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We investigate experimentally the behavior of an elongated flexible cylinder settling at
moderate Reynolds number under the effect of buoyancy in a fluid otherwise at rest. The
experiments uncover the development of large-amplitude periodic deformations of the
cylinder (of the order of its diameter) in specific parameter ranges. Bending oscillations
are observed to occur for two base flow situations, involving either a steady or an
unsteady wake. In both cases, the sequence of oscillatory deformations emerging when
the cylinder length is increased involves the bending modes of an unsupported cylinder
with free ends. Comparison of the deformation frequency measured for the falling cylinder
with the vortex shedding frequency expected for a non-deformable cylinder at the same
Reynolds number indicates that the deformation is coupled to the wake unsteadiness. It
also suggests that the cylinder degrees of freedom in deformability allow wake instability
to be triggered at Reynolds numbers that would be subcritical for fixed rigid cylinders.

1. Introduction

The behavior of single bodies freely rising or falling under the effect of buoyancy in
a fluid at rest has focused growing interest in the last twenty years, leading to a better
understanding of the roles of wake instability and of body anisotropy on the occurrence
of non-rectilinear paths (see for instance Ern et al. 2012). However, for a deformable
body, the coupling of its deformation with both its path and its wake remains widely
unexplored with a few rare exceptions. Among these, the freely rising bubble appears
as a paradigmatic case, as it provides a series of advances concerning the impact of
mean and oscillatory shape deformations on the onset of path instability (Mougin &
Magnaudet 2002; Cano-Lozano et al. 2016; Bonnefis 2019), on path characteristics (Filella
et al. 2015), and on wake structure (Veldhuis et al. 2008); to cite just a few results and
references. In the case of solid flexible bodies freely moving in a low-viscosity fluid,
only a few studies have dealt with the coupling between path and deformation of the
body. Tam et al. (2010) investigated the mean reconfiguration to an arched shape of a
tumbling rectangular flexible paper strip freely falling in air and the resulting increase in
descent rate. They showed that the transition from straight to bent configuration occurs
when the destabilizing inertial force induced by the angular velocity of the tumbling
strip overbalances the bending resistance of the body. The influence of flexibility on
the fluttering motion of a falling strip was investigated by Tam (2015). They observed
localized upward bending deformations, generally not exceeding 5% of the chord length,
during short time intervals close to the turning points of the path, the strip remaining flat
during intermediate gliding periods. He showed that the observed deformation resulted
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in turn in increased lift, and therefore in a lower descent rate, and induced shedding of
stronger vortices than in the case of stiff plates. At variance with the case of the bubble,
literature on freely falling flexible bodies is thus far limited to situations bringing to light
flow-induced reconfigurations, in the form of either a steady or a transitory deformation.
Such behaviors for freely moving objects are the counterpart of the deformation response
observed for partially fixed or locally restrained bodies immersed in a flow. For instance,
shape adaptation can be traced in the leaning of an elongated flexible cylinder held
on one end under the effect of a steady current (Leclercq & de Langre 2018), or in
the stationary draping featuring multiple lobes observed for a soft disk held in its
center in an incoming flow, for both steady and unsteady wakes (Schouveiler & Eloy
2013; Hua et al. 2014). However, studies also revealed the occurrence of time-periodic
deformations of the body associated with vortex shedding, for instance in the case
of a flexible plate clutched at its center (Pfister et al. 2019). Also, a flexible cylinder
hold from its ends and placed in flowing fluid exhibits vibrations which are driven by
the synchronization between body deformation and flow unsteadiness (Chaplin et al.
2005; Bourguet et al. 2011; Gedikli et al. 2018; Seyed-Aghazadeh et al. 2019). These
vibrations, often referred to as vortex-induced vibrations, may involve several structural
modes, sometimes simultaneously (Bourguet et al. 2013). Their amplitudes are typically
of the order of one body diameter in the cross-flow direction and one or more orders
of magnitude lower in the streamwise direction. Oscillatory deformations may therefore
be expected to develop in the case of a freely falling body, as it happens for bubbles or
restrained bodies. Following this view, we focused our attention on a flexible cylinder
settling under the influence of gravity in still fluid, and investigated experimentally the
influence of flexibility on its freely falling motion over a range elongation ratios. The
present paper brings to light the onset of oscillatory deformations for two distinct flow
situations, both corresponding to rigid-body motions of the undeformed cylinder falling
with its axis perpendicular to gravity. In the first one, periodic deformations set in for a
cylinder in rectilinear fall with a steady wake. In the second one, they arise for a flexible
cylinder undergoing an azimuthal oscillatory motion coupled with an unsteady wake.

2. Experimental approach

We consider a circular cylinder of diameter d, length L, density ρc ' 1160 kg/m3 and
Young modulus E ' 1 MPa, falling through quiescent water (density ρf ' 1000 kg/m3,
kinematic viscosity ν ' 10−6 m/s−2) under the influence of gravitational acceleration g.
The problem is governed by four dimensionless parameters, including the solid-to-fluid
density ratio m∗ = ρc/ρf and the elongation ratio of the cylinder L/d. We next introduce

the gravitational velocity Vg =
√

(m∗ − 1)gd that was shown by Toupoint et al. (2019)
to be the relevant velocity scale for the buoyancy-driven fall of cylinders in a comparable
range of control parameters. Comparing this free fall velocity with a velocity Vc associated
with the bending modes of a finite-length cylinder (with a potential added mass coefficient
of 1) provides the dimensionless parameter called velocity ratio U∗ accounting for the
body deformability, such that

U∗ =
Vg
Vc

with Vc = f0L and f0 =
d

L2

√
E

ρc + ρf
. (2.1)

We last introduce the Archimedes number Ar balancing buoyancy and viscosity effects,
Ar = Vg d/ν. Note that once the mean fall velocity U of the cylinder is determined from
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Figure 1. Sketch of the experimental set-up, showing the positions of the cameras, the
measurement volume in the squared-section water tank, along with a qualitative picture of
the falling cylinder. Cropped binarized images from both cameras obtained by image processing
are also displayed, and show the centerline of the cylinder contour (red line).

the experiments, the Reynolds number Re = U d/ν can be defined, for comparison with
the case of fixed bodies embedded in an incoming flow.

The procedure followed is to start the series of experiments with a long cylinder
(typically L ' 120 mm for a cylinder with d = 1 mm) and to gradually decrease its
length by steps of 5 mm. This results in a joint variation of L/d and U∗, while m∗ and
Ar are kept constant. We operated two methods of release of the flexible cylinders, in
order to investigate the impact of initial conditions on the cylinder behavior and to test
the robustness of the phenomenon uncovered. Both methods used immersed bodies to
avoid the presence of bubbles on the body surface. The first one consisted in releasing the
cylinder hold straight from both ends. The second one intended to ensure no tension of
the cylinder at release, and consisted in delicately pushing with a thin long-enough plate
the body lying straight on a diving-board. Both methods provided the same observations,
indicating that the origin of the oscillatory deformations is not related to prestressing. In
both configurations, we could not avoid a slight initial inclination of the body at release.
Inclination angles relative to horizontal are in all cases lower than 7◦, and in most cases
lower than 4◦. The resulting lateral drift of the body (lower than 7% of the mean vertical
velocity) decreased with the progressive slipping towards horizontality of the body due to
the added-mass torque (see for instance Ern et al. 2012, for a discussion on the role of this
torque). Regardless the release conditions, we observed that the deformations are robust
with respect to the presence of a weak drift, as phase locking between the oscillations
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of the two ends of the cylinder was preserved despite path asymmetry. The inclination
angle may however affect the amplitude of oscillation and the drag coefficient, as will be
discussed later.

Recordings of the falling cylinders were performed by shadowgraphy with two synchro-
nized sCMOS cameras (2560× 2160 pixels) at a frequency of 50 Hz and placed in front
of two 20× 20 cm2 backlight flat panels producing directional illumination. A sketch of
the experimental configuration is provided in figure 1. A camera imaged a field of view
of 122× 103 mm2 in a vertical plane (which limits the length of the cylinders), and the
second camera imaged a region of 167×141 mm2 in a horizontal plane thanks to a mirror
inclined at 45◦. For elongated bodies as those considered here, important distortion effects
on the body shape arise with perspective vision, as the body is unavoidably inclined
in an angular field of view and off-centre relative to the line of sight of the camera.
To disentangle the contributions to the cylinder behavior of the different degrees of
freedom is then an awkward procedure, even for rigid bodies, which is often resolved by
capturing and reprojecting two generatrices of the cylinder (Toupoint et al. 2019). In
the case of a deforming body, this routine can no longer be employed straightforwardly.
To solve the problem, we used telecentric lenses, which combine several advantages:
magnification and spatial resolution (typically, 15.3 px/mm for the horizontal plane and
21 px/mm for the vertical one) are invariant along the depth of field (telecentricity
depth), parallax is avoided and distortion is lower than with standard lenses. Calibration
is carried out by recording a fixed object of known dimensions at different locations in
the cubic measurement volume, confirming the constant magnification in the field of view
(variations below 0.1 px). The analysis of body displacements and deformations in time
in the vertical and horizontal planes is performed by image processing, in particular to
track the mean centerline of the cylinder (figure 1).

3. General observations and results

We first consider the case of a cylinder falling with a mean vertical velocity correspond-
ing to Re ' 42 (d = 1 mm). For sufficiently short cylinders, no deformation is visible.
The cylinder maintains a straight conformation, falling with its axis perpendicular to
gravity like a rigid cylinder. For L/d ' 57, the path of the cylinder can be considered
as rectilinear, since only very weak non-reproducible irregular horizontal displacements
are recorded (lower than 3% of d), as is commonly the case in experiments with freely
moving objects (see discussions in Ern et al. 2012; Toupoint et al. 2019). However, as the
elongation ratio of the cylinder increases, a sequence of periodic deformations emerges.
For L/d larger than approximately 60, a time-periodic deformation of the cylinder sets in.
It is composed of one crest and two nodes, as illustrated in figure 2a. It will be termed M1

in reference to the corresponding bending mode of a beam. As L/d is further increased,
the amplitude of deformation grows, reaches a maximum for L/d ' 70 (value at the
cylinder ends of approximately 0.66 d and span-averaged value of 0.3 d), and decreases
beyond. Oscillatory deformation M1 is observed until L/d ' 95, featuring a displacement
amplitude at the cylinder ends of 0.22 d and a span-averaged value of 0.15 d. For L/d ' 98,
the cylinder switches to M2 (in reference to mode 2), characterized by two crests and
three nodes, as illustrated in figure 2b. The amplitude at the cylinder ends is then 0.37 d
(span-averaged amplitude 0.15 d). Behavior M2 is observed until L/d ' 110, which is the
largest elongation ratio considered for this sequence, featuring a displacement amplitude
at the cylinder ends of 0.71 d and a span-averaged value of 0.32 d.
The bending deformations uncovered here feature several remarkable properties. First,
they are restricted in a very distinctive manner to the horizontal plane, that is per-
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(a)

(b)

Figure 2. Illustrations of the bending oscillatory deformations of a cylinder (with d = 1 mm):
(a) M1 (L/d = 70); (b) M2 (L/d = 110); left: three-dimensional view, y standing for the
vertical coordinate; right: deformation in the horizontal plane (x, z), x describing the undeformed
cylinder axis and z the transverse direction. The dashed black lines outline the envelope given
by (3.1) with an amplitude adjusted to that of the cylinder ends in the experiments.

pendicular to the mean fall velocity of the body. Associated vertical displacements are
considerably weaker, one or more orders of magnitude lower than those observed in the
horizontal plane, and correspond to vertical velocity fluctuations lower than 10% of U .
Such difference in horizontal/vertical oscillation magnitudes is a typical property of freely
moving bodies close to onset of oscillatory path (see Ern et al. 2012) as well as low-Re
vortex-induced vibrations observed for rigid (Singh & Mittal 2005) or flexible (Bourguet
et al. 2011) cylinders. Second, only a considerably weaker rigid-body oscillatory motion is
observed here in the horizontal plane (displacement of the gravity center lower than 5% d,
an order of magnitude comparable to that of fluctuations arising from tiny imperfections
in the experiment). The third consideration is that a significant decrease in mean fall
velocity occurs when shape oscillations appear. The colored crosses in figure 3a show
the evolution of the Reynolds number Re as the elongation ratio and the behavior
of the body vary. The periodic deformation of the body results in a loss of mean fall
velocity, and therefore Re, of approximately 5 − 10% for M1. No significant change is
then observed for M2. The strength of the loss is related to the amplitude of deformation
experienced by the body, the lower mean fall velocity being obtained for L/d ' 70, for
which the deformation is most marked. The nearby plotted values for L/d = 72 and 74
correspond to cases presenting a lateral drift of about 7% and interestingly show higher
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Figure 3. (a) Reynolds number Re and (b) drag coefficient Cd as functions of the elongation
ratio L/d; d = 1 mm (crosses); d = 1.9 mm (triangles); rectilinear motion R (green); azimuthal
rigid-body oscillatory motion AZI (orange); oscillatory deformations M1 (blue) and M2 (red).
Values of Cd for freely falling rigid cylinders with L/d = 10 and 20, and m∗ ' 1.16 from
Toupoint et al. (2019) (black symbols) and for a fixed rigid cylinder with L/d = 20 from Vakil
& Green (2009) (dark grey cross).

mean vertical velocities than L/d = 70, because of their weaker amplitude of oscillation.
The periodic deformation experienced by the cylinder results therefore in additional
drag. Drag amplification depends on the amplitude of deformation; a comparable trend
was reported for vortex-induced vibrations of rigid cylinders (see for instance Khalak &
Williamson 1999). This behavior is illustrated in figure 3b, displaying the drag coefficient

associated with the mean vertical velocity of the body, Cd = π/2 (Vg/U)
2
, obtained by

balancing buoyancy and mean drag. Values from Toupoint et al. (2019) for freely falling
rigid cylinders with m∗ ' 1.16 (black symbols) and from Vakil & Green (2009) for fixed
rigid cylinders (dark grey cross) are also displayed, for comparison purpose.

A step forward in the understanding of the flexible body behavior is achieved from
the analysis of the frequencies associated with the periodic deformations. Recordings
were carried out on long time series (more than 20 oscillation cycles) and frequencies
could thus be determined accurately based on Fast Fourier Transform. The oscillatory
deformations are dominated by a single frequency, except in some transition regions
that will be discussed in the following. Furthermore, both cylinder ends are remarkably
synchronized, displaying same frequencies and phase difference over the whole recording.
The deformation frequency f of the freely falling cylinder is plotted as a function of the
elongation ratio in figure 4a, for M1 (blue crosses) and M2 (red crosses). These frequencies
can be compared with the natural frequencies of the bending modes i of an unsupported
cylinder with free ends immersed in still fluid. Using a linear Euler-Bernoulli beam model
and including added mass effects (with an added mass coefficient equal to 1) lead to the
bending mode frequencies, fi = αif0, where the constants αi are related to the roots
of coshβi cosβi − 1 = 0 by αi = β2

i /(8π), giving α1 ' 0.890, α2 ' 2.454, α3 ' 4.811,
α4 ' 7.952... At a given time t, the corresponding deformed shape of the cylinder for
mode i can be expressed in the form zc sin (2πfit+ φi), where φi is a constant phase and
the amplitude zc depends on the longitudinal coordinate x along the cylinder axis as

zc = cos (βix/L) + cosh (βix/L) +K [sin (βix/L) + sinh (βix/L)] with (3.1a)

K = [sin (βi) + sinh (βi)] / [cos (βi)− cosh (βi)] . (3.1b)

Note that for all modes i the integral of zc between 0 and L is zero, so that the position of
the center of gravity of the cylinder in this model equation does not evolve in time. The
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Figure 4. (a) Deformation frequency f of the freely falling cylinder for M1 and M2; natural
frequencies fi (dashed line for d = 1 mm, dotted for d = 1.9 mm); frequency of AZI for d = 1.9
mm. Crosses and triangles: same convention as in figure 3a. Open and filled circles: fw from
Williamson & Brown (1998) and from Buffoni (2003), respectively. Colored dashed (d = 1 mm)
and dotted (d = 1.9 mm) vertical lines: values of L/d corresponding to fi = fw for mode 1
(blue) and 2 (red) according to (4.1). (b) Frequencies f and fw normalized with f0 as functions
of the velocity ratio U∗. Horizontal lines: values of αi. Vertical lines: values of U∗ corresponding
to those of L/d in (a). Main frequency content (c) near the transition TA−1 from AZI to M1 for
Re ' 120, L/d ' 37 (orange) and L/d ' 39 (blue); and (d) near the transition T1−2 from M1

to M2 for Re ' 42, L/d ' 95 (blue) and L/d ' 98 (red).

frequencies fi with i ∈ {1, 2} are plotted with thin dashed lines in figure 4a for mode 1
(blue) and mode 2 (red), showing correspondence between the succession with L/d of the
vibrational modes fi and the experimental observations. The envelopes of the first two
modes provided by equations (3.1) are also superposed (thick black dashed lines) on the
deformed states of the cylinder determined experimentally at different times in figure 2,
yielding again good agreement.

Comparing now the deformation frequency f with the inertial time scale associated
with the body free fall d/U , which is also the characteristic time scale for vortex
shedding about the body, provides values of f d/U varying in the range 0.105 − 0.140.
These values are close to the Strouhal number value, Stw = 0.105, associated with
subcritical vortex shedding downstream of a long cylinder determined by Buffoni (2003)
for Re = 42 by slightly vibrating the cylinder to trigger the flow. The wake frequencies
fw = StwU/d extracted from Buffoni (2003) using the Reynolds numbers corresponding
to each L/d in our experiments are drawn with filled circles in figure 4a; these values are
close to the measured deformation frequencies. Figure 4b summarizes the comparison
between the frequencies. The data points (blue crosses for M1 and red ones for M2)
indicate the evolution of the body deformation frequency, f , normalized with the proper
bending frequency of the cylinder, f0, as a function of U∗. The wake frequencies fw
(also normalized with f0) issued from Buffoni (2003) are drawn with filled circles. We
can see that the deformation frequency of the freely moving cylinder is locked to the
wake frequency. As L/d varies, the deformation frequency departs from the natural
frequencies of the cylinder, indicated by horizontal lines at αi. At a given stage however,
the next mode of the cylinder is excited and a frequency jump occurs, as can be seen
here between M1 and M2. For all the L/d investigated, the close agreement of the
deformation frequency with the wake frequency suggests that the bending deformations
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observed are linked to the wake unsteadiness. Furthermore, the results indicate that the
cylinder degrees of freedom in deformability allow wake instability to be triggered below
the threshold for fixed rigid bodies, as the present Reynolds number values (Re ' 40)
would be subcritical in the rigid-body case (Inoue & Sakuragi 2008). This point will be
discussed further in section 4.

The second situation investigated is that of a freely falling cylinder displaying a periodic
motion in association with an unsteady wake. For that purpose, a higher Reynolds
number is considered, namely Re ' 120, obtained for cylinders with d = 1.9 mm (figure
3a, triangular data points). At this Re, a rigid-body azimuthal oscillation (termed AZI
in the following) of the flexible cylinder is observed from L/d ' 21 to L/d ' 37. It
corresponds to the azimuthal oscillation reported by Toupoint et al. (2019) for rigid
cylinders with L/d = 20, m∗ ' 1.16, Re ' 130 and Re ' 220. In both cases, this
rotational oscillatory motion features reproducible low-amplitude (approximately 0.2◦)
oscillations of the azimuthal angle of the cylinder, on top of irregular weak displacements
comparable to those observed for the rectilinear path at Re ' 42. As shown in figure
4a (orange triangles), the AZI oscillation occurs at a frequency of approximately 4.2 Hz.
This corresponds to a Strouhal number of 0.13, which is slightly smaller than that of the
Bénard-von Kármán instability about a fixed cylinder at this Re, Stw ' 0.17, obtained
from the relation proposed by Williamson & Brown (1998). Using dye visualization,
Toupoint et al. (2019) showed that the AZI motion is coupled with an unsteady wake
(see their figure 17c), similar to those for fixed long cylinders referred to as Type II by
Inoue & Sakuragi (2008) and as oblique vortex shedding by Williamson (1989). However,
for the freely-moving cylinder, a periodic beating of the wake was observed near the
body ends, at the oscillation frequency of the azimuthal angle, and in phase opposition
between the two ends.
Now for L/d ' 39, we observed that mode 1 oscillatory deformations (i.e. M1) sets
in. Behavior M1 is further observed until L/d ' 57, the largest elongation ratio that
could be investigated for this cylinder. The highest amplitude of deformation is reached
for L/d ' 52, with a displacement of the cylinder ends of 0.8 d and a span-averaged
value of 0.39 d. Note that in this case also, higher mode responses are expected to exist.
Mode 2 deformations were in fact observed for a different cylinder having slightly smaller
diameter (d = 1.8 mm) and larger length (L = 131 mm), i.e. L/d ' 73. This sequence
of deformations shares the properties described in the previous case, in particular the
significant velocity decrease and associated drop in Re (figure 3a, triangular data points).
The resulting increase in drag is conspicuous in figure 3b (triangular data points). For this
case also, the proximity between the wake frequency fw determined from the expression
Stw(Re) proposed by Williamson & Brown (1998) (open circles), the cylinder natural
frequency fi (dotted curves) and the observed deformation frequency f (triangular data
points) is manifest in figures 4a and b.
In this second situation, the oscillatory deformations supplant an oscillatory rigid-body
motion (i.e. AZI). For sufficiently short flexible cylinders, vortex shedding is coupled
with a rigid-body vibration of the cylinder. This corresponds to cylinder ends moving
in phase opposition, a property shared with M2 but conflicting with M1. Deformation
M1 is nevertheless triggered for a slightly longer cylinder. Closer examination of the
main frequency content of the body displacement near the onset of M1 reveals that
the transition features mixed responses, the oscillatory deformation and the rigid-body
motion co-exist for both L/d ' 37 and L/d ' 39, as can be seen in figure 4c. The
rigid-body motion predominates in the former case, whereas it is outweighed by the
deformations in the latter, and disappears as the elongation ratio is increased further.
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Figure 5. Deformation at a frequency f ' 4.5 Hz of a thin flexible ring freely falling at
approximately 5 cm/s in water at rest (ring diameter D ' 7 cm, squared-section width l ' 1.5
mm), corresponding to Re ' 75 (based on l). (a) Ring shape in the horizontal plane (x, z)
at several times t. The insert figure (i) shows a sketch of the deformation with magnified
displacements. The local radial displacement about the time-averaged deformation is denoted r,
Ar is the corresponding amplitude and θ is the azimuthal angle. (b) Normalized amplitude Ar/l
spanned along θ. (c) Temporal evolutions of r/l for crest points 2 and 4 and for node point 3.

Note that co-existence of M1 and M2 was not detected here in the measurements for
L/d ' 95 and L/d ' 98 close to the transition T1−2 from M1 to M2 for Re ' 42
(figure 4d), while superposition of deformation modes is commonly observed for a flexible
cylinder hold from its ends (Chaplin et al. 2005; Huera-Huarte et al. 2014).

4. Concluding remarks

We investigated experimentally the behavior of an elongated flexible cylinder settling
at moderate Reynolds number under the effect of gravity in a fluid otherwise at rest. For
a given cylinder diameter, the experimental approach consisted in gradually decreasing
the body length, thereby changing its natural deformation frequency without significantly
impacting its mean falling velocity in the absence of deformation. Short enough cylinders
behaved like rigid bodies, showing no detectable reconfiguration, and fell with their axis
perpendicular to gravity. However, for longer cylinders and therefore higher velocity ratios
U∗, the experiments brought to light the springing up of periodic oscillatory deformations
of the freely falling flexible cylinders in specific parameter ranges. To the best of our
knowledge, the only counterpart of this phenomenon in the literature concerns freely
rising bubbles, as discussed in the introduction. We further showed that the sequence
of oscillatory deformations emerging when the cylinder length is increased involve the
bending modes of an unsupported beam with free ends, each mode being associated
with a natural frequency fi. Besides, comparison of the deformation frequency with
the vortex shedding frequency fw expected for a non-deformable cylinder at the same
Reynolds number indicated that the deformations are coupled with wake unsteadiness.
Flow-induced bending deformations involving mode i are expected to occur during free
fall when fi is close to fw. The simple criterion matching bending mode natural frequency
to vortex shedding frequency, fi = fw, corresponds to

L/d =
√
αi/(UStw) (E/(ρc + ρf ))

1/4
. (4.1)

For a cylinder of diameter d, this expression can be used to obtain a prediction of L/d
associated with mode i by assuming U = Vg (or Cd = π/2), which allows to determine
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Re and subsequently Stw (Stw ' 0.1 and 0.17 for d = 1 and 1.9 mm, respectively).
Corresponding estimations for L/d and U∗ are reported in figures 4a and b for modes 1
and 2 (vertical blue and red lines) and appear consistent with experimental observations.
From equation (4.1) we can expect the occurrence of higher order bending modes, for
instance in the d = 1 mm case for L/d ≈ 162 (M3) and L/d ≈ 208 (M4).

The experiments also revealed that the oscillatory deformations can develop for distinct
flow configurations. Bending oscillations for a freely falling cylinder are here shown
to appear for bodies displaying a rectilinear path with a steady wake, and for bodies
displaying a rigid-body oscillatory motion coupled with an unsteady wake. In the former
case, the close agreement between deformation and wake frequencies suggests that the
bending deformations that replace the rectilinear fall are also related to wake unsteadi-
ness, though the Reynolds number would be subcritical in the rigid-body case (Re ' 40).
This indicates that deformability may allow wake instability to be triggered below the
threshold corresponding to fixed rigid bodies. The anticipation of wake destabilization
due to degrees of freedom of the body has been observed for closely related problems
of fluid-body interaction. For instance, Cossu & Morino (2000) and Meliga & Chomaz
(2011) investigated the global stability and the nonlinear dynamics close to the threshold
of vortex-induced vibrations in the wake of a damped, spring-mounted, circular cylinder.
They demonstrated the role of the natural eigenvalue of the cylinder-only system on
triggering subcritical vortex shedding at low solid-to-fluid density ratios. In the case
of freely moving rigid bodies having different geometries, theoretical and computational
studies also revealed that the coupling between the degrees of freedom of the body and the
fluid can shift the thresholds and frequencies associated with wake instability about the
fixed body or in contrast give rise to different regimes of path instability (Tchoufag et al.
2014; Mathai et al. 2017). For instance, in the limit of heavy plates, Assemat et al. (2012)
found that the threshold of path instability matches that found for a fixed plate, whereas
it decreases when the solid-to-fluid mass ratio decreases, while keeping Strouhal number
values comparable with those of the fixed plate. The present observations provide an
experimental evidence of the destabilization of a coupled solid-fluid system at a frequency
characteristic of vortex shedding, and for Reynolds numbers that are subcritical in the
fixed rigid-body case, with the novelty that the degrees of freedom in deformability of the
body are involved here. In the second flow configuration, oscillatory bending deformations
develop for bodies displaying a periodic motion coupled with an unsteady wake. Except
very close to the threshold, the cylinder response to wake forcing becomes essentially a
deformation, which takes over the rigid-body displacement of the body. In turn, as the
displacements of the cylinder ends shift in this case from phase-opposition to in-phase
motion, it leads to a change of wake structure, that still needs to be explored.

A major issue now regards the identification and characterization of the wake
structures associated with the different deformation modes. The detailed interaction
between the flow and the deforming body remains also to be elucidated, in connection
with the different amplitudes of deformation that emerge. We are currently heading in
that direction, the challenge being to be able to capture both the body and the flow
structure over the two orders of magnitude of length scales involved in the problem
(spanning from d to L). At issue here is also a better understanding of the role of
the cylinder free ends. As observed for freely falling deformable plates by Tam (2015),
deformation may concentrate on the body periphery, where the flow field distribution
is likely to trigger it. The degrees of freedom in translation and rotation associated
with the cylinder free ends may also play a role in deformation phenomena, in the
same way they enable the occurrence of oscillatory paths for finite-length rigid cylinders
different from those observed for two-dimensional cylinders. As a first step to address



Bending oscillations of a cylinder freely falling in still fluid 11

this question, we carried out preliminary experiments with flexible rings in a comparable
range of parameters. They brought to light oscillatory deformations of the ring at a
nearby frequency, illustrated in figure 5; this indicates that also in a closed configuration
(i.e. in the absence of end effects), the degrees of freedom in deformability of the body
can be excited by the surrounding flow and can couple with it.
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