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Dr. Marie-Béatrice Forel
Associate Professor
CR2P – Origins and Evolution department
Muséum national d’Histoire naturelle
Paris, France

Paris, April 20, 2020

Dear Editor,

Please found here the manuscript entitled ‘Bounded by crises: an updated view of the evolution of 

marine ostracods during the Triassic’ (Forel M.-B. & Crasquin S.) we would like to propose for 

publication in Marine Micropaleontology, for the Ostracoda special issue edited by M. Yasuhara.

This contribution is the first review of the diversity of marine and brackish-water ostracods during the 

Triassic, a major period in the history of biodiversity worldwide. Thanks to a large database of all 

ostracod taxa documented during this interval, we describe their diversity from assemblages 

recovering from the end-Permian extinction to those going extinct at the end of the Triassic. We 

summarize and discuss their characteristics, importance to reconstruct the early roots of the 

Mesozoic marine revolution and describe their geographic distribution through time. Finally, we 

propose a phylogeny of ornate Bairdiidae that display a still challenging explosive diversification 

during this interval.

On behalf of my collaborator, thank you for giving this work your consideration.

Marie-Béatrice Forel



Highlights

 Explosive diversification of ostracods during the Spathian and Anisian, Triassic.

 Ornate Bairdiidae derived from Petasobairdia in the Kungurian. 

 Ostracods show increasing drilling abilities of Triassic predators. 

 Homogenization of geographical distribution from the Anisian onwards. 



The Triassic has been a turning in the history of biodiversity: bracketed by two major biotic 

crises, characterized by major biotic, climatic and tectonic events, it has seen the transition 

from the Palaeozoic to the Modern evolutionary faunas. We propose the first synthetic 

analysis of the diversity of marine and brackish-water ostracods over the entire Triassic, in 

the light of palaeoecological, palaeoenvironmental and palaeogeographical contexts. 

Although general diversity trends witness poor ostracod communities during most of the 

Early Triassic after the end-Permian crisis, the roots of their Triassic taxonomic 

rediversification are visible as early as the Dienerian. The explosive diversification of the 

Spathian and Anisian is followed by a high-diversity plateau up to the brink of the end-

Triassic extinction. A “morphological phylogeny” proposes that all Permian and Triassic 

ornate Bairdiidae derived from Petasobairdia in the Kungurian, with the emergence of the 

Ceratobairdia-lineage and Abrobairdia-lineage. While they are generally the “poor cousin” of 

trophic chains analyses, traces of typical Mesozoic drilling predation on Late Triassic 

ostracods unexpectedly document the increase of the efficiency of predators drilling abilities 

through the Triassic. Finally, the palaeogeographical distribution of ostracods as been very 

dynamic during this interval, with distinct peri-palaeo-tethyan and peri-neo-tethyan biotas in 

the Early Triassic, followed by a dispersal and thus a relative homogenization from the 

Anisian onwards. 

Keywords:

Ostracods

Early, Middle, Late Triassic

Diversity

Palaeogeography

Ornate Bairdiidae

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Bounded by crises: an updated view of the evolution of 

marine ostracods during the Triassic

M.-B. Forela, *, S. Crasquina

a CR2P, MNHN-CNRS-SU, 8 rue Buffon (CP38), 75005 Paris, France

*Corresponding author at: Muséum national d’Histoire naturelle, CR2P, MNHN-CNRS-SU, 8 rue Buffon (CP38), 75005 Paris, 

France.

E-mail address: marie-beatrice.forel@mnhn.fr (M.-B. Forel).

ABSTRACT

The Triassic has been a turning in the history of biodiversity: bracketed by two major biotic 

crises, characterized by major biotic, climatic and tectonic events, it has seen the transition 

from the Palaeozoic to the Modern evolutionary faunas. We propose the first synthetic 

analysis of the diversity of marine and brackish-water ostracods over the entire Triassic, in 

the light of palaeoecological, palaeoenvironmental and palaeogeographical contexts. 

Although general diversity trends witness poor ostracod communities during most of the 

Early Triassic after the end-Permian crisis, the roots of their Triassic taxonomic 

rediversification are visible as early as the Dienerian. The explosive diversification of the 

Spathian and Anisian is followed by a high-diversity plateau up to the brink of the end-

Triassic extinction. A “morphological phylogeny” proposes that all Permian and Triassic 

ornate Bairdiidae derived from Petasobairdia in the Kungurian, with the emergence of the 

Ceratobairdia-lineage and Abrobairdia-lineage. While they are generally the “poor cousin” of 

trophic chains analyses, traces of typical Mesozoic drilling predation on Late Triassic 

ostracods unexpectedly document the increase of the efficiency of predators drilling abilities 

through the Triassic. Finally, the palaeogeographical distribution of ostracods as been very 

dynamic during this interval, with distinct peri-palaeo-tethyan and peri-neo-tethyan biotas in 
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the Early Triassic, followed by a dispersal and thus a relative homogenization from the 

Anisian onwards. 
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1. Introduction

The end-Permian extinction (EPE), ~252 Ma (Burgess et al., 2014; Baresel et al., 2017), has 

been the largest biological crisis in Earth’s history, with the extinction of more than 90% of 

marine species (e.g., Raup, 1979; Erwin, 1994; Alroy et al., 2008; Stanley, 2016). The 

emission of the Siberian continental flood basalts is currently considered as the main trigger 

for the crisis, and the associated release of aerosols and/or CO2 and their feedbacks on 

oceanic and terrestrial systems may have intensified its environmental and ecological 

stresses (e.g., Campbell et al., 1992; Renne et al., 1995; Reichow et al., 2009; Saunders and 

Reichow, 2009). The Triassic is one of the most significant intervals of time in the history of 

biodiversity with the stepwise restauration of land and sea ecosystems after the EPE, the rise 

of the modern fauna and the emergence of modern ecosystems (e.g., Sepkoski, 1984; 

Brusatte et al., 2010; Chen and Benton, 2012; Benton et al., 2013). Most of the new 

predators that have been later involved in the Mesozoic marine revolution (Vermeij, 1977), 

such as predatory gastropods, decapods, neopterygian fishes and marine reptiles, were 

already established in the Triassic (e.g., Chen and Benton, 2012 and references therein for a 

review). Middle and Late Triassic drill holes on mollusks and brachiopods (Klompmaker et 

al., 2016; Tackett and Tintori, 2019) document the establishment of a typical Mesozoic 

drilling activity early in the Mesozoic and thus the rooting of the Mesozoic marine revolution 

deep into the Triassic.

Marine ostracods have been documented through the entire Permian and Triassic systems 

worldwide (e.g., Wang, 1978; Chen and Shi, 1982; Shi and Chen, 1987; Yi, 1992; Hao, 1994; 

Crasquin-Soleau et al., 2006; Yuan et al., 2007, 2009; Mette, 2008, 2010; Crasquin et al., 

2010; Forel and Crasquin, 2011a, b; Forel et al., 2013a, b, 2015, 2019a, b; Forel, 2012, 

2014). They went through severe losses and a deep restructuration of their communities 

through the EPE (Crasquin-Soleau et al., 2007; Crasquin and Forel, 2014 for review). The 

Triassic period has also been of paramount importance in the macroevolution for ostracods, 
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with the turnover from the Palaeozoic fauna to the Meso-Cenozoic one (e.g., McKenzie, 

1982; Crasquin-Soleau et al., 2007; Crasquin and Forel, 2014). However, this period stays 

enigmatic with the temporary and challenging dominance of Platycopida and heavily sculpted 

Bairdiidae (e.g., Kollmann, 1960, 1963; Bolz, 1971a, b; Kristan-Tollmann, 1978), the 

explosive radiation of early Cytheroidea (e.g., Gründel, 1978; Whatley and Boomer, 2010) or 

the residual occurrence of Palaeozoic taxa in deep-waters up to the Rhaetian (Forel and 

Grădinaru, under review). In that sense, the Triassic ostracod fauna is neither Palaeozoic nor 

truly Mesozoic. These features, together with the still limited knowledge of their geographical, 

environmental and taxonomic distribution, challenge our understanding of the mechanisms 

underlying their survival and diversity structuration during the Triassic, prior to their Mesozoic 

re-diversification. 

Here we propose the first analysis of the evolution of ostracod diversity (genera and families) 

during the entire Triassic, placing our discussion in palaeogeographical and 

palaeoenvironmental contexts. Their continuous record through the EPE and the Triassic 

provides unique insights into the marine environments and timing of the post-extinction 

survival and recovery. We discuss the deep intrication of micro- and macro-evolution for 

marine and brackish ostracods, from the restructuration of assemblages after the EPE to the 

brink of the end-Triassic biological crisis. 

2. A brief state of the art

2.1. Ostracods through the end-Permian extinction

Marine ostracods greatly suffered from the EPE, with a species extinction rate of about 80% 

(Crasquin and Forel, 2014). Several species spanning the Permian document continuous 

environmental stress over this interval, as revealed by substantial reduction of the body size 

and growth rates that culminated at the EPE (Forel et al., 2015). The EPE was peculiarly a 

major strike for taxa such as Palaeocopida that were widespread and diverse during the 
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entire Palaeozoic in both neritic and deep waters (e.g., Kozur, 1985; Becker and Wang, 

1992) but barely survived until their last known occurrence at the beginning of the Late 

Triassic (Carnian; Forel et al., 2019a). 

Distinct recovery phases have been described for ostracod assemblages in the Early and 

Middle Triassic (Fig. 1A). Diverse types of ostracod survival have been reported from the 

survival phase, directly after the EPE (Early Triassic, Griesbachian). A short-lived survival of 

abundant Bairdiidae is associated with post-extinction microbial mats thriving around the 

Palaeo-Tethys, that were exploited for O2 and food resources (Forel et al., 2009, 2013a, b, 

2015; Forel, 2012, 2014; Hautmann et al., 2015; Martindale et al., 2019). Bairdiidae are 

traditionally considered as restricted to stable and normal marine water bodies (e.g., Melnyk 

and Maddocks, 1988) but these post-EPE assemblages challenge this paradigm in 

illustrating unexpected adaptive faculties including modifications of reproduction, growth 

rates and body sizes (Forel, 2014; Forel et al., 2013a, b, 2015; Forel, 2018). The second 

type is the abundant survivorship of Hollinellidae (Palaeocopida) in very proximal clastic 

zones, under the influence of high detrital input that has, to date, only been reported from 

Vietnam (Crasquin et al., 2018) and South China (Forel et al., under review). The last 

survival type is that of abundant Cavellinidae only observed from northwest Iran (Gliwa et al., 

2020) and that is currently under description. These diverse patterns highlight the necessity 

of shifting paradigm from a unique phenomenon to a wide range of survivals that need to be 

considered in their entire taxonomic and environmental complexities (Forel et al., under 

review). Following this period of survival, the Dienerian and Smithian interval yielded very 

rare ostracods worldwide, earning it the name of maximum of poverty (Crasquin-Soleau et 

al., 2007; Crasquin and Forel, 2014). The recovery of ostracods is considered as complete in 

the Anisian, Middle Triassic (Crasquin and Forel, 2014). 

Our current knowledge is therefore quite detailed regarding the biodiversity characteristics of 

ostracods through the extinction and to the Anisian, during which the full recovery of the 

assemblages is assumed to have occurred. However, this Early-Middle Triassic dynamic 

has, until now, never been discussed in the light of palaeogeographical and 
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palaeoenvironmental conditions, and never been replaced in the context of the entire 

Triassic. The Triassic is of crucial importance in the history of biodiversity as it was bounded 

by two of the five major extinctions of the Phanerozoic. However, global understanding of the 

diversity and evolution of ostracods during the Late Triassic, at the brink of the end-Triassic 

crisis, is still lacking. Many questions are still pending and in the context of increasing proofs 

of Mesozoic marine revolution being rooted down to the Triassic, what new information 

ostracods may provide?

2.2. The Triassic

The Triassic period lasted from ~252 to 201 Ma (Cohen et al., 2013, updated version 2020; 

Fig. 1A) and was bracketed by two major biological crises. It has been critical in the origin of 

marine and continental modern ecosystems, with the origin of key vertebrates including 

dinosaurs (e.g., Brusatte et al., 2010), frogs, turtles, rhynchocephalians, crocodilomorphs 

and mammals (Benton 2016 and references thereine for a review). In the Triassic, all 

continents were fused into the supercontinent Pangaea, incised on its eastern by the Tethys 

forming a large embayment side and surrounded by the Panthalassa Ocean that covered 

more than 70% of Earth’s surface (Fig. 1B). The fragmentation of the Pangaea began near 

the end of the Triassic with the outpouring of the massive Central Atlantic magmatic province 

(e.g., Marzoli et al., 1999; Davies et al., 2017). Triassic climates were warm and equable, 

with no polar icecaps. In the Early-Middle Triassic, the sea level was similar to or 10-20 m 

higher than the present-day mean sea level. An important rise occurred at the end of the 

Ladinian and culminated in the late Carnian, representing the highest Triassic sea level (~50 

m above present-day mean sea level). The late Norian recorded a decline, followed by stable 

levels close to present-day until the mid-Rhaetian when the decline further accentuated to 

about 50 m below present-day in the latest Triassic and earliest Jurassic (Haq, 2018).

The Triassic has been marked by two major events. The first one, at the Smithian-Spathian 

boundary, is generally considered as the most significant event within the post-EPE recovery 
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(e.g., Galfetti et al., 2007; Stanley, 2009). This interval is marked by severe global climate 

changes (Hermann et al., 2012) and major extinction of nektonic organisms (Orchard, 2007; 

Brühwiler et al., 2010). A strong debate is on-going on the temperature pattern at this 

interval, between tenants of extremely high temperatures (Sun et al., 2012) and those of a 

major cooling event (Goudemand et al., 2019). The second event correspond to the most 

important climate change within the Triassic and occurred in the Carnian (e.g., Preto et al., 

2010). In shallow marine areas of the western Tethys, this episode is characterized by the 

demise of early Carnian carbonate platforms and the sudden deposition of coarse 

siliciclastics (e.g., Simms and Ruffell, 1989). Recognized from deltaic to shallow marine 

successions of the Dolomites (e.g., Krystyn, 1978; Breda et al., 2009) to deep-water settings 

of the Himalayas and Lagonegro Basin (Hornung et al., 2007a; Rigo et al., 2007), it has been 

attributed to an increase in rainfall and is associated with extinction and biotic turnover (e.g., 

Simms and Ruffell, 1989, 1990; Roghi et al., 2010). This event has been given several 

names: “Carnian Wet Intermezzo” in the Germanic Basin, “Carnian Pluvial Event” in northern 

Europe, “Reingraben turnover” in the Northern Calcareous Alps, “Raibl Event” in the Italian 

Dolomites (e.g., Schlager and Schöllnberger, 1974; Simms & Ruffell, 1989, 1990; Hornung 

and Brandner 2005; Hornung et al., 2007a, b; Kozur and Bachmann, 2010; Dal Corso et al., 

2012; Ogg, 2015). 

3. Methods

3.1. Data

For the present analysis, all Triassic occurrences of marine and brackish ostracod genera 

were gathered from the literature and our own data (the complete literature list is given in 

Supplementary File 1). For each occurrence, we provide palaeogeographical and 

stratigraphic information at the stage level that were eventually updated from additional 

literature and Palaeobiology Database (accessed in March 2020). Following the taxonomic 
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harmonization described below, one hundred seventy-six genera distributed into forty-one 

families span from the Griesbachian (Early Triassic) to the Rhaetian (Late Triassic) (Table 1). 

Genera reported from the “Early Triassic”, “Middle Triassic” or “Late Triassic” have been 

considered as occurring during all stages of the epoch considered: Judahella (Early Triassic, 

Tunisia; Kamoun et al., 1994); Simeonella (Early Triassic, China; Wei et al., 1983); Cavellina 

and Liuzhinia (Middle Triassic, China; Wei et al., 1983); Gombasekella (Middle Triassic, 

India; Agarwal, 1992); Cypridina (Middle Triassic, Bosnia and Italy; Late Triassic, Brasil; 

Kornicker et al., 2006); Cytherella, Fabanella, Hungarella (Late Triassic, Iraq; Al-Khahab and 

Al-Halawachi, 2018). Conversely, Triadocypris reported from the Triassic of Vietnam 

(Kornicker et al., 2006) was not considered because of this large age uncertainty. 

3.2. Taxonomic harmonization

The classification of Triassic Cytheruridae follows the revisions of Whatley and Boomer 

(2000), that of Limnocytheridae follows Whatley and Moguilevsky (1998) and the 

classification of Bythocytheridae follows Schornikov (1988, 1990). Punciidae are attributed to 

the Punciocopida following Danielopol and Swanson (2019) rather than to Palaeocopida 

(e.g., Horne et al., 2002).

For the present investigation, the following generic adjustments have been necessary. 

Polycopsis Müller, 1894 was erected based on modern material mainly using soft body 

characters and several authors pointed out the impossibility to distinguish between Polycope 

Sars, 1866 and Polycopsis in the absence of soft parts (e.g., Urlichs, 1972; Neale, 1983). We 

follow Urlichs (1972) and subsequent authors as Kolar-Jurkovšek (1990), Monostori and Tóth 

(2013), Sebe et al. (2013), Forel and Moix (in press) in considering that Triassic reports of 

Polycopsis are unreliable. Polycopsis species in Kozur (1970), Bunza and Kozur (1971), 

Kozur et al. (2000) are therefore re-attributed to Polycope. 

The classification of Triassic Healdiidae and Bairdiidae still problematic but it is beyond the 

scope of this paper to attempt a revision of these major ostracod groups. The original 
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classification of Triassic ornate bairdiids proposed by Kollmann (1960, 1963) is thus followed 

in considering the primary ornamentation as relevant generic character. Triebelina van den 

Bold, 1946 was also described from modern material and its affinities to other present-days 

bairdiids is complex, as shown by discussion in Maddocks and Wouters (1991) and by the 

different opinions on its synonymy with Glyptobairdia Stephenson, 1946 summarized in Malz 

and Lord (1988). Because of the high level of homeomorphy in ornate Bairdiidae (e.g. 

Maddocks and Wouters, 1991), Triassic occurrences of Triebelina are not considered as 

valid (e.g., Bolz 1971a, b; Urlichs, 1972; Dépêche and Crasquin-Soleau, 1992) and are here 

re-attributed to their respective subgeneric identifications.

For the phylogenetic analysis of Permian the Triassic ornate Bairdiidae we perform, 

Lanczichebairdia Gramm, 1997 and Arcibairdia Gramm, 1997 from the Capitanian of USSR 

(Gramm, 1997) are considered respectively as junior synonyms of Petasobairdia Chen in 

Chen and Shi, 1982 and Bairdiolites Croneis and Gale, 1939. Praelobobairdia Kozur, 1985 is 

considered as a junior synonym of Petasobairdia, following Becker (2001). Following Becker 

(2001), the smooth bairdiid Rectobairdia Sohn, 1960 and Cryptobairdia Sohn, 1960 are 

considered as subgenera of Bairdia McCoy, 1844.

The possible synonymy of the Healdiidae Ogmoconcha Triebel, 1941 and Hungarella 

(Méhes, 1911) has long been debated. Here we follow Kristan-Tollmann (1977a, b), Lord 

(1982), Boomer and Jellinek (1996), among others, in considering this synonymy as unlikely 

given the distinct central muscle scar field patterns observed in these genera. We also follow 

Lord (1972) in considering that until the relationship of Ogmoconcha and Hungarella is 

clarified, Hungarella should only been used for Triassic species to avoid artificially rooting 

Ogmoconcha down to the Triassic. Morphologically, the left and right valves of Hungarella 

are asymmetrical contrary to those of Ogmoconcha (Kristan-Tollmann, 1977a, b; Lord, 

1982): in the absence of observable central muscle scars, all Triassic occurrences of 

Ogmoconcha and Ogmoconchella are here re-attributed to the genus Hungarella. 

4. Insights into the Triassic evolution of marine ostracod diversity
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4.1. Global diversity patterns

During the Triassic, the global diversity of ostracods ranges from 11 genera in the Smithian 

(Early Triassic) to 82 in the Anisian and from five to 23 families in the Smithian and the 

Griesbachian respectively (Fig. 3A). The first peak of diversity in the Griesbachian (53 

genera, 23 families) documents the decoupling of generic and familial diversity in the 

aftermath of the EPE as this Triassic maximum of familial diversity is not paralleled by that of 

genera, recorded later in the Anisian. A severe loss in diversity occurs in the Dienerian with 

15 genera distributed into nine families. This pattern further develops in the Smithian that 

records the lowest diversity of the Triassic, at all taxonomic levels considered, with 11 genera 

and five families. These two patterns respectively illustrate the Griesbachian survival period, 

followed by a pauperisation of the assemblages that covers the entire Dienerian and 

Smithian, as discussed by Crasquin-Soleau et al. (2007) and Crasquin and Forel (2014). A 

progressive rediversification occurs in the Spathian (35 genera, 12 families) and further 

develops in the Anisian with a peak that reaches 83 genera, the maximum recorded for the 

Triassic interval. Here again, the familial and generic diversity are decoupled and may 

indicate that high taxonomic levels react more slowly than lower levels during periods of 

taxonomic restructuration. This observation further substantiates the previous reports of 

Crasquin-Soleau et al. (2007) and Crasquin and Forel (2014) in placing the first burst of the 

rediversification during the Spathian and its acme during the Anisian. The subsequent 

interval spanning from the Ladinian to the Rhaetian is for the first time characterized here in 

term of global ostracod diversity and records a seesawing diversity within a high-level 

plateau ranging from 60 (Norian) to 78 genera (Carnian), and from 17 (Ladinian, Norian) to 

23 (Carnian) families. 

These trends are underlain by varied patterns of extinction of survivors and emergence of 

newcomers that are for the first time described here (Fig. 3A). From the Griesbachian to the 

Smithian, only few new genera emerged, with a drop from 10 newcomers in the 

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590



Griesbachian to three in the Smithian. The observed declining diversity for this interval 

therefore relates to rare radiations coupled with numerous extinctions in the Griesbachian, 

corresponding to the disappearance of Permian holdovers (24 genera). The subsequent low 

diversity maintained in the Dienerian and Smithian mainly reflects the stasis of newcomers 

and extinctions. On the opposite, the Spathian and Anisian rising diversity appears as the 

consequence of a burst of radiating genera, with a maximum in the Anisian (34). The entire 

Middle and Late Triassic interval is characterized by sustained extinctions, ranging from 19 

genera during the Ladinian to 35 at the end of the Rhaetian, with the exception of the Norian 

during which only eight genera went extinct. This interval is also marked by the overall stable 

amount of radiating genera. This relative balance of extinctions and radiations resulted in the 

overall high plateau observed for this interval.

4.2. Taxonomic features underlying diversity trends

In terms of taxonomic structuration, the diversity loss from the Griesbachian to the Dienerian 

is related to three phenomena. The first is the final disappearance of seven of the eight 

Griesbachian palaeocopid families at the end of this stage (Aechminellidae, Buregiidae, 

Hollinellidae, Indivisiidae, Kloedenellidae, Knoxitidae, Paraparchitidae; Fig. 3B). No other 

family ends up in the Griesbachian (Fig. 2). The second feature relates to genera that are 

uniquely known in the Griesbachian and geographically restricted to China (Anxiania, 

Beichuania, Paramicrocheilinella) and Australia (Truncobairdia; Table 1). The third 

component is the last occurrence of numerous genera from diverse families as Bairdiidae 

(Orthobairdia), Bairdiodyprididae (Baschkirina, Silenites), Cavellinidae (Sulcella), 

Cytherissinellidae (Arqoviella), Healdiidae (Cytherellina), Pontocyprididae (Haworthina). 

Important Triassic taxa nevertheless root as early as in the Griesbachian: Hungarella 

(Healdiidae), Kerocythere (Cytheruridae), Mockella (Cytheruridae), Triassinella 

(Limnocytheridae). All these genera are restricted to the Triassic as none range up to the 

Jurassic. As for the families, only Limnocytheridae (Triassinella) radiated during this interval. 
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The close analysis of the taxonomic structuration of Dienerian communities once again 

documents the decoupling of familial and generic trends as well as the very first roots of the 

rediversification. This stage is virtually neutral in terms of familial events, with only the 

disappearance of Amphissitidae. However, the generic rediversification is already visible with 

the emergence of 4 genera, Triassocythere (Bythocytheridae), Bektasia (Cavellinidae), 

Ptychobairdia (Bairdiidae), Lutkevichinella (Limnocytheridae).

The ostracod record shows no influence of this Smithian-Spathian event at the time of 

writing: this observation may relate to the fact that most of taxa at this time interval are 

benthic while this biotic event has affected nektonic organisms, as detailed earlier. An 

increased investigation of planktonic taxa during this interval, possibly in Romania and 

Hungary that already yielded promising observations (e.g., Forel and Grădinaru, 2018; Tóth 

and Cséfán, 2018), may provide new elements. The peculiarity of the Spathian diversification 

is that it is largely the result of genera returning to the fossil record after having been Lazarus 

through the EPE and/or the beginning of the Early Triassic. As a whole, they represent 19 of 

the 35 genera (54%) recorded during the Spathian. Four genera re-enter the fossil record 

from the Late Permian: Spinocypris and Triassocypris (Paracyprididae), Paraberounella 

(Bythocytheridae) and Urobairdia (Bairdiidae). Those re-entering the fossil record from the 

Triassic are Kirkbyidae (Carinaknightina), Bairdiidae (Petasobairdia, Bairdiacypris, 

Ptychobairdia), Cytheruridae (Kerocythere), Healdiidae (Hungarella) and Cavellinidae 

(Bektasia), to cite only the most representative. This phenomenon is a less important 

contribution to the Anisian burst of diversity (17 of 82 genera, 21%) and the Lazarus pattern 

is therefore of major importance to understand the dynamic of early recovery during the 

Triassic. The Spathian also documents the roots of the diversification of Cytheruridae and 

Limnocytheridae, both families further developing in the Anisian (Fig. 4; Table 1), as well as 

the maximal diversity of the Paracyprididae, that lasted until the Ladinian.

This diversification further develops in the Anisian, which is of major importance in the 

macroevolution of ostracods during the Triassic as it records, for instance (Fig. 4): (1) the 

maximum of diversity of Bythocytheridae (18 genera including 13 newcomers) and of 
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Cavellinidae (four genera including two newcomers), (2) the first Triassic occurrence of 

Beecherellidae following an important gap in their fossil record, (3) the on-set of the 

diversification of Cytherellidae and the true rediversification of Healdiidae, (4) the emergence 

and diversification of typically Triassic ornate Bairdiidae, which are further discussed later, 

(5) the first high point of the high diversity plateau for Cytheruridae, that will develop until the 

end of the Triassic in an overall increasing diversity trend. It records the highest radiation rate 

for this family, with three new genera (Blomella, Eucytherura, Gruendelicythere).

As part of the high-diversity plateau encompassing the Middle and Late Triassic, the Ladinian 

witnessed only few important biotic events for ostracods. The major event is the peak in 

diversity of Limnocytheridae (15 genera), that contrasts with all other families observed to 

date during this interval (Fig. 4). Most of the Ladinian Limnocytheridae were already present 

in the Anisian (e.g. Triassinella, Lutkevichinella, Renngartenella, Casachstanella, 

Simeonella) but three new genera emerged (Cytherissinella, Christellocythere, 

Reversiocythere). The Ladinian sees the emergence of the Mandelstaminidae 

(Rhombocythere) that will last, with this unique genus, until the Rhaetian.

The Carnian stage is a high-point of the Middle-Late Triassic diversity plateau that relates to 

the emergence of seven Bairdiidae genera, five ornate (Edithobairdia, Eisobairdia, 

Carinobairdia, Medwenitschia, Parurobairdia) and two smooth (Isobythocypris, Hiatobairdia). 

The re-entrance in the fossil record of Ceratobairdia and Parurobairdia is worth mentioning 

as it represents one of the longest Lazarus period known to date for ostracods during this 

interval (Changhsingian to Carnian). It also corresponds to the on-set of maximal diversity of 

Cytherellidae, with three genera (Cytherella, Issacharella, Leviella): this feature is maintained 

until the Rhaetian with the replacement of Issacharella by Cytherelloidea. Together with the 

Rhaetian, the Carnian constitutes the highest diversity for Cytheruridae (eight genera), of 

which only Metacytheropteron is new. A very peculiar aspect of the Carnian is the re-

emergence of Rectonariidae (three genera) that were Lazarus since their latest occurrence in 

the Changhsingian of South China (Yuan et al., 2009): the implications of this observation 

are discussed below. The Carnian sees the survivorship of a unique Cavellinidae (Bektasia), 
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that will stay the last representative of this family until its disappearance at the end of the 

Rhaetian. It finally witnesses the roots of Protocytheridae (Klinglerella). Although several 

ostracod assemblages witness the degradation of environmental conditions related to the 

Carnian Humid Episode (e.g., Keim et al., 2001), the influence of this event on marine 

ostracod fauna still needs to be thoroughly studied. Typical Carnian taxa, such as 

Renngartenella sanctaecrusis or Simeonella brotzenorum Sohn, 1968, witness salinity issues 

related to the Carnian Pluvial event (e.g., Kristan-Tollmann and Hamenadi, 1973; Gerry et 

al., 1990; Monostori, 1994; Keim et al., 2001; Forel et al., in press), but these works only 

focus on the western tethyan zone and data are still lacking from eastern area (e.g., Forel et 

al., 2019b).

The Norian is also a period of great stability with no peculiar event in terms of ostracod 

biodiversity except the unique Triassic occurrence of Punciidae (Triassopuncia, 

Triassomanawa; Kozur, 1996). Prior to the end-Triassic extinction, the Rhaetian records the 

acme of several families, including Bairdiidae, Cytheruridae and Healdiidae. It also records 

the earliest known occurrences of major groups such as Progonocytheridae (Kinkelinella) 

and Cytheridae (Aparchitocythere, Parariscus). Finally, it yielded the latest known occurrence 

of Beecherellidae (Acantoscapha) and Rectonariidae (open nomenclature genera). 

5. Discussion

5.1. Triassic occurrences of Palaeozoic taxa

5.1.1. Palaeocopida

Palaeocopida were major components of the Palaeozoic ostracod fauna and were 

widespread from shallow to deep marine waters (e.g., Jones, 1989; Becker and Wang, 1992; 

Casier and Lethiers, 1998; Olempska and Chauffe, 1999; Chitnarin et al., 2012). They were 

traditionally thought to have gone extinct at the EPE (e.g., Moore, 1961) but since the 80’s, a 
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growing body of literature documented their survival into the Early Triassic (Crasquin and 

Forel, 2014 and references therein). The persistence of living Palaeocopida has been 

evoked, Kirkbyoidea being considered by some as the forerunners of the Cretaceous to 

recent Punciidae (e.g., Schallreuter, 1968; Swanson, 1991). This question is still debated: 

some consider that there might be no living Palaeocopida and that Punciidae should rather 

be attributed to Cytherellidae (e.g., Whatley et al., 1993; Becker, 1997; Martens et al., 1998; 

Martin and Davis, 2001) while others recently revived the order Punciocopida Schallreuter, 

1968 (Danielopol and Swanson, 2019). It is out of the scope of the present contribution to 

discuss this issue and the Punciidae documented from the Norian (Kozur, 1996) have been 

here attributed to the Punciocopida.

Eight Palaeocopida families survived in the Griesbachian (Fig. 2; Table 1) and in the direct 

aftermath of the EPE, they are part of all survival patches described earlier. When present, 

Paraparchitidae, Kirkbyidae, Kloedenellidae and Knoxitidae are only accessory components 

of the communities surviving in association with microbial deposits (e.g., Crasquin-Soleau 

and Kershaw, 2005; Forel, 2012, 2014; Forel et al., 2013a, b; Crasquin-Soleau et al., 2004a, 

b). Conversely, Hollinellidae (Hollinella) proliferate through the EPE in littoral clastic areas of 

South China (Forel et al., under review) and northern Vietnam (Crasquin et al., 2018). This 

phenomenon documents different adaptative abilities to peculiar environmental conditions to 

which these organisms were adapted. As such, Hollinella may radically differ from Bairdiidae 

in terms of adaptative abilities in being able to cope with high detrital influx. 

Of the eight families occurring in the Griesbachian, only Kirkbyidae range higher in the 

Triassic (Fig. 2). They then disappear from the fossil record until their last known occurrence 

during the Carnian, Late Triassic (Forel et al., 2019a). An analysis of their generic diversity 

and environmental distribution in the Permian and Triassic reveals a unique pattern (Fig. 5). 

Over the studied interval, the Kirkbyidae’s diversity reaches its acme in the Changhsingian 

with eight genera. Their diversity rapidly decreases through the EPE with redisual 

occurrences in the Griesbachian, Dienerian (Carinaknightina; Sohn, 1970) and Spathian 

(Carinaknightina; Crasquin-Soleau et al., 2006). They are for the last time reported from the 
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Carnian, corresponding to their highest Triassic generic diversity with Carinaknightina, 

Kirkbya and Tubulikirkbya, the latest two genera re-entering the fossil record since their last 

occurrence in the Changhsingian (Yi, 2004; Yuan et al., 2007). In terms of environmental 

distribution, Permian Kirkbyidae are known from marginal to basinal conditions (Fig. 5). Their 

early Triassic distribution appears to correspond to a restriction to subtidal and basinal areas. 

This pattern further develops in the Late Triassic, when their last known occurrence is 

restricted to slope environments while they are totally absent from shallower localities. This 

pattern may indicate the narrowing of the distribution of Kirkbyidae through time to deeper 

and more stable environments. Kirkbyidae were members of both neritic and deep-sea 

assemblages throughout their histories (e.g., Becker and Wang, 1992; Chitnarin et al., 2012) 

and it is reasonable to consider that they were capable of such deep-water survival which 

therefore does not correspond to a migration but truly to a restriction of their environmental 

distribution.

Apart from the Kirkbyidae, Triassicindivisia occurs in the Spathian and Anisian of the subtidal 

zone in southern Tibet (Forel and Crasquin, 2011a; Forel et al., 2011). Although of uncertain 

superfamilial and familial attribution, this genus is the unique Palaeocopida genus known to 

date that radiated in the Triassic.

5.1.2. Deep-sea taxa

The diversity of Triassic deep-sea ostracods, their taxonomic structuration, links to Permian 

taxa and palaeogeographical distribution are still poorly understood. In most cases, these 

ostracods have been secondarily silicified so that their occurrence in the fossil record 

requires sufficient amounts of available silica. The Permian and Triassic interval was marked 

by an interruption of the siliceous bioproduction, labelled “Early Triassic chert gap”, related to 

the abrupt collapse of the thermohaline circulation (Beauchamp and Baud, 2002). It is 

assumed to have lasted until the late Spathian or Anisian (Kakuwa, 1996; Isozaki, 1997; 

Kozur, 1998a, b). Radiolarians that have been documented from the earliest Triassic of 
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South China (Yang et al., 2012), Early Triassic of Japan (Sashida, 1991), Smithian-Spathian 

of New Zealand (Hori et al., 2003, 2011), Spathian of Japan (Kamata, 1999), early Spathian 

of Vietnam (Takahashi et al., 2017), to cite only a few, nevertheless demonstrate that 

siliceous productivity was maintained but may have been insufficient to allow the secondary 

silicification of ostracods during this interval. Most Palaeozoic deep-sea taxa reported from 

the Triassic, described and discussed below, may consequently have entered the Lazarus 

record through the EPE and its aftermath because of the low preservation potential of these 

poor faunas in a context of low dissolved silica.

Deep-sea ostracods from Triassic deposits have been increasingly documented since Kozur 

(1970) and the reader is referred to Crasquin and Forel (2014) for details and discussion on 

their Early and Middle Triassic distribution. Only recent discoveries of unquestionable and 

relatively diverse taxa in the Late Triassic, Carnian (Forel et al., 2019a) and Rhaetian (Forel 

and Grădinaru, under review) are here discussed. Typical Palaeozoic deep-sea taxa 

reported to date from the Triassic are Spinomicrocheilinella in the Anisian (Mette et al., 

2014), Beecherellidae (Acanthoscapha) and Berounellidae from bathyal and abyssal 

environments of the entire Middle Triassic (Kozur, 1970, 1971, 1972; Crasquin-Soleau and 

Grădinaru, 1996; Sebe et al., 2013). These taxa have all been extended up to the Carnian 

and a new genus of Becherellidae (Gencella) implied that radiations were maintained, 

although at low rates (Forel et al., 2019a).

Rectonariidae are Palaeozoic deep-sea taxa in essence: they have been associated with 

deep-water masses in the Devonian-Carboniferous interval (e.g., Gründel, 1961; Olempska, 

1981; Sanchez de Posada, 1987; Blumenstengel, 1992; Nazik et al., 2012) and they 

residually range to the uppermost Permian (Yuan et al., 2007). Until recently, they were 

considered as deep-sea victims of the EPE and have never been reported from previous 

analysis of Triassic deep-sea deposits. However, three genera, that are new to science but 

kept in open nomenclature because of the lack of material, unquestionably document their 

persistence in the Carnian (Forel et al., 2019a) and up to the Rhaetian (Forel and Grădinaru, 
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under review). These observations first indicate that Rectonariidae survived the EPE and that 

they have been Lazarus taxa during the entire Early-Middle Triassic time interval. 

Owing to the great sensitivity of deep-sea ostracods (e.g., Yasuhara et al., 2009), strong 

hypotheses are needed to explain the exceptional persistence of such residual Palaeozoic 

taxa through the EPE and up the the brink of the end-Triassic crisis. Two hypotheses are 

here considered. The first evokes a long-term yet unidentified refuge, which may have been 

located in the deep sea as these taxa were restricted to bathyal and abyssal zones through 

their fossil record and that they have never been observed from neritic deposits through the 

Permian and Triassic interval (Forel et al., 2019a). This refuge differs from those 

documented from neritic areas in the aftermath of the EPE by its much longer duration, from 

the Late Permian to the Rhaetian, and by its larger taxonomic composition. The second 

hypothesis implies the environmental stability of deep-sea areas around the Palaeo-Tethys 

and Neo-Tethys oceans where these assemblages have been described, through the EPE 

and more widely through the Triassic. This ostracod record has to be replaced within the 

discussion on the oceanic anoxia reported from the late Middle Permian to the early Middle 

Triassic, that may have occurred as several phases in the Early Triassic in northwestern 

Pangaea, South China, Japan, Turkey (late Changhsingian-early Dienerian, Smithian-early 

Spathian and middle Spathian; e.g., Isozaki, 1997; Grasby et al., 2012; Song et al., 2012; 

Lau et al., 2016; Wignall et al., 2016; Huang et al., 2017) and in the Middle Triassic in Japan 

and South China, including in deep-sea areas (Kubo et al., 1996; Sugitani and Mimura, 1998; 

Wignall et al., 2010; Huang et al., 2017; Song et al., 2012; Fujisaki et al., 2016; Soda and 

Onoue, 2018). This lengthy anoxia is considered as an important factor of the delayed 

recovery of marine biota after the EPE (e.g., Chen and Benton, 2012; Hallam, 1991). The 

present record of long-term survivorship of ostracods in the deep-sea is restricted to the 

Tethyan area as no such event is known from Panthalassa, possibly related to fundamental 

environmental differences between these oceanic realms. Long-term anoxia and ostracod 

persistence are only compatible in the deep-sea if pulses of anoxia themselves consisted of 

alternating anoxic and dysoxic intervals, or the refuge hypothesis should be favoured. 
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5.2. A focus on Bairdiidae: diversity and “phylogeny”

Bairdiidae have been components of marine ecosystems from all time slices from the 

Ordovician (e.g., Truuver et al., 2012; Meidla, 1996) to present-days (e.g., Titterton and 

Whatley, 1988; Maddocks, 2013). Intense efforts have partly clarified the taxonomy of 

modern representatives of the “Bairdia dynasty” (Malz, 1988) with the establishment and/or 

revision of Neonesidea Maddocks, 1969, Paranesidea Maddocks, 1969, Bairdoppilata 

Coryell et al., 1935 and Triebelina van den Bold, 1946 (e.g., Maddocks, 1969; Maddocks, 

2013, 2015). In the history of bairdiids, the Triassic is a unique interval with the explosive 

radiation of ornate taxa worldwide (e.g., Kollmann, 1960, 1963; Kristan-Tollmann, 1971a; 

Bolz, 1971a, b), most of which do not range into the Jurassic. The classification and 

phylogeny of Bairdiidae are major issues that the modern ostracodology needs to solve. 

Because of their importance in Triassic marine microfaunas, Bairdiidae are here treated 

separately and we discuss in detail the dynamics of their Triassic diversity and propose a 

“morphological phylogeny” of the ornate forms during the Permian and the Triassic.

5.2.1. Triassic diversity

Thirty-two Bairdiidae genera occur during the Triassic (Table 1). Bairdia, Acratia, Bythocypris 

have been termed “panchronic” taxa in Crasquin-Soleau et al. (2007). However, this notion of 

panchronism is problematic as it mistakenly implies the persistence of these taxa through the 

Phanerozoic and would, for instance for Bairdia, carry on and justify its abusive usage up to 

modern environments: we rather consider them as Palaeozoic-Early Mesozoic in essence. In 

terms of diversity dynamics, most patterns are similar to those described for the entire 

ostracod fauna during the Triassic (Fig. 3). Bairdiidae nevertheless significantly differ in that 

the Ladinian-Rhaetian interval rather witnesses a seesawing diversity within a general 

increase, resulting in their observed highest diversity in the Rhaetian (Fig. 6). Only few 
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bairdiids radiated during the entire Early Triassic. Two peaks of radiation occur during the 

Anisian and the Carnian, while the remaining of the Late Triassic is marked by rare radiations 

and important extinction at the end of the Rhaetian. When comparing the relative diversity of 

ornate versus smooth Bairdiidae along the Triassic, a reversal of the dominance occurred 

when entering the Late Triassic, from smooth-dominated during the entire Early and Middle 

Triassic, to ornate-dominated during the Late Triassic (Fig. 6).

Except for Truncobairdia which is restricted to the Griesbachian of Australia, all Griesbachian 

bairdiids (11 genera) are survivors from the Late Permian. Three of these genera went 

extinct during the Griesbachian, all of which are smooth in morphology (Orthobairdia, 

Praezabythocypris, Truncobairdia). The only ornate form during the Griesbachian is the 

Permian survivor Petasobairdia that went extinct at the end of the Rhaetian. The Dienerian 

and Smithian record the lowest bairdiid diversity (four genera) with the radiation of 

Ptychobairdia during the Dienerian, which is the only recorded ornate genera for this interval. 

Two main periods of radiation of ornate bairdiids are recorded: Anisian and Carnian, 

respectively with three (Margarobairdia, Mirabairdia, Nodobairdia) and five new genera 

(Edithobairdia, Eisobairdia, Carinobairdia, Medwenitschia, Parurobairdia). The distribution of 

ornate Bairdiidae in the Permian and Triassic is summarized in Fig. 7. 

5.2.2. Ornate bairdiids: elements of “morphological phylogeny”

The classification of sculpted Bairdiidae is still subject to debates, mainly regarding the use 

of external sculptures as robust characters for generic scheme. Here, and until a complete 

phylogenetic analysis can be performed, we follow the original scheme of Kollmann (1960, 

1963) as stated above. Any attempt to conceptualize the evolution of ornate bairdiids during 

the Triassic requires to be placed in perspective of the Permian record. Three groups are 

distinguished among Permian and Triassic ornate bairdiids, characterized by the temporal 

distribution and by the enhancement and growing complexity and sophistication of carapace 

ornamentation through time (Fig. 7): 
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 Group 1: genera that originated prior or during the Permian and do not range into the 

Triassic. They are characterized by simple and not combined ornamentation structures: 

unique spine or knob (Xixionopsis, Spinobairdia, Sinabairdia), latero-ventral ridge 

(Vanganardia) or vertical lateral ridges (Arcibairdia). Only Abrobairdia displays a combination 

of ornate dorsal margin at left valve (ridge, nodes, spines) and ornamental structures (ridges, 

nodes) on the antero-central and postero-central area of each valve.

 Group 2: genera that radiated prior or during the Permian and range into the Triassic. 

Bairdiolites, Ceratobairdia, Mirabairdia and Parurobairdia went through the EPE as Lazarus 

taxa. They document an increasing complexity of the carapace ornamentation with more 

frequent combined structures as in Ceratobairdia, Mirabairdia and Ptychobairdia. This group 

also sees the strong development of ornament made of longitudinal and unstructured ridges 

as in Ceratobairdia and Ptychobairdia.

 Group 3: genera that originated during the Triassic. They display the highest 

sophistication of lateral combined ornaments. The pinnacle of this pattern is the fused 

ornament of Coronabairdia, that corresponds to the fusion of dorso-lateral and ventro-lateral 

ridges into a peripheral ring.

Owing to the temporal distribution of these groups, we propose the following scheme for the 

phylogeny of Triassic ornate Bairdiidae based on their ornament structures (Fig. 8). This 

scheme is rooted into the Kungurian and proposes that all subsequent ornate Bairdiidae 

derived from Petasobairdia. Petasobairdia Chen in Chen and Shi, 1982 ranges from the 

Sakmarian to the Rhaetian (Fig. 7) and is diagnosed by its ornate dorsal margin at left valve 

(ridge, nodes, horns) without combined lateral elements. During the Kungurian, Abrobairdia 

and Ceratobairdia may have derived from Petasobairdia: Abrobairdia by the development of 

dorso-lateral ridges and Ceratobairdia by the acquisition of latero-ventral structures. We 

propose that these two genera gave path to two distinct lineages: Ceratobairdia-lineage 

characterized by ridged ornaments and Abrobairdia-lineage with nodulose ornamentation. 

Abrobairdia ranges from the Kungurian to the Changhsingian, and is, as stated above, the 

earliest ornate bairdiid with combined ornamentation. Owing to this ornamental complexity 

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239



compared to contemporaneous genera, Abrobairdia may have been the origin all subsequent 

genera with robust combined ornamentation. Abrobairdia seems closely related to 

Mirabairdia, which is the second oldest genera with combined ornament (oldest attested 

occurrence in the Changhsingian), therefore phylogenetically relating the groups 1 and 2 of 

our analysis. It is worth noting that Mirabairdia from the Capitanian of South China (M. sp. 1 

in Zazzali et al., 2015) is re-attributed to Ceratobairdia because of its latero-ventral ridge. The 

earliest record of Mirabairdia may date back to the Wuchiapingian (M. sp. 2 in Zazzali et al., 

2015) but the dorso-lateral features characteristic of this genus are not well expressed so 

that we consider that the earliest attested record of Mirabairdia is of Changhsingian age. The 

Abrobairdia-Mirabairdia evolutive unit sees the progressive restriction of dorsal 

ornamentation from several denticulations to 2 nodes or spines and the development of 

latero-ventral ornament structure in the Early Triassic. Subsequent genera with ornaments 

located at similar positions but of different morphologies, mainly Nodobairdia and 

Margarobairdia, may have derived from that Abrobairdia-Mirabairdia evolutive unit. 

The Ceratobairdia-lineage first saw the radiation of Vanganardia in the Capitanian, 

independently followed by the emergence of Parurobairdia. We consider that Ptychobairdia 

may have originated from Parurobairdia rather than from Vanganardia because 

Parurobairdia possesses both sub-ventral and dorsal/sud-dorsal structures contrary to 

Vanganardia that lacks dorsal elements. Rooting Ptychobairdia into Vanganardia, itself 

rooted into Ceratobairdia would imply the loss of dorsal structures from Ceratobairdia to 

Vanganardia and their subsequent re-development from Vanganardia to Ptychobairdia, we 

exclude this more complex scenario. In this hypothesis, Vanganardia and Parurobairdia - 

Ptychobairdia constitute independent lineages that derived from Ceratobairdia. Vanganardia 

radiated in the Capitanian while the Parurobairdia-Ptychobairdia evolutive unit is rooted in 

the Changhsingian and diversified in the Spathian with the radiation of Ptychobairdia. It is 

worth noting that ventral structures of the Dienerian Ptychobairdia species shown in 

Crasquin-Soleau et al. (2006) are not clear so we exclude this record. Similarly, the 
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occurrence of Ceratobairdia from the Carnian of Italy (Kristan-Tollmann, 1978) is questioned 

because of the apparent lack of ventro-lateral structure. 

This proximity between Abrobairdia and Mirabairdia was already noted by Chen and Shi 

(1982), who considered Mirabairdia and Parurobairdia as transitional forms between 

Palaeozoic and Mesozoic ornate bairdiids. The main elements of the phylogenetic model 

proposed here are in line with this opinion but provide details rather considering the 

development of ornate bairdiids by two distinct lineages.

5.3. Rooting the Mesozoic Marine Revolution down to the Triassic

The Mesozoic marine revolution changed the ecological structure of benthic communities 

and allowed for the rise of the Modern Fauna (Vermeij, 1977). During this major evolutionary 

episode, the development of durophagy and boring predation in marine predators triggered 

the colonization of infaunal habitats and the diversification of organisms with greater mobility 

and durophagous-resistant shells. This coevolution between marine predators and preys is 

traditionally considered to have taken place in the Jurassic and the Cretaceous (e.g., 

Roopnarine, 2006; Baumiller et al., 2010). However, the Triassic is increasingly regarded as 

the setting stage for the Mesozoic marine revolution as it marks the rise of the Modern Fauna 

and possibly of modern modes of predation (e.g., Tackett, 2016; Greene et al., 2011; Ros 

and Echevarría, 2011; Buatois et al., 2016; Klompmaker et al., 2016; Tackett and Tintori, 

2019). Recent discoveries made on Late Triassic ostracods illustrate the important role 

ostracods have to play in this discussion.

5.3.1. Triassic: the first step in the emergence of Modern ostracods

As for other marine organisms, the Triassic is a period of major importance for the rise of 

typically Meso-Cenozoic, or Modern, ostracod fauna. To understand all mechanisms involved 
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in this evolutive process, it is pivotal to clearly position the transition interval, which 

corresponds to the interval spanning from the emergence of the first typical representative of 

the Meso-Cenozoic forms, to the disappearance of the very last typical Palaeozoic taxa. Until 

recently, it was identifed from the Wuchiapingian to the Anisian for marine ostracods 

(Crasquin-Soleau et al., 2007; Crasquin and Forel, 2014). However, the observations 

described in the previous paragraphs imply that the upper limit of this transition interval is 

asynchronous for neritic and deep-sea taxa: in the Anisian for neritic taxa (Triassicindivisia; 

Forel and Crasquin, 2011a), in the Rhaetian for deep-sea ones (Rectonariidae; Forel and 

Grădinaru, under review). The position of the lower boundary of the transition interval for 

neritic ostracods is also moving with the description of new assemblages and understanding 

of the phylogeny of the typically Mesozoic ostracods and of their Permian roots. Crasquin-

Soleau et al. (2007) considered the first typical strongly shelled and ornamented Bairdiidae to 

occur in the Wuchiapingian (Sinabairdia: Becker and Wang, 1992; Fig. 7). Such ornate forms 

have nevertheless recently been documented down to the Capitanian (Zazzali et al., 2015; 

see above) and work currently in progress documents the occurrence of Petasobairdia and 

Ceratobairdia down to the Roadian of Texas, USA (work in progress). The Late Permian 

indeed appears as the acme of Petasobairdia as shown by the abundant records for this 

interval (e.g., Kozur, 1985; Shi and Chen, 1987; Crasquin-Soleau and Baud, 1998; Yi, 2004; 

Yuan et al., 2007; Crasquin et al., 2010; Forel, 2012). A recent report from the Sakmarian of 

Japan (Tanaka et al., 2018) roots this genus, as well as the origin of ornate Bairdiidae typical 

for the Triassic according to the phylegenetic scheme proposed here, down to the base of 

the Early Permian. We therefore consider that the lower boundary of the transition interval for 

neritic ostracods roots deep in the Early Permian. Conversely, the position of the lower 

boundary for deep-sea assemblages is more problematic as typical Jurassic deep-sea taxa 

and assemblages are virtually unrecognizable from their neritic counterparts as stated by 

Lord (1988). Lord and Lambourne (1991) documented a Pliensbachian, Early Jurassic, 

assemblage from Turkey related to a possible bathyal habitat owing to the dominance of 

Ptychobairdia and absence of Metacopina. More recently, an Early Jurassic assemblage 
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indicative of the photic zone at water depth significantly shallower than calcite lysocline has 

been reported from Austria (Honigstein et al., 2014). The palaeobathymetry of this 

assemblage was inferred by its composition (dominance of bairdiid, near absence of 

cytheroids, lack of taxa that are important in coeval deposits such as Cladocopina, 

Healdiidae and Platycopina) rather than by the occurrence of taxa that unquestionably point 

to deep water zones. Inferring the emergence of typical deep-sea Mesozoic taxa possibly in 

the Triassic or before is therefore complex in the present state of our knowledge. 

As detailed earlier in this work, the Triassic ostracod fauna is clearly distinct from the 

Palaeozoic one by the progressive disappearance of Palaeozoic components (e.g. 

Palaeocopida, deep-sea taxa) and the rise of taxa that will become typical of the Mesozoic 

and Modern marine assemblages. However, the massive diversification of ornate Bairdiidae 

is only known at this interval and also distinguishes it from the Mesozoic fauna. Conversely, 

the essentially Palaeozoic Metacopina (Healdiidae) diversified in the Triassic and the early to 

mid part of the Early Jurassic. They went extinct during the Early Toarcian Oceanic Anoxic 

Event (Boomer et al., 2008), which allowed for the Cytheroidea to further diversify until their 

dominance as seen in modern marine microfauna. The Triassic events therefore correspond 

to one step of this sequential on-set of the Mesozoic features of ostracod assemblages.

The present analysis also documents the Triassic roots of Mesozoic families through several 

successive waves of radiation. Of them, Schulerideidae is an important component of Middle 

and Late Jurassic assemblages of Europe (e.g., Bate, 1977). Some have considered that it 

derived from the Pulviella-group [Speluncellini according to Kozur (1973a)], from the oldest 

representative of Praeschuleridea Bate, 1963 reported by Bate and Coleman (1975; Bate, 

1977) or the Jurassic genus Ektyphocythere Bate, 1963 (Boomer et al., 2009). However, an 

undeniable Schulerideidae, attributed with doubt to Schuleridae, in the Carnian of South 

China documents the Late Triassic origins of this family (Forel et al., 2019b). The Carnian 

stage is also the period of radiation of Isobythocypris that later became widespread. To date, 

the oldest representatives of the Cardobairdia are from the Early Jurassic of England, Wales, 

Ireland and Australia (Ainsworth, 1986, 1987; Lord and Boomer, 1988; Boomer, 1991; Lord 
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et al., 1993). Several species have nevertheless been recognized from the Rhaetian of the 

Black Sea and also root this genus down to the end of the Late Triassic (Forel and 

Grădinaru, under review).

As for important families, Cytheruridae are settled down in the Anisian with the roots of 

Eucytherura (Table 1; Fig. 4). An important discussion is needed here regarding Callicythere 

Wei, 1981 described from the Dienerian of South China (Wei, 1981). Originally attributed to 

Cytherissinellidae, Callicythere was later re-attributed to Bythocytheridae because of its mid-

valve sulcus and latero-ventral structures (Forel et al., 2013b). The inner structures and 

mainly muscular patterns of Callicythere have never been observed to date. However, 

considering the view of Whatley and Boomer (2000) that Bythocytheridae gave rise directly 

or indirectly to Cytheroidea during the Late Palaeozoic or Early Mesozoic interval and that 

one of the earliest cytheroid is Cytheruridae, we propose that the tethyan-wide Callicythere 

that occurs from the Capitanian to the Spathian with an acme in the Changhsingian may 

represent the link between Bythocytheridae and Cytheruridae. 

5.3.2. Ostracods: pivotal proxies to the Early Mesozoic-type food-webs

Ostracods compose the diet of diverse organisms including bivalves, gastropods, echinoids, 

turtles, amphibians, fishes, annelids and other crustaceans (e.g., Lowndes, 1930; Harding, 

1962; Reyment, 1966; Robertson, 1988; Penchaszadeh et al., 2004; Costa et al., 2006; 

Ghioca-Robrecht and Smith, 2008; Leal, 2008; Alcalde et al., 2010; Rossi et al., 2011; 

Vandekerkhove et al., 2012). Identifiable traces of predation on ostracods in the fossil record 

are related to drilling Naticidae and Muricidae gastropods (e.g., Maddocks, 1988; Reyment 

and Elewa, 2002), the oldest record being of Early Albian, Early Cretaceous, age (Maddocks, 

1988). Predation on ostracods is most of the time disregarded and most works focus on 

relatively young assemblages (e.g., Reyment et al., 1987; Ruiz et al., 2010, 2011; Villegas-

Martin et al., 2019). Because of the small size of ostracods, they provide an important food 

source for juvenile gastropods as well as an alternative nutritive resource when regular preys 
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are lacking (e.g., Reyment, 1967; Maddocks, 1988). They may thus be used as proxies for 

the dynamics of juvenile predators, for periods of prey impoverishment, or for the emergence 

of predation in the very first levels of marine trophic chains during the restructuration of 

benthic ecosystems associated with the on-set of the Mesozoic Marine Revolution. 

Until the end of the Cretaceous, drilling activity is erratic and it later increased in relation to 

the rise of Muricidae and Naticidae (e.g., Harper, 2006), the oldest group including being of 

Valanginian, Early Cretaceous age (Kaim, 2004). Occurrences of drill holes on macro-

invertebrates are rare in the Triassic, but present in the Carnian and Norian (Klompmaker et 

al., 2016; Tackett and Tintori, 2019). Recently, the oldest evidence of drilling predation on 

ostracods, corresponding to an incomplete and rather non-functional hole, has been 

described on a left valve of a bairdiid (Forel et al., 2018). This observation also constitutes 

the first indication of drilling activity on micro-organisms in the Triassic. Although not 

functional, this pivotal evidence documents the onset of drilling abilities of juvenile predators, 

owing to the small dimensions of the trace (outer borehole diameter: 51.4 μm, outer borehole 

diameter: 18 μm). Furthermore, owing that Bairdiidae live above the sediment, the predator 

involved might have been hunting at the sediment surface (Forel et al., 2018). Rhaetian 

ostracods currently under description document the occurrence of two complete drill holes of 

smaller size than that of the Carnian sediments, that may indicate the increase of the 

efficiency of the drilling abilities of Triassic predators (Forel and Grădinaru, under review). 

Specialized durophagous predators during the Norian, mainly fishes, sharks and reptiles, 

have been considered as having an ecological influence on benthic communities (Tackett 

and Tintori, 2019). However, the ostracod successive records from the Carnian (Forel et al., 

2018) and the Rhaetian (Forel and Grădinaru, under review) document the already advanced 

structuration of micro-predators in the Late Triassic, possibly corresponding to still 

unidentified gastropods as proposed by Klompmaker et al. (2016). 

5.4. Geographical distribution

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593



5.4.1. Patterns of distribution through time

The dynamic of marine ostracod provincialism during the Triassic is poorly known and has 

mainly been discussed in the 70’s and 80’s. Kozur (1973b) distinguished the southern boreal, 

tethyan and northern boreal provinces for Triassic conodonts and ostracods. Kristan-

Tollmann and Tollmann (1981, 1982) and Kristan-Tollmann (1986a, 1988a, b, 1991) 

proposed that the distribution of diverse fossil groups, including ostracods, was 

homogeneous within the Tethys during the Late Triassic. Forel and Moix (in press) recently 

dated the opening of communications between the Neo-tethys and Palaeo-tethys oceans of 

early Carnian rather than middle Carnian as generally suggested, and proposed that the 

previously described homogeneization of ostracod faunas during the Late Triassic may relate 

to this early event. However, the statement of Kristan-Tollmann (1988a) that the uniformity 

was already recognizable as early as end of the Anisian is problematic. 

Here we provide insight into the provincialism of ostracod genera at each stage of the 

Triassic, following the first quantitative approach proposed by Forel and Grădinaru (2018) for 

the Anisian. For each time slice, localities that provided less than 3 genera are not 

considered as their paucity may bias the analysis, with an exception for Dienerian and 

Smithian that we tentatively characterize in spite of their extreme low diversity. Nekto-benthic 

taxa are excluded (Crasquin-Soleau and Grădinaru, 1996; Sebe et al., 2013; Forel and 

Grădinaru, 2018; Tóth & Cséfán, 2018). For each stage we follow the method used by Forel 

and Grădinaru (2018) and produced a similarity symmetric matrix, following Q-mode analysis 

(Supplementary File 2; e.g., Henderson and Heron, 1976; Pielou, 1979; Janson and 

Vegelius, 1981; Digby and Kempton, 1987). Following Arias and Whatley (2009), we use the 

Jaccard’s similarity coefficient (Jaccard, 1912) as it ranges from zero to one, emphasises 

presence instead of absence and is not influenced by differences in sample size (e.g., 

Cheetham and Hazel, 1969; Baroni-Urbani and Buser, 1976; Wolda, 1981; Magurran, 1988). 

We use the agglomerative clustering method ‘unweighted pair group method with arithmetic 

mean’ (UPGMA) which provides an unweighted arithmetic average between individuals (e.g., 
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Hazel, 1970; Anderberg, 1973; Podam, 1989; Shi, 1993). All analyses were done using the 

statistical software package PAST (Hammer et al., 2001; Hammer and Harper, 2005). For 

some of the time slices, groupings of localities were made based on the palaeogeographical 

reconstructions of Scotese (2014). For each period of the Triassic, the classification of areas 

scrutinized in terms of similarities to their ostracod assemblages is shown in Fig. 9. 

During the Griesbachian, the highest similarity is observed between palaeotethyan (Hungary, 

south China) and cimmerian (northern Iran, southern Turkey) localities, highlighting a core of 

peri-Palaeo-Tethyan biotas from which northern Italy and Slovenia are excluded in spite of 

their geographical closeness. Southern neotethyan communities from Himalaya (Tibet, India) 

show the highest similary to this peri-palaeotethyan group. Australian communities stand 

aside with the lowest degree of similarity, which may relate to distinct climatic regimes. 

Dienerian communities are extremely poor but they document similar patterns with 

Himalayan communities (Nepal, Pakistan) displaying more similarity with other the southern 

neotethyan localities (Tunisia) than with south Chinese ones. The Smithian communities are 

also very poor but document the exclusion of Tunisia and Russia that display no similarity 

with other tethyan communities. The Spathian burst of diversity sees the reinforcement of the 

similarity between peri-Palaeo-Tethyan biotas (Romania, Tibet, China), that record lower but 

still significant similarity with Israel on the southern margin of Neo-Tethys. Interestingly, these 

localities have no similarity with communities documented from Russia and Germany. This 

seems best explained by the emergence of brackish water Limnocytheridae in these areas 

(Triassinella, Lutkevichinella, Pulviella, Telocythere, Renngartenella, Speluncella). The 

isolation of russian and german communities further develops during the Anisian, as does 

the core of peri-Palaeo-Tethyan biotas (Hungary, Italy, Austria, Turkey, Romania) that 

documents the highest degree of similarity for this stage. Thailand, Israel and Jordan 

assemblages display a relatively high similarity corresponding to the possible emergence of 

a neo-tethyan region. Other regions (Himalaya, south China) show relatively low levels of 

similarity, that may be indicative of the dispersal of taxa related to the radiation stage. The 

Ladinian sees the individualization of two distinct clusters, the first one gathers France, 
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Spain, Germany and Russia (with Scandinavia at a lesser level of similarity) and corresponds 

to areas of maximal diversification of brackish water Limnocytheridae. The second cluster 

corresponds to the enlargement of the peri-Palaeo-Tethyan region (Iran, Hungary, Balkan, 

Alps) to southern-neotethyan areas (Israel and Jordan). The close similarity of Canadian 

biota to this tethyan communities highlights the lack of data for this area during the Triassic 

and the possible existence of earlier trans-panthalassic faunal communications. The isolation 

of localities providing brackish water taxa further develops in the Carnian, as well as the 

establishement of a wide peri-tethyan region encompassing northern palaeo-tethyan and 

southern neo-tethyan areas. The high similarity of Canada with these tethyan localities 

further develops while Indonesia shows weaker levels of similarity, perhaps partly because of 

the lack of data. During the Norian, a relative uniformity of the biotas is observed within 

tethyan and panthalassic oceans, possibly illustrating the homogeneity of faunas and free 

migrations among oceans. Conversely, Germany and Slovenia stand aside with very low 

levels of similarity. The highest degree of similarity occurs between Germany, UK and 

Ireland, possibly illustrating a first type of biota of the Rhaetian Sea, which was a shallow 

epicontinental sea that covered the northwestern Europe during the latest Triassic (e.g., 

Fischer et al., 2012). Another type of Rhaetian Sea biota seems represented by the second 

level of similarity observed between France and Hungary. A third large cluster with lower 

similarities still documents the relative biotic uniformity within tethyan and panthalassic 

oceans (Japan, Australia, Romania, Austria, Iran, Iraq). 

5.4.2. Thoughts on the palaeogeography of radiations

During most of the Triassic, South China appears as a key area for radiations. In the 

Griesbachian, the first occurrence of Limnocytheridae (Triassinella) in South China 

documents the emergence of this family on the eastern side of the Tethys very early in the 

Triassic. Conversely, the Griesbachian large distributions of Kerocythere and Hungarella 

seem to point to an incompleteness of their records: they are documented from South China 
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and respectively from Italy and Hungary and India, and these large patterns indicate that they 

may have radiated earlier during the Late Permian. During the Carnian, South China saw the 

radiation of Schulerideidae, described higher, and Carinobairdia, a genus that was only 

known from the Norian-Rhaetian interval of Tyrol, Greece and Iran (Kollmann, 1963; Bolz, 

1971a, b; Urlichs, 1972; Kristan-Tollmann, 1988; Kristan-Tollmann et al., 1991; Mette and 

Mohtat-Aghai, 1999; Hillebrandt et al., 2007; Urlichs and Krystyn, 2016; Mercier, 1966; 

Kristan-Tollmann et al., 1979, 1980). They migrated to the western Tethys later in the Late 

Triassic and diversified there. This pattern was coupled to a major palaeobathymetrical 

change, from their radiation on the deep-shelf followed by colonisation and ultimately 

distribution only in shallow waters (Forel et al., 2019b). These ostracod records are in line 

with growing evidence of the macroevolutionary importance of offshore origination in marine 

invertebrates (e.g., Lindner et al., 2008; Thuy, 2013; Bribiesca-Contreras et al., 2017; Hess 

and Thuy, 2018).

In essence, the Triassic history of Petasobairdia is tethyan but it may have been panthalassic 

in origin as shown by its earliest occurrence from a seamount of the Panthalassa (Japan) 

during the Early Permian, Sakmarian stage (Tanaka et al., 2018). It may have subsequently 

migrated to the Indochina Block, Thailand, as shown by its occurrence as early as the 

Artinskian, Early Permian, and late Roadian? (Chitnarin et al., 2012). A subsequent 

westerward expansion of the genus is illustrated by Capitanian, Middle Permian, occurrences 

in Russia (Gramm, 1997) and Turkey (Crasquin-Soleau et al., 2004b) It subsequently 

occurred in the Wuchiapingian of Greece (Crasquin-Soleau & Baud 1998), Hungary (Kozur, 

1985), Wuchiapingian and Changhsingian of China (Yuan et al., 2007; Shi and Chen, 1987; 

Crasquin et al., 2010; Yi, 2004; Forel, 2012; Li et al., 1989; Zazzali et al., 2015), 

Changhsingian of Iran (Forel et al., 2015) and Italy (Crasquin et al., 2008), documenting the 

colonization of the entire Palaeo-Tethys and Neo-Tethys appear as early as Wuchiapingian, 

Late Permian. These geographical features may show that Petasobairdia radiated in 

panthalassic waters during the Early Permian (Sakmarian) and that subsequently migrated 

westward to colonize palaeotethyan waters with the first step being Indochina Block in the 

1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829



Artinskian. During the Triassic, it is restricted to tethyan waters lato sensu and no record of 

this genus is known from Panthalassic deposits, possibly reflecting its palaeogeographical 

restriction. The large record of Petasobairdia during the Spathian (Tibet, Israel) following its 

last record restricted to China during the Griesbachian clearly indicates that dispersal 

continued during the post-EPE poverty phase (Dienerian-Smithian) although not recorded 

because of the lack of material. Middle and Late Triassic occurrences of this genus are still 

poorly documented on the eastern side of the tethyan area because of the lack of work 

carried on these areas, however its presence a in the Anisian, Middle Triassic, of Thailand 

(Ketmuangmoon et al., 2018) shows the subsistence of this genus at least until the base of 

the Middle Triassic in this area.

Ceratobairdia and Parurobairdia have been Lazarus taxa during the entire Early and Middle 

Triassic and re-entered the fossil record during the Norian. Mirabairdia is Lazarus during the 

entire Early Triassic and re-entered the fossil record in the Anisian. The geographical 

distribution of this genus through time indicates that it radiated in South Chinese waters 

during the Changhsingian, Late Permian. When it re-entered the fossil record in the Anisian, 

it was already present along the entire northern margin of the Palaeotethys: dispersal may 

have occurred during the Early Triassic and the lazarus record of this genus may be related 

to preservation bias. 

Ptychobairdia appeared to have radiated on the eastern side of tethyan area (South China; 

Crasquin-Soleau et al., 2006) where it was apparently confined during the entire early 

Triassic. Contrary to Petasobairdia, the records of Ptychobairdia do not indicate a westward 

migration until the Anisian, during which it colonized only the northern margin of the tethyan 

area (Hungary, Romania, Austria); a southern migration within the Tethys occurs from the 

Ladinian onwards. A final step of eastward migration took place in the Upper Late Triassic 

(Norian and Rhaetian) when it occurs in Panthalassic areas. This eastward movement might 

however have began earlier as shown by its large panthalassic distribution in Japan and 

Canada during the Norian. 
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6. Conclusions

A database of all genera and families of marine and brackish ostracods gave us the 

opportunity to describe their diversity through the Triassic, a key period in the evolution of 

organisms in being bounded by two major biological crises and providing the earliest traces 

of the on-set of the Mesozoic marine revolution. We furthermore explored this database at 

the light of palaeoenvironmental, palaeocoecological and palaeogeographical contexts. 

1. In terms of bulk diversity, the rediversification of ostracods following the EPE mainly 

occurred in a continuous burst spanning the Spathian and the Anisian. However, the 

taxonomic restructuration of ostracod communities began already in the Dienerian, during 

the poverty phase that followed the EPE. Although general diversity trends document the 

empoverished ostracod communities during most of the Early Triassic, the roots of their 

Triassic taxonomic rediversification are visible as early as the Dienerian. The entire Middle 

and Late Triassic document to a high-diversity plateau maintained by the equilibrium 

between extinctions and radiations.

2. The Triassic occurrences of Palaeozoic groups (Palaeocopida and deep-sea taxa) are 

reviewed and a restriction of the restriction of the environmental distribution of Kirkbyidae is 

reported in the Triassic. Deep-sea taxa, mainly Rectonariidae, residually range up the 

Rhaetian and point to the stability of environmental conditions through the EPE and the 

Triassic, in contrast with on-going discussion of long-term and widespread anoxia. 

3. Ornate Bairdiidae radiated during two main phases, in the Anisian and in the Carnian. A 

“morphological phylogeny” proposes that all Permian and Triassic ornate Bairdiidae derived 

from Petasobairdia in the Kungurian. Two distinct lineages arose during the Permian: 

Ceratobairdia-lineage characterized by ridged ornaments and Abrobairdia-lineage with 

nodulose ornamentation.

4. The transition interval from the Palaeozoic to the Modern fauna appears as 

asynchronous for neritic and deep-sea taxa. It is here considered as spanning from the Early 
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Permian to the Anisian for neritic ostracods. This interval is more complex to characterize for 

deep-sea taxa, in the absence of Jurassic taxa that may be facies-markers.

5. The importance of ostracods in exploring food-webs through time is highlighted. The 

recent discoveries of holes related to drilling predation of Carnian and Rhaetian ostracods 

are a unique opportunity to describe the very early stages of the structuration of typically 

Mesozoic predation type, in compartements of the trophic chains that are most of the time 

ignored. The characteristics of these holes on ostracods witness the increase of the 

efficiency of predators drilling abilities through the Triassic. 

6. In terms of palaeogeographical distribution, peri-palaeo-tethyan and peri-neo-tethyan 

biotas appear as relatively distinct during most of the Early Triassic. The diversification burst 

saw the individualisation of a northern European biota characterized by the emergence of 

brackish water Limnocytheridae. A homogenization, possibly related to the dispersal of taxa 

after their radiation, became visible in the Anisian. This feature further developed in the 

Carnian with the establishement of a wide peri-tethyan region. In the Rhaetian, this feature is 

widespread and includes panthalassic localities, while at least two distinct biotas typical of 

the Rhaetian Sea may have bee, identified for the first time.
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Figure captions

Figure 1. A, End-Permian and Triassic timescale with absolute ages from Cohen et al. 

(2013, updated version 2020) and recovery pattern of ostracods after the end-Permian 

extinction, modified from Crasquin and Forel (2014). B, palaeogeographical map of the 

Anisian, Middle Triassic, modified from Angiolini et al. (2013).

Figure 2. Stratigraphical distribution of ostracod families during the Triassic. Arrows indicate 

older ranges (directed downward) and younger ranges (directed upward).

Figure 3. A, Total generic diversity of ostracods given for each time slice of the Triassic 

(black curve). For each interval, the number of newly originated genera (orange) and 

genera going extinct at the end of each stage (blue) are shown as histograms. B, 

Proportion of families per orders for each time slice of the Triassic.

Figure 4. Total generic diversity of Cytheruridae, Limnocytheridae, Bythocytheridae, 

Cavellinidae, Cytherellidae given for each time slice of the Triassic (black line). For each 

interval, the number of newly originated genera is given in dashed line. 

Figure 5. Total generic diversity and palaeoenvironmental distribution of Kirkbyidae for each 

time slice of the Permian and Triassic. $

Figure 6. Total generic diversity of Bairdiidae given for each time slice of the Triassic (black 

line). For each interval, the number of newly originated genera (orange) and genera 

going extinct at the end of each stage (blue) are shown as histograms.

Figure 7. Stratigraphical distribution of ornate Bairdiidae for each time slice of the Permian 

and Triassic.
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Figure 8. Evolutionary trends in ornate Bairdiidae based upon external carapace morphology 

and stratigraphical occurrence.

Figure 9. Dendrograms of UPGMA analysis based on diverse loci for each stage of the 

Triassic. B., S., S. (Ladinian) stands for Bosnia, Slovenia and Slovakia; S., Yu. (Carnian) 

stands for Slovenia and Yugoslavia.

Table 1. Stratigraphical distribution of ostracod genera during the Triassic. Blue boxes 

indicate observed occurrences; grey boxes indicate inferred occurrences. 

Supplementary File 1. Complete list of references used to create the database of Triassic 

ostracod genera and families. 

Supplementary File 2. Matrices of ostracod genera distribution during each stage of the 

Triassic.
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