior in the logarithmic layer of the elliptic relaxation
equation, which enable the extension of Reynolds stress models or eddy viscosity models down to
the wall, are tested in a channel flow at Ret5590 and compared with direct numerical simulation
~DNS! data. First,a priori tests are performed in order to confirm the improvement predicted by the
theory, either with the Rotta1IP ~isotropization of production! model or the Speziale–Sarkar–
Gatski ~SSG! model as the source term of the elliptic relaxation equation. The best form of the
model is then used for full simulations, in Durbin second moment closure or in the frame of the
v

2
2 f model. It is shown that the results can be significantly improved, in particular by using a

formulation based on the refinement of the modeling of the two-point correlations involved in the
redistribution term. ©2000 American Institute of Physics. @S1070-6631~00!50709-0#

INTRODUCTION

One of the most important unclosed terms appearing in
the Reynolds stress transport equation is the redistributive
term arising from pressure fluctuations. Almost all models
for this term used so far are based on the pioneering propo-
sitions of Chou1,2 and Rotta,3 which consist in expressing the
redistribution as an algebraic expression of mean quantities
of the flow. This approach was originally introduced for
high-Reynolds number regions, and is based on the quasiho-
mogeneity and locality assumptions that are only valid ‘‘not
too close to solid boundaries.’’1 In order to extend models
down to the wall, damping functions or nonlinear terms are
usually introduced. However, seeking to reproduce the near-
wall behavior of turbulence by introducing complex correc-
tion terms appears somewhat inconsistent when the basic
assumptions are not valid in this region.4,5 On the contrary,
the elliptic relaxation approach6,7 is based on a theoretical
analysis and a simple modeling of the two-point correlations
involved in the integral form of the redistribution term, and
does not use the previously quoted Chou’s assumptions.
Models based on this approach, and in particular thev

2
2 f

model,6 reduced to three transport equations, have been suc-
cessfully applied in a number of different situations.8–13

Wizmanet al.14 emphasized that the behavior of the el-
liptic relaxation operator in the logarithmic layer is not fully
satisfactory, since it induces an amplification of the redistri-
bution. Indeed, in this region, the total damping of the redis-
tribution is the result of a balance between two phenomena.
The first one is the reflection of the pressure fluctuations by
the solid wall, which, contrary to the common belief, en-
hances the pressure scrambling effects that tend to make the
turbulence more isotropic.15 However, this effect is much

weaker than the second one: the blocking of the velocity
fluctuations normal to the wall due to wall impermeability,
which enforces a splatting of the near wall eddy structure,
making the turbulence field highly anisotropic and forcing it
to approach the two-component limit. It is this blockage ef-
fect, which is of an elliptic nature, that is assumed to be
modeled by the elliptic relaxation approach.

In order to correct this shortcoming of the model, Wiz-
manet al. proposed different new formulations of the opera-
tor, using arbitrary corrections. Manceauet al.15 used a dif-
ferent route to reach the same purpose: they showed, by a
direct numerical simulation~DNS! channel flow database
analysis, that the spurious behavior of the operator is due to
the intuitive assumptions used by Durbin6,7 which do not
account for the asymmetry of the two-point correlations in-
volved in the integral equation of the redistribution term.
Using an asymmetric correlation function, they derived a
new formulation of the operator, which does not exhibit the
same amplification as the original one.

The purpose of this work is to confirm this theoretical
result by computations.A priori tests are first performed, in
order to determine the effect of the elliptic operator on the
source term@Rotta1IP ~isotropization of production! or
Speziale–Sarkar–Gatski~SSG! model# for different forms of
this operator. Full simulations in a channel are then per-
formed with the formulations proposed by Wizmanet al. and
Manceauet al., either in the frame of a second moment clo-
sure or of thev

2
2 f model. These computations allow the

evaluation of the improvement due to the elimination of the
spurious amplification exhibited by the original model.

I. THEORETICAL BACKGROUND

A. The original model

The redistributive term that appears in the Reynolds
stress transport equation is
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rf i j* 52u i

]p

]x j
2u j

]p

]x i
. ~1!

Using the integral solution of the Poisson equation satisfied
by the fluctuating pressure, this term can be expressed as

rf i j* ~x!5E
V

C i j~x,x8!GV~x,x8! dV~x8!, ~2!

where

C i j~x,x8!52u i~x!¹2
]p

]x j
~x8!2u j~x!¹2

]p

]x i
~x8!, ~3!

and GV is the Green function of the domain. Durbin6 pro-
posed to define the correlation functionf (x,x8) by

C i j~x,x8!5C i j~x8,x8! f ~x,x8!, ~4!

and to model it by a simple isotropic exponential function

f ~x,x8!5expS 2

r

L D , ~5!

wherer5ix82xi andL is the correlation length scale.
Using the model~5! and assuming that the Green func-

tion can be approximated by the free-space Green function,16

Eq. ~2! becomes

rf i j* ~x!52E
V

C i j~x8,x8!
exp~2r/L !

4pr
dV~x8!. ~6!

This expression involves exp(2r/L)/4pr, which is the free-
space Green function associated with the operator2¹2

11/L2. Thus, Eq.~6! can be inverted to give

f i j* ~x!2L2¹2f i j* ~x!52

L2

r
C i j~x,x!. ~7!

Noting that in homogeneous situations, the second term on
the left-hand side vanishes, the source term can be replaced
by any quasihomogeneous modelf i j

h , and Eq.~7! becomes

f i j* 2L2¹2f i j* 5f i j
h , ~8!

which is calledelliptic relaxation equation. The length scale
L is modeled usually byCLk3/2/« but bounded by the Kol-
mogorov length scaleCLChn3/4/«1/4 in order to avoid a sin-
gularity at the wall~and also to reproduce the real behavior
of the correlation length scale observed in DNS results!.15

The specificity of this model is that the redistributive
term is not given by an algebraic expression, but by a differ-
ential equation, which preserves the nonlocal character of
this term. This enables the reproduction of the wall-blocking
effect, provided that the correct boundary conditions are
applied,7 which requires the resolution of the elliptic relax-
ation equation for the functionf i j5f i j* /k instead off i j* :

f i j2L2¹2f i j5 f i j
h , ~9!

where f i j
h

5f i j
h /k.

The effect of the elliptic relaxation equation is two-fold.

~i! It enforces the correct damping of the redistribution at
the wall, because of its boundary conditions. The lat-
ter are chosen in order that the redistribution balances

the difference between the viscous diffusion and the
dissipation in the vicinity of the wall. This enables the
reproduction of the correct asymptotic behaviors of
the different components of the Reynolds stress and
of the two-component limit of turbulence.

~ii ! In a part of the logarithmic region, too far from the
wall to be under the influence of the boundary condi-
tions, the redistribution is amplified, as emphasized by
Wizman et al.14 Indeed, all quasihomogeneous mod-
els f i j

h basically behave asy21 in this region, so that
using the standard logarithmic layer valuesk
5ut

2/Cm
1/2 and «5ut

3 /ky , the solution of Eq.~9! is
f i j5G f i j

h , with the amplification factorG.1.51. Note
that this result is obtained assuming that the solution
is not affected by the boundary conditions.

Thus, the overall benefit obtained from the use of the
elliptic relaxation equation is due to its boundary conditions
that are ‘‘elliptically relaxed’’ up to the logarithmic layer.
The amplification arising from the elliptic operator is a side
effect that penalizes the predictions in the upper part of the
logarithmic layer. The purpose of the next section is to show
how this shortcoming can be corrected.

B. Correction of the logarithmic layer behavior

Manceauet al.15 showed that this behavior is a conse-
quence of the fact that the anisotropy of the correlation func-
tion f (x,x8), and, in particular, its asymmetry in the wall-
normal direction due to the strong inhomogeneity in the
vicinity of the wall, is not accounted for by the model Eq.
~5!. They proposed to use the gradient of the length scale to
identify the main direction of inhomogeneity, in the follow-
ing manner:

f ~x,x8!5expS 2

r

L1b~x82x!•“L D . ~10!

Considering the new term as a small correction and using a
Taylor series expansion, a new form of the elliptic relaxation
equation can be derived:

~1116b~“L !2! f i j2L2¹2f i j28bL“L•“ f i j5 f i j
h .

~11!

The amplification factorG, obtained by the same method as
used in Sec. I A, is, for this formulation,

G5

1

112~12b21!CL
2Cm

23/2k2 . ~12!

The coefficientb, which determines the amount of asymme-
try introduced in the model, can then be adapted to obtain
different effects, depending on the quasihomogeneous model
used as the source term. For instance, with the SSG model,
which predicts correctly the redistribution in the logarithmic
layer, b51/12 can be chosen, in order to obtain a neutral
model ~G51!. Note thatneutral means only here that the
operator is neutral, i.e., that the previously quoted ‘‘side ef-
fect’’ is not exhibited; in this case, the effect of the elliptic
relaxation equation is only due to its boundary conditions.
With the Rotta1IP model, the overestimation of the redistri-
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bution can be corrected by choosing a coefficientb greater
than 1/12. In Table I are summarized the coefficientsg given
by different formulations of the elliptic relaxation equation,
g being defined by

G5

1

11gCL
2Cm

23/2k2 . ~13!

The numerical value ofG is also given, withCL chosen such
that L5ky in the logarithmic layer (CL5Cm

3/4). Concerning
the M formulation, an interval of amplification factors is
given, since the coefficientb can be chosen between zero
and infinity.

It must be emphasized that these theoretical results are
obtained by a simple analysis that does not account for
boundary conditions, and is accordingly only valid in the
infinite Reynolds number limit. The aim of the next section
is to investigate numerically this behavior at finite Reynolds
number.

II. A PRIORI TESTS

The DNS database17 for a channel flow at Ret5590 is
used to performa priori tests of the different formulations of
the elliptic relaxation equation presented in Table I. These
tests consist in solving the equations given in Table I with

the termsf i j
h andL taken from the DNS database. The exact

boundary conditionf i j5 f i j
DNS is also applied at the wall. The

equation is solved in only one-half of the channel, a symme-
try boundary condition being used at the center.

Results obtained forf 22, with the Rotta1IP model as
the source termf22

h , are shown multiplied byk(f22*
5k f 22) in Fig. 1~a!. First, it can be observed that the
Rotta1IP model,without the elliptic relaxation correction,
overestimates the redistribution in the logarithmic layer and
gives totally wrong results in the buffer layer and the viscous
sublayer. In order to fairly compare the different formula-
tions, the coefficientCL is tuned in each case to correctly
predict the amplitude of the peak off22* . It can be seen that
the application of the original form of the elliptic relaxation
equation~modelD in Table I! corrects the redistribution be-
low y1

550, but amplifies it in the logarithmic layer, as pre-
dicted by the theory. Since the source term overestimates the
redistribution, formulations for which the theory predicts an
amplification factorG less than one are expected to give
more satisfactory results. It can be seen in Fig. 1~a! that the
W2 andM models, the latter withb50.25, give better results
than the original one. TheM model slightly better predicts
the redistribution belowy1.150, but still overestimates it in
the rest of the logarithmic layer.

Similar a priori tests have been performed with the SSG
model as the source term. Results are shown in Fig. 1~b!. It
can be seen that the SSG model,without the elliptic relax-
ation correction, predicts correctlyf22* in the logarithmic
layer. Therefore, it is expected that a neutral model (G51)
will give better results associated with this source term. It
can be seen in Fig. 1~b! that the neutral formulationW1
indeed gives good predictions. However, it induces a slight
reduction off22* in the logarithmic layer: this gap between
theory and numerical results could be expected in so far as
the theory is not strictly valid at this Reynolds number. As
regards theM formulation, the deviation from the theoretical
result is surprisingly more significant. Indeed, it has ap-
peared that with the theoretical neutral value of the coeffi-
cient ~b51/12!, this model still induces an amplification of

TABLE I. Summary of the logarithmic layer behavior of different formula-
tions of the elliptic relaxation equation.

Model Equation g G

Da f i j2L2¹2f i j5 f i j
h

22 1.51
W1b f i j2¹2(L2f i j)5 f i j

h 0 1

W2b
f ij2L2

“•S 1

L2 “~L2f ij!D5f ij
h 2 0.75

Mc (1116b(“L)2) f i j2L2¹2f i j

28bL“L•“ f i j5 f i j
h

2~12b21! @0;1.51#

aReference 6.
bReference 14.
cReference 15.

FIG. 1. A priori tests in a channel flow at Ret5590. ~a! Tests with the Rotta1IP model as the source term:1, source termf22
h without using the elliptic

relaxation equation;s, f22* from the DNS;h, original model~D!; , Wizmanet al. second model (W2); , Manceauet al. model withb50.25.
~b! Tests with the SSG model as the source term:1, source termf22

h without using the elliptic relaxation equation;s, f22* from the DNS;h, original model
~D!; , Wizmanet al. neutral model (W1); , Manceauet al. model ~M! with b50.17.
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the redistribution in the logarithmic layer; the coefficient that
gives the best prediction, shown in Fig. 1~b!, is actually
b50.17, i.e., twice the theoretical neutral value. However,
results froma priori tests must always be treated with cau-
tion, and full tests must be performed to investigate, in par-
ticular, the value ofb to be chosen.

Nevertheless, these tests give some interesting indica-
tions about the behavior of the different formulations. It ap-
pears that the SSG model~which gives a reasonably correct
prediction of the redistribution in the logarithmic layer, and
had been widely applied with success in various complex
flows! is a better source term for elliptic relaxation models
than the Rotta1IP model. Accordingly, the next section will
be dedicated to tests of full Reynolds stress models using the
SSG model as the source term and neutral formulations of
the elliptic operator.

III. FULL REYNOLDS STRESS MODEL

In this section, simulations are performed with a full
Reynolds stress model, in the same case of the channel flow
at Ret5590. The equations of the model are given in Appen-
dix A. The SSG model is used as the source termf i j

h . Note
that the quadratic slow termC2k dev(bikbkj)/T has been kept
in the model, even though it is known to only slightly im-
prove the predictions and to make the model stiff in compu-
tations. Following Durbin,6 a part of the dissipation,« i j

2u iu j«/k, is included ink f i j . This leads to the appearance
of u iu j/kT22/3d i j /T in the source term of the elliptic relax-
ation Eq.~A2! and to the modification of the boundary con-
ditions for f i j . Indeed, they are chosen such thatk f i j bal-
ances the difference between the dissipation« i j and the
molecular diffusionD i j

n in the vicinity of the wall. Since
« i j2u iu j«/k is included in k f i j , the latter must balance
u iu j«/k2D i j

n , which can be achieved4,18 by using the
boundary conditionsf 1150, f 225220n2

v
2/«y4, f 3350, and

f 125220n2uv/«y4. Note that the boundary condition used
here for f 22 is different from the exact one~used ina priori
tests!, which can be expressed asf 22

DNS
528n2

v
2/«y4. This

difference originates from the fact thatu iu j«/k does not re-
produce exactly the correct behavior of« i j in the vicinity of
the wall.

The aim of this section is to investigate the influence of
the form of the elliptic relaxation equation. The problem is
solved by a simple 1D code, using finite difference approxi-
mation. The equations are solved by imposing the friction
velocity ut . First, the original form of the model, with the
coefficients used by Wizmanet al.,14 is tested. It can be seen
in Figs. 2~a! and 2~b! that this model reproduces accurately
the logarithmic layer, but not the buffer layer. Figure 2~a!

shows that the mean velocity in the buffer layer is underes-
timated, and Fig. 2~b! that the peak ofu2 is too low. This
problem can only be solved by increasing the coefficientCL ,
which induces a decrease of the redistribution in the buffer
layer. The drawback is the deterioration of the prediction of
the mean velocity in the logarithmic layer.

Figures 3~a! and 3~b! show that with the neutral formu-
lations of the elliptic relaxation equation, namely theW1
model and theM model withb51/12, the peak ofu2 can be
correctly reproduced by increasing the coefficientCL , with-
out spoiling the mean velocity logarithmic profile. This en-
ables the correct prediction of the mean velocity in both the
buffer layer and the logarithmic layer. Note that, contrary to
the a priori tests, the full computation with theM model
has been performed with the theoretical neutral coefficient
b51/12. In this case, it gives a solution almost indistinguish-
able from the one given by theW1 model.

As regards the numerical stability, the neutral formula-
tions appear slightly more stable than the original one. For
instance, initializing the simulation by coarse empirical for-
mulas, the more stable formulation is theW1 one that admits
time steps up toDt1

515 without diverging. The upper limit
is Dt1

512 for theM formulation andDt1
59 for the origi-

nal ~D! one.
It can be concluded that the use of neutral models leads

to significant improvements of the predictions with the SSG
model as the source term. Such improvements had already
been reported by Wizmanet al.,14 but the modelW1 they
proposed has been frequently criticized because of its totally

FIG. 2. Test of the influence of varying the coefficientCL with the original formulation~D model!. ~a! Velocity profile: s, DNS; , CL50.2; ,
CL50.27. ~b! Reynolds stresses. Symbols: DNS (su2;hv

2;nw2;* uv); , CL50.2; , CL50.27.
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arbitrary character. On the contrary, theM model is derived
from an assumption on the shape of the correlation function
introduced to account for physical phenomena observed in
DNS data. Even if some approximations have been also
made, such as the truncation to the first order of the Taylor
series expansion, the model is thus directly related to a the-
oretical analysis.

IV. v2
Àf MODEL

In this section, thev2
2 f model will be in focus. Indeed,

even though this model has led to satisfactory results in a
number of different complex flows, the prediction of the
mean velocity profile in a channel is still improvable.

In the frame of an eddy viscosity model, the SSG cannot
be chosen as the source term, since it involves invariants of
the anisotropy tensor. Therefore, the Rotta1IP model is
used. The equations of thev2

2 f model are given in Appen-
dix B, with the coefficients used by Manceauet al.19 It can
be seen that the coefficients of the transport equation of the
dissipation are slightly different from those of the standard
k2e model, and that the coefficients of the Rotta1IP model

have also been modified. However, these coefficients have
led to satisfactory results in many situations and the analysis
of their influence is beyond the scope of this article, which
mainly focuses on the influence of the elliptic relaxation op-
erator.

Results given by the original model, with the formula-
tion of the elliptic relaxation equation denoted byD in Table
I, are shown in Figs. 4~a! and 4~b!. It can be seen that at a
given Ret , the mean velocity is overestimated in the loga-
rithmic layer. As regards the turbulent kinetic energy, it is
slightly overpredicted betweeny1.30 and y1.150, and
underpredicted betweeny1.150 andy1.400. The velocity
scalev

2, which is equivalent to the wall-normal Reynolds
stress component in a channel, follows an opposite behavior.

The use of the neutral formulationsW1 andM, with b
51/12, which are again almost indistinguishable from each
other, enables the correction of the mean velocity profile in
the logarithmic layer, whereas the prediction of turbulent
quantitiesk andv

2 are not significantly improved. In the first
case~modelW1), no coefficient has been changed, whereas
in the second case~model M!, CL has been slightly in-

FIG. 3. Improvement obtained with the neutral formulations.~a! Velocity profile:s, DNS; , Original model~D!; , Wizmanet al. neutral model
(W1); d, Manceauet al. neutral model~M with b51/12!. ~b! Reynolds stresses. Symbols: DNS (su2;hv

2;nw2;* uv); , Original model; ,
Wizmanet al. neutral model (W1); d, Manceauet al. neutral model~M with b51/12!.

FIG. 4. v
2
2 f model. Comparison of the results given by the original formulation and the neutral or reducing ones.~a! Velocity profile: s, DNS; ,

Original model~D!; , Wizmanet al. neutral model (W1); d, Manceauet al. neutral model~M with b51/12!; • • • , Manceauet al. reducing
model ~M with b52/12!. ~b! Turbulent energy and normal stress. Symbols: DNS (sk;hv

2); , Original model~D!; , Wizman et al. neutral
model (W1); d, Manceauet al. neutral model~M with b51/12!; • • • , Manceauet al. reducing model~M with b52/12!.
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creased. Other coefficients are left unchanged in both cases.
In this case, since the Rotta1IP model predicts a too high
level of redistribution, it makes sense to use theW2 formu-
lation that exhibits an amplification factor less than one (G
50.75), or theM formulation with a coefficientb larger
than 1/12. Results given by the latter withb52/12, corre-
sponding toG50.75, are also shown in Figs. 4~a! and 4~b!.
The prediction ofk in the logarithmic layer is slightly im-
proved compared with neutral formulations, without any sig-
nificant effect on the velocity profile. Note that the results
given by this formulation and those given by theW2 formu-
lation ~not shown here! are indistinguishable.

The same stability tests as performed in Sec. III lead to
the following upper limits for the time step:Dt1

5430 forM
with b52/12, Dt1

5410 for W1, Dt1
5380 for M with b

51/12, andDt1
5365 for D. It appears that the smaller the

amplification factorG, the more stable the model.~However,
the predictions begin to deteriorate belowG50.75.) Note
also that thev2

2 f model is much more stable than the full
Reynolds stress model.

The results obtained in this section show that the spuri-
ous behavior of the original elliptic operator in the logarith-
mic layer leads to difficulties in correctly reproducing both
the friction velocity and the flow rate. The use of the neutral
or reducing formulations overcomes this problem, and
also stabilizes the simulation. Again, theM formulation is
preferable to theW1 or W2 ones that have been introduced
arbitrarily.

V. CONCLUSION

The elliptic relaxation method and the problems associ-
ated with it in the reproduction of the redistribution in the
logarithmic layer have been presented. It has been shown
that the amplification of the redistribution can be avoided by
introducing the formulation of the elliptic relaxation equation
proposed by Manceauet al.,15 which accounts for the asym-
metry of the two-point correlations due to the strong inho-
mogeneity in the vicinity of the wall.

The behavior of the elliptic operator in the logarithmic
region predicted by the theory has first been confirmed bya
priori tests in a channel flow at Ret5590. The formulation of
the operator that gives the best results depends on the quasi-
homogeneous model used as the source term of the elliptic
relaxation equation. With the Rotta1IP model, which over-
estimates the redistribution in the logarithmic layer, formu-
lations that exhibit an amplification factor less than one are
preferable: this is the case, in particular, of the model pro-
posed by Manceauet al., provided that theb coefficient is
taken larger than 1/12. With the SSG model, which better
predicts the redistribution in the logarithmic layer, it is con-
firmed that neutral models are preferable, even if the results
do not exactly conform with the theory.

Simulations with Durbin’s full Reynolds stress model
have been performed in the same flow with the SSG model
as the source term. The original model does not allow the
simultaneous correct predictions of the buffer and the loga-
rithmic layer. This problem is overcome by the use of neutral
formulations, such as the one proposed by Wizmanet al., on

an empirical basis, or the one proposed by Manceauet al.,
with b51/12. This neutral formulations also have the advan-
tage of increasing the stability of the computations.

Finally, different formulations have been tested in the
frame of thev

2
2 f model. The original one, which has been

successfully applied in a number of complex flows, does not
perfectly predict the mean velocity profile in the logarithmic
layer of a channel flow. Again, it has been shown that this
problem is related to the erroneous amplification of the re-
distribution. The neutral formulations, as well as formula-
tions inducing a reduction of the redistribution, lead to a
significant improvement of the predictions, and these are
more stable than the original one.

It can be concluded that in general, either with the full
Reynolds stress model or with thev2

2 f , neutral formula-
tions are preferable. Similar conclusions have already
been drawn by Wizmanet al., but their neutral model is
seldom used because of its totally empirical foundation. On
the contrary, the formulation proposed by Manceauet al. has
been derived from the analysis of the two-point correlations,
and gives almost exactly the same results as those obtain
with the Wizmanet al. formulation. The results presented
in the present article are encouraging: they lead to the hope
that the modified elliptic relaxation models can be applied
to more complex flows with some improvement of the pre-
dictions.

APPENDIX A: DURBIN’S FULL REYNOLDS STRESS
MODEL

Du iu j

Dt
52u iuk

]U j

]xk
2u juk

]U i

]xk
1k f i j2

u iu j

k
«

1

]

]x l
S Cm

sk
u lumT

]u iu j

]xm
D 1n¹2u iu j, ~A1!

L~ f i j!5

1

k S f i j
h

2

2

3

k

T
d i j1

u iu j

T D , ~A2!

with L~ f i j!5 f i j2L2¹2f i j Durbin6~D !,

or L~ f i j!5 f i j2¹2~L2f i j!, Wizman et al.14 ~W1!,

or L~ f i j!5~1116b~¹L !2! f i j2L2¹2f i j28bL¹L•¹ f i j ,

Manceauet al.15 ~M !.

f i j
h

52S C1

k

T
1C1* P D b i j1C2

k

T
dev~b ikbk j!

1~C32C3* ~bklbkl!
1/2!kS i j

1C4k dev~b ikSk j1b jkSki!

1C5k~b ikVk j1b jkVki!, ~A3!

where

b i j5
u iu j

2k
2

1

3
d i j , S i j5

1

2 S ]U i

]x j
1

]U j

]x i
D ,

and

2350 Phys. Fluids, Vol. 12, No. 9, September 2000 R. Manceau and K. Hanjalić



V i j5
1

2 S ]U i

]x j
2

]U i

]x i
D .

D«

Dt
5

C«1
8 P2C«2

«

T
1

]

]x l
S Cm

s«
u lumT

]«

]xm
D1n¹2«,

~A4!

where

T5maxS k

«
,CTS n

«
D 2D ;

L5CL maxS k3/2

«
,Ch

n3/4

«1/4D ; C«1
8 5C«1S 11A1

P

«
D ,

Cm50.26; sk51.0; C«1
51.35, C«2

51.83; s«51.4,

Ch580.0; CT56.0; A150.1

C153.4; C1* 51.8; C254.2; C351.3;

C451.25;C550.4.

D formulation: CL50.2;

W1 formulation: CL50.29;

M formulation: CL50.28.

Wall boundary conditions:

U i50; u iu j50; «5

2nk

y2 ;

f 1150; f 2252

20n2
v

2

«y4 ; f 3350; f 1252

20n2uv

«y4 .

APPENDIX B: v2
Àf MODEL EQUATIONS

DU

Dt
52¹p1¹•~~n1nT!~¹U1¹ tU !!, ~B1!

with nT5Cmv
2T.

Dk

Dt
5P2«1¹•~~n1nT!¹k !, ~B2!

with P52nTS i jS i j .

D«

Dt
5

C«1
8 P2C«2

«

T
1¹•S S n1

nT

s«
D¹«D , ~B3!

Dv
2

Dt
5k f 2

v
2

k
«1¹•~~n1nT!¹v

2!, ~B4!

L~ f !5~C121!
~2/32v

2/k !

T
1C2

P

k
, ~B5!

with L~ f !5 f 2L2¹2f Durbin6 ~D !,

or L5 f 2¹2~L2f ! Wizman et al.14 ~W1!,

or L~ f !5~1116b~“L !2! f 2L2¹2f 28bL“L•“ f

Manceauet al.15 ~M !.

T5maxS k

«
;CTS n

«
D 1/4D ;

L5CL maxS k3/2

«
;ChS n3

«
D 1/4D ;

C«1
8 5C«1S11aS k

v
2D

1/2D ;

Cm50.22; C«1
51.4; C«2

51.9; s«51.3; C151.4;

C250.3; Ch585.0; CT56.0; a50.045.

D formulation: CL50.22,

W1 formulation: CL50.22,

M formulation: CL50.25.

Wall boundary conditions:

U i50; k50; v
2
50; «5

2nk

y2 ; f 52

20n2
v

2

«y4 .
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