Skip to Main content Skip to Navigation
Journal articles

Vertex partitions of ($C 3 , C 4 , C 6$) -free planar graphs

François Dross 1 Pascal Ochem 2
2 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : A graph is (k 1 , k 2)-colorable if its vertex set can be partitioned into a graph with maximum degree at most k 1 and and a graph with maximum degree at most k 2. We show that every (C 3 , C 4 , C 6)-free planar graph is (0, 6)-colorable. We also show that deciding whether a (C 3 , C 4 , C 6)-free planar graph is (0, 3)-colorable is NP-complete.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-02990467
Contributor : Pascal Ochem Connect in order to contact the contributor
Submitted on : Monday, November 16, 2020 - 10:10:16 AM
Last modification on : Monday, October 11, 2021 - 1:24:09 PM
Long-term archiving on: : Wednesday, February 17, 2021 - 6:29:16 PM

File

1711.08710.pdf
Files produced by the author(s)

Identifiers

Citation

François Dross, Pascal Ochem. Vertex partitions of ($C 3 , C 4 , C 6$) -free planar graphs. Discrete Mathematics, Elsevier, 2019, 342 (11), pp.3229-3236. ⟨10.1016/j.disc.2019.07.002⟩. ⟨hal-02990467⟩

Share

Metrics

Record views

71

Files downloads

35