R. L. Albin, A. B. Young, and J. B. Penney, The functional anatomy of basal ganglia disorders, Trends in Neurosciences, vol.12, issue.10, pp.366-375, 1989.

A. G. Anderson, A. Kulkarni, M. Harper, and G. Konopka, Single-Cell Analysis of Foxp1-Driven Mechanisms Essential for Striatal Development, Cell Reports, vol.30, issue.9, pp.3051-3066.e7, 2020.

S. E. Andrew, Y. Paul-goldberg, B. Kremer, H. Telenius, J. Theilmann et al., The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease, Nature Genetics, vol.4, issue.4, pp.398-403, 1993.

E. E. Arteaga-bracho, M. Gulinello, M. L. Winchester, N. Pichamoorthy, J. R. Petronglo et al., Postnatal and adult consequences of loss of huntingtin during development: Implications for Huntington's disease, Neurobiology of Disease, vol.96, pp.144-155, 2016.

E. H. Aylward, P. C. Nopoulos, C. A. Ross, D. R. Langbehn, R. K. Pierson et al., Longitudinal change in regional brain volumes in prodromal Huntington disease, Journal of Neurology, Neurosurgery & Psychiatry, vol.82, issue.4, pp.405-410, 2010.

M. Barnat, M. Capizzi, E. Aparicio, S. Boluda, D. Wennagel et al., Huntington?s disease alters human neurodevelopment, Science, vol.369, issue.6505, pp.787-793, 2020.

M. Barnat, M. Capizzi, E. Aparicio, S. Boluda, D. Wennagel et al., Huntington?s disease alters human neurodevelopment, Science, vol.369, issue.6505, pp.787-793, 2020.

S. A. Bayer, Neurogenesis in the rat neostriatum, International Journal of Developmental Neuroscience, vol.2, issue.2, pp.163-175, 1984.

S. A. Bayer and J. Altman, Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon, Progress in Neurobiology, vol.29, issue.1, pp.57-106, 1987.

P. G. Bhide, M. Day, E. Sapp, C. Schwarz, A. Sheth et al., Expression of Normal and Mutant Huntingtin in the Developing Brain, The Journal of Neuroscience, vol.16, issue.17, pp.5523-5535, 1996.

K. R. Brimblecombe and S. J. Cragg, The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function, ACS Chemical Neuroscience, vol.8, issue.2, pp.235-242, 2016.

C. J. Burrus, S. U. Mckinstry, N. Kim, M. I. Ozlu, A. V. Santoki et al., Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival, Cell Reports, vol.30, issue.3, pp.642-657.e6, 2020.

H. L. Cansler, K. N. Wright, L. A. Stetzik, and D. W. Wesson, Neurochemical organization of the ventral striatum?s olfactory tubercle, Journal of Neurochemistry, vol.152, issue.4, pp.425-448, 2020.

W. A. Carlezon and M. J. Thomas, Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis, Neuropharmacology, vol.56, pp.122-132, 2009.

D. C. Castro and M. R. Bruchas, A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell, Neuron, vol.102, issue.3, pp.529-552, 2019.

E. Cattaneo, C. Zuccato, and M. Tartari, Normal huntingtin function: an alternative approach to Huntington's disease, Nature Reviews Neuroscience, vol.6, issue.12, pp.919-930, 2005.

C. Cepeda, K. D. Oikonomou, D. Cummings, J. Barry, V. Yazon et al., Developmental origins of cortical hyperexcitability in Huntington's disease: Review and new observations, Journal of Neuroscience Research, 2019.

S. Chen, K. Lu, H. Ko, T. Huang, J. H. Hao et al., Parcellation of the striatal complex into dorsal and ventral districts, Proceedings of the National Academy of Sciences, vol.117, issue.13, pp.7418-7429, 2020.

P. Conforti, D. Besusso, V. D. Bocchi, A. Faedo, E. Cesana et al., Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes, Proceedings of the National Academy of Sciences, vol.115, issue.4, pp.E762-E771, 2018.

J. R. Crittenden and A. M. Graybiel, Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments, Frontiers in Neuroanatomy, vol.5, 2011.

N. Dehorter, F. J. Michel, T. Marissal, Y. Rotrou, B. Matrot et al., Onset of pup locomotion coincides with loss of NR2C/D-mediated cortico-striatal EPSCs and dampening of striatal network immature activity, Frontiers in Cellular Neuroscience, vol.5, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02491685

N. Dehorter, L. Vinay, C. Hammond, and Y. Ben-ari, Timing of developmental sequences in different brain structures: physiological and pathological implications, European Journal of Neuroscience, vol.35, issue.12, pp.1846-1856, 2012.

Y. P. Deng, T. Wong, C. Bricker-anthony, B. P. Deng, and A. Reiner, Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice, Neurobiology of Disease, vol.60, pp.89-107, 2013.

P. D. Dodson, J. T. Larvin, J. M. Duffell, F. N. Garas, N. M. Doig et al., Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus, Neuron, vol.86, issue.2, pp.501-513, 2015.

J. P. Donoghue and M. Herkenham, Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat, Brain Research, vol.365, issue.2, pp.397-403, 1986.

I. Dragatsis, M. S. Levine, and S. Zeitlin, Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice, Nature Genetics, vol.26, issue.3, pp.300-306, 2000.

Z. Du, M. Chazalon, E. Bestaven, T. Leste-lasserre, J. Baufreton et al., Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington?s disease, Neuroscience, vol.329, pp.363-379, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01797172

Z. Du, M. Tertrais, G. Courtand, T. Leste-lasserre, L. Cardoit et al., Differential Alteration in Expression of Striatal GABAAR Subunits in Mouse Models of Huntington?s Disease, Frontiers in Molecular Neuroscience, vol.10, 2017.

M. P. Duyao, A. B. Auerbach, A. Ryan, F. Persichetti, G. T. Barnes et al., Inactivation of the mouse Huntington's disease gene homolog Hdh, Science, vol.269, issue.5222, pp.407-410, 1995.

S. M. Edley and M. Herkenham, Comparative development of striatal opiate receptors and dopamine revealed by autoradiography and histofluorescence, Brain Research, vol.305, issue.1, pp.27-42, 1984.

L. A. Ehrman, X. Mu, R. R. Waclaw, Y. Yoshida, C. V. Vorhees et al., The LIM homeobox gene Isl1 is required for the correct development of the striatonigral pathway in the mouse, Proceedings of the National Academy of Sciences, vol.110, issue.42, pp.E4026-E4035, 2013.

L. A. Ehrman, X. Mu, R. R. Waclaw, Y. Yoshida, C. V. Vorhees et al., The LIM homeobox gene Isl1 is required for the correct development of the striatonigral pathway in the mouse, Proceedings of the National Academy of Sciences, vol.110, issue.42, pp.E4026-E4035, 2013.

D. C. Ferrari, B. J. Mdzomba, N. Dehorter, C. Lopez, F. J. Michel et al., Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups, Frontiers in Cellular Neuroscience, vol.6, 2012.

G. Fishell and D. Van-der-kooy, Pattern formation in the striatum: developmental changes in the distribution of striatonigral neurons, The Journal of Neuroscience, vol.7, issue.7, pp.1969-1978, 1987.

G. Fishell and D. Van-der-kooy, Pattern formation in the striatum: developmental changes in the distribution of striatonigral projections, Developmental Brain Research, vol.45, issue.2, pp.239-255, 1989.

G. Fishell and D. Van-der-kooy, Pattern formation in the striatum: Neurons with early projections to the substantia nigra survive the cell death period, The Journal of Comparative Neurology, vol.312, issue.1, pp.33-42, 1991.

A. W. Flaherty and A. M. Graybiel, Input-output organization of the sensorimotor striatum in the squirrel monkey, The Journal of Neuroscience, vol.14, issue.2, pp.599-610, 1994.

B. S. Freeze, A. V. Kravitz, N. Hammack, J. D. Berke, and A. C. Kreitzer, Control of Basal Ganglia Output by Direct and Indirect Pathway Projection Neurons, Journal of Neuroscience, vol.33, issue.47, pp.18531-18539, 2013.

A. Friedman, D. Homma, L. G. Gibb, K. Amemori, S. J. Rubin et al., A Corticostriatal Path Targeting Striosomes Controls Decision-Making under Conflict, Cell, vol.161, issue.6, pp.1320-1333, 2015.

H. Fu, J. Hardy, and K. E. Duff, Selective vulnerability in neurodegenerative diseases, Nature Neuroscience, vol.21, issue.10, pp.1350-1358, 2018.

S. Garel, F. Marín, R. Grosschedl, and P. Charnay, EBF1 controls early cell differentiation in the embryonic striatum, Dev. Camb. Engl, vol.126, pp.5285-5294, 1999.

L. R. Gauthier, B. C. Charrin, M. Borrell-pagès, J. P. Dompierre, H. Rangone et al., Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules, Cell, vol.118, issue.1, pp.127-138, 2004.

C. Gerfen, The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination, Science, vol.246, issue.4928, pp.385-388, 1989.

C. R. Gerfen, The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems, Nature, vol.311, issue.5985, pp.461-464, 1984.

C. R. Gerfen, K. G. Baimbridge, and J. J. Miller, The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey., Proceedings of the National Academy of Sciences, vol.82, issue.24, pp.8780-8784, 1985.

A. M. Graybiel, Correspondence between the Dopamine islands and striosomes of the mammalian striatum, Neuroscience, vol.13, issue.4, pp.1157-1187, 1984.

A. M. Graybiel and C. W. Ragsdale, Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining., Proceedings of the National Academy of Sciences, vol.75, issue.11, pp.5723-5726, 1978.

K. Hagimoto, S. Takami, F. Murakami, and Y. Tanabe, Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum, Journal of Comparative Neurology, vol.525, issue.4, pp.794-817, 2016.

A. L. Halliday and C. L. Cepko, Generation and migration of cells in the developing striatum, Neuron, vol.9, issue.1, pp.15-26, 1992.

T. Hamasaki, S. Goto, S. Nishikawa, and Y. Ushio, Neuronal cell migration for the developmental formation of the mammalian striatum, Brain Research Reviews, vol.41, issue.1, pp.1-12, 2003.

D. L. Harrington, M. Rubinov, S. Durgerian, L. Mourany, C. Reece et al., Network topology and functional connectivity disturbances precede the onset of Huntington?s disease, Brain, vol.138, issue.8, pp.2332-2346, 2015.

H. Hintiryan, N. N. Foster, I. Bowman, M. Bay, M. Y. Song et al., The mouse cortico-striatal projectome, Nature Neuroscience, vol.19, issue.8, pp.1100-1114, 2016.

M. Hirano, S. Iritani, H. Fujishiro, Y. Torii, C. Habuchi et al., Clinicopathological differences between the motor onset and psychiatric onset of Huntington's disease, focusing on the nucleus accumbens, Neuropathology, vol.39, issue.5, pp.331-341, 2019.

S. Humbert, Is Huntington disease a developmental disorder?, EMBO reports, vol.11, issue.12, pp.899-899, 2010.

B. J. Hunnicutt, B. C. Jongbloets, W. T. Birdsong, K. J. Gertz, H. Zhong et al., A comprehensive excitatory input map of the striatum reveals novel functional organization, eLife, vol.5, 2016.

R. S. Hurst, C. Cepeda, L. W. Shumate, and M. S. Levine, Delayed Postnatal Development of NMDA Receptor Function in Medium-Sized Neurons of the Rat Striatum, Developmental Neuroscience, vol.23, issue.2, pp.122-134, 2001.

M. Jain, R. J. Armstrong, R. A. Barker, and A. E. Rosser, Cellular and molecular aspects of striatal development, Brain Research Bulletin, vol.55, issue.4, pp.533-540, 2001.

J. Jimenez-castellanos and A. M. Graybiel, Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix, Neuroscience, vol.23, issue.1, pp.223-242, 1987.

C. L. Julien, J. C. Thompson, S. Wild, P. Yardumian, J. S. Snowden et al., Psychiatric disorders in preclinical Huntington's disease, Journal of Neurology, Neurosurgery & Psychiatry, vol.78, issue.9, pp.939-943, 2007.

D. , Psychiatric disorders in preclinical Huntington's disease, J. Neurol. Neurosurg. Amp. Psychiatry, vol.78, pp.939-943, 2007.

Y. Kawaguchi, Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum, The Journal of Neuroscience, vol.13, issue.11, pp.4908-4923, 1993.

S. M. Kelly, R. Raudales, M. He, J. H. Lee, Y. Kim et al., Radial Glial Lineage Progression and Differential Intermediate Progenitor Amplification Underlie Striatal Compartments and Circuit Organization, Neuron, vol.99, issue.2, pp.345-361.e4, 2018.

E. Kerschbamer and M. Biagioli, Huntington's Disease as Neurodevelopmental Disorder: Altered Chromatin Regulation, Coding, and Non-Coding RNA Transcription, Frontiers in Neuroscience, vol.9, 2016.

A. E. Kincaid and C. J. Wilson, Corticostriatal innervation of the patch and matrix in the rat neostriatum, The Journal of Comparative Neurology, vol.374, issue.4, pp.578-592, 1996.

A. M. Klawonn and R. C. Malenka, Nucleus Accumbens Modulation in Reward and Aversion, Cold Spring Harbor Symposia on Quantitative Biology, vol.83, pp.119-129, 2018.

Y. Kozorovitskiy, A. Saunders, C. A. Johnson, B. B. Lowell, and B. L. Sabatini, Recurrent network activity drives striatal synaptogenesis, Nature, vol.485, issue.7400, pp.646-650, 2012.

R. N. Krajeski, A. Macey?dare, F. Heusden, F. Ebrahimjee, and T. J. Ellender, Dynamic postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection neurons, The Journal of Physiology, vol.597, issue.21, pp.5265-5293, 2019.

A. V. Kravitz, B. S. Freeze, P. R. Parker, K. Kay, M. T. Thwin et al., Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry, Nature, vol.466, issue.7306, pp.622-626, 2010.

G. J. Kress, N. Yamawaki, D. L. Wokosin, I. R. Wickersham, G. M. Shepherd et al., Convergent cortical innervation of striatal projection neurons, Nature Neuroscience, vol.16, issue.6, pp.665-667, 2013.

Y. M. Kupchik and P. W. Kalivas, The Direct and Indirect Pathways of the Nucleus Accumbens are not What You Think, Neuropsychopharmacology, vol.42, issue.1, pp.369-370, 2016.

Y. M. Kupchik, R. M. Brown, J. A. Heinsbroek, M. K. Lobo, D. J. Schwartz et al., Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections, Nature Neuroscience, vol.18, issue.9, pp.1230-1232, 2015.

A. K. Lahiri and M. D. Bevan, Dopaminergic Transmission Rapidly and Persistently Enhances Excitability of D1 Receptor-Expressing Striatal Projection Neurons, Neuron, vol.106, issue.2, pp.277-290.e6, 2020.

G. B. Landwehrmeyer, S. M. Mcneil, L. S. Dure, P. Ge, H. Aizawa et al., Huntington's disease gene: Regional and cellular expression in brain of normal and affected individuals, Annals of Neurology, vol.37, issue.2, pp.218-230, 1995.

J. K. Lee, K. Mathews, B. Schlaggar, J. Perlmutter, J. S. Paulsen et al., Measures of growth in children at risk for Huntington disease, Neurology, vol.79, issue.7, pp.668-674, 2012.

Z. Li, Z. Chen, G. Fan, A. Li, J. Yuan et al., Cell-Type-Specific Afferent Innervation of the Nucleus Accumbens Core and Shell, Frontiers in Neuroanatomy, vol.12, 2018.

W. Liao, H. Tsai, H. Wang, J. Chang, K. Lu et al., Modular patterning of structure and function of the striatum by retinoid receptor signaling, Proceedings of the National Academy of Sciences, vol.105, issue.18, pp.6765-6770, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00282912

O. J. Lieberman, A. F. Mcguirt, E. V. Mosharov, I. Pigulevskiy, B. D. Hobson et al., Dopamine Triggers the Maturation of Striatal Spiny Projection Neuron Excitability during a Critical Period, Neuron, vol.99, issue.3, pp.540-554.e4, 2018.

G. Liot, D. Zala, P. Pla, G. Mottet, M. Piel et al., Mutant Huntingtin Alters Retrograde Transport of TrkB Receptors in Striatal Dendrites, Journal of Neuroscience, vol.33, issue.15, pp.6298-6309, 2013.

M. K. Lobo, S. L. Karsten, M. Gray, D. H. Geschwind, and X. W. Yang, FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains, Nature Neuroscience, vol.9, issue.3, pp.443-452, 2006.

M. K. Lobo, C. Yeh, and X. W. Yang, Pivotal role of early B?cell factor 1 in development of striatonigral medium spiny neurons in the matrix compartment, Journal of Neuroscience Research, vol.86, issue.10, pp.2134-2146, 2008.

C. Lopes, S. Aubert, F. Bourgois-rocha, M. Barnat, A. C. Rego et al., Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells, PLOS ONE, vol.11, issue.2, p.e0148680, 2016.

K. Lu, S. M. Evans, S. Hirano, and F. Liu, Dual role for Islet-1 in promoting striatonigral and repressing striatopallidal genetic programs to specify striatonigral cell identity, Proceedings of the National Academy of Sciences, vol.111, issue.1, pp.E168-E177, 2013.

L. Ma, W. Chen, D. Yu, and Y. Han, Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei, Frontiers in Systems Neuroscience, vol.14, 2020.

O. Marin, S. A. Anderson, and J. L. Rubenstein, Origin and molecular specification of striatal interneurons, J. Neurosci, vol.20, pp.6063-6076, 2000.

M. Sousa, C. Humbert, and S. , Huntingtin: here, there, everywhere!, J. Huntingt. Dis, vol.2, pp.395-403, 2013.

R. Martín-ibáñez, E. Crespo, M. Esgleas, N. Urban, B. Wang et al., Helios Transcription Factor Expression Depends on Gsx2 and Dlx1&2 Function in Developing Striatal Matrix Neurons, Stem Cells and Development, vol.21, issue.12, pp.2239-2251, 2012.

H. A. Mason, S. M. Rakowiecki, M. Raftopoulou, S. Nery, Y. Huang et al., Notch signaling coordinates the patterning of striatal compartments, Development, vol.132, issue.19, pp.4247-4258, 2005.

P. P. Mathkar, D. Suresh, J. Dunn, C. M. Tom, and V. B. Mattis, Characterization of Neurodevelopmental Abnormalities in iPSC-Derived Striatal Cultures from Patients with Huntington?s Disease, Journal of Huntington's Disease, vol.8, issue.3, pp.257-269, 2019.

P. Mccolgan and S. J. Tabrizi, Huntington's disease: a clinical review, European Journal of Neurology, vol.25, issue.1, pp.24-34, 2017.

M. M. Mcgregor, G. L. Mckinsey, A. E. Girasole, C. J. Bair-marshall, J. L. Rubenstein et al., Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons, Cell Reports, vol.29, issue.6, pp.1419-1428.e5, 2019.

S. U. Mckinstry, Y. B. Karadeniz, A. K. Worthington, V. Y. Hayrapetyan, M. I. Ozlu et al., Huntingtin Is Required for Normal Excitatory Synapse Development in Cortical and Striatal Circuits, Journal of Neuroscience, vol.34, issue.28, pp.9455-9472, 2014.

M. F. Mehler and S. Gokhan, Developmental mechanisms in the pathogenesis of neurodegenerative diseases, Progress in Neurobiology, vol.63, issue.3, pp.337-363, 2001.

M. F. Mehler, J. R. Petronglo, E. E. Arteaga-bracho, M. E. Gulinello, M. L. Winchester et al., Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks, The Journal of Neuroscience, vol.39, issue.10, pp.1892-1909, 2019.

P. Merchan-sala, D. Nardini, R. R. Waclaw, and K. ;. Campbell, Selective neuronal expression of the SoxE factor, Sox8, in direct pathway striatal projection neurons of the developing mouse brain, Journal of Comparative Neurology, vol.525, issue.13, pp.2805-2819, 2017.

A. E. Molero, S. Gokhan, S. Gonzalez, J. L. Feig, L. C. Alexandre et al., Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington's disease, Proceedings of the National Academy of Sciences, vol.106, issue.51, pp.21900-21905, 2009.

A. E. Molero, E. E. Arteaga-bracho, C. H. Chen, M. Gulinello, M. L. Winchester et al., Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington?s disease, Proceedings of the National Academy of Sciences, vol.113, issue.20, pp.5736-5741, 2016.

A. B. Muñoz-manchado, C. Bengtsson-gonzales, A. Zeisel, H. Munguba, B. Bekkouche et al., Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq, Cell Reports, vol.24, issue.8, pp.2179-2190.e7, 2018.

K. Nakamura, H. Hioki, F. Fujiyama, and T. Kaneko, Postnatal changes of vesicular glutamate transporter (VGluT)1 and VGluT2 immunoreactivities and their colocalization in the mouse forebrain, The Journal of Comparative Neurology, vol.492, issue.3, pp.263-288, 2005.

J. Nasir, S. B. Floresco, J. R. O'kusky, V. M. Diewert, J. M. Richman et al., Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes, Cell, vol.81, issue.5, pp.811-823, 1995.

H. Newman, F. Liu, and A. M. Graybiel, Dynamic ordering of early generated striatal cells destined to form the striosomal compartment of the striatum, Journal of Comparative Neurology, vol.523, issue.6, pp.943-962, 2015.

S. Nóbrega-pereira, N. Kessaris, T. Du, S. Kimura, S. A. Anderson et al., Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors, Neuron, vol.59, issue.5, pp.733-745, 2008.

S. Nobrega-pereira, D. Gelman, G. Bartolini, R. Pla, A. Pierani et al., Origin and Molecular Specification of Globus Pallidus Neurons, Journal of Neuroscience, vol.30, issue.8, pp.2824-2834, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00484563

J. S. Paulsen, P. C. Nopoulos, E. Aylward, C. A. Ross, H. Johnson et al., Striatal and white matter predictors of estimated diagnosis for Huntington disease, Brain Research Bulletin, vol.82, issue.3-4, pp.201-207, 2010.

R. T. Peixoto, W. Wang, D. M. Croney, Y. Kozorovitskiy, and B. L. Sabatini, Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B?/? mice, Nature Neuroscience, vol.19, issue.5, pp.716-724, 2016.

C. B. Pert, M. J. Kuhar, and S. H. Snyder, Opiate receptor: autoradiographic localization in rat brain., Proceedings of the National Academy of Sciences, vol.73, issue.10, pp.3729-3733, 1976.

R. S. Petralia, J. A. Esteban, Y. ?. Wang, J. G. Partridge, H. ?. Zhao et al., Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses, Nature Neuroscience, vol.2, issue.1, pp.31-36, 1999.

G. Pilz, A. Shitamukai, I. Reillo, E. Pacary, J. Schwausch et al., Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type, Nature Communications, vol.4, issue.1, p.105076, 2013.

G. Pilz, A. Shitamukai, I. Reillo, E. Pacary, J. Schwausch et al., Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type, Nature Communications, vol.4, issue.1, p.2125, 2013.

H. Planert, T. K. Berger, and G. Silberberg, Membrane Properties of Striatal Direct and Indirect Pathway Neurons in Mouse and Rat Slices and Their Modulation by Dopamine, PLoS ONE, vol.8, issue.3, p.e57054, 2013.

M. A. Pouladi, A. J. Morton, and M. R. Hayden, Choosing an animal model for the study of Huntington's disease, Nature Reviews Neuroscience, vol.14, issue.10, pp.708-721, 2013.

E. M. Prager and J. L. Plotkin, Compartmental function and modulation of the striatum, Journal of Neuroscience Research, 2019.

A. Reiner and K. D. Anderson, The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: conclusions based on recent findings, Brain Research Reviews, vol.15, issue.3, pp.251-265, 1990.

A. Reiner and Y. Deng, Disrupted striatal neuron inputs and outputs in Huntington's disease, CNS Neuroscience & Therapeutics, vol.24, issue.4, pp.250-280, 2018.

A. Reiner, N. Del-mar, C. A. Meade, H. Yang, I. Dragatsis et al., Neurons Lacking Huntingtin Differentially Colonize Brain and Survive in Chimeric Mice, The Journal of Neuroscience, vol.21, issue.19, pp.7608-7619, 2001.

D. Rigamonti, S. Sipione, D. Goffredo, C. Zuccato, E. Fossale et al., Huntingtin's Neuroprotective Activity Occurs via Inhibition of Procaspase-9 Processing, Journal of Biological Chemistry, vol.276, issue.18, pp.14545-14548, 2001.

A. A.-rikani, Z. Choudhry, A. M. Choudhry, N. Rizvi, H. Ikram et al., The mechanism of degeneration of striatal neuronal subtypes in Huntington disease, Annals of Neurosciences, vol.21, issue.3, pp.112-114, 2014.

K. L. Ring, M. C. An, N. Zhang, R. N. O?brien, E. M. Ramos et al., Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington?s Disease Neural Stem Cells, Stem Cell Reports, vol.5, issue.6, pp.1023-1038, 2015.

C. A. Ross and S. J. Tabrizi, Huntington's disease: from molecular pathogenesis to clinical treatment, The Lancet Neurology, vol.10, issue.1, pp.83-98, 2011.

A. Ruzo, G. F. Croft, J. J. Metzger, S. Galgoczi, L. J. Gerber et al., Chromosomal instability during neurogenesis in Huntington's disease, Development, vol.145, issue.2, p.dev156844, 2018.

F. Saudou and S. Humbert, The Biology of Huntingtin, Neuron, vol.89, issue.5, pp.910-926, 2016.

M. D. Scofield, J. A. Heinsbroek, C. D. Gipson, Y. M. Kupchik, S. Spencer et al., The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis, Pharmacological Reviews, vol.68, issue.3, pp.816-871, 2016.

N. A. Sharpe and J. M. Tepper, Postnatal development of excitatory synaptic input to the rat neostriatum: An electron microscopic study, Neuroscience, vol.84, issue.4, pp.1163-1175, 1998.

M. W. Shiflett and B. W. Balleine, Molecular substrates of action control in cortico-striatal circuits, Progress in Neurobiology, vol.95, issue.1, pp.1-13, 2011.

D. I. Shirasaki, E. R. Greiner, I. Al-ramahi, M. Gray, P. Boontheung et al., Network Organization of the Huntingtin Proteomic Interactome in Mammalian Brain, Neuron, vol.75, issue.1, pp.41-57, 2012.

G. Silberberg and J. P. Bolam, Local and afferent synaptic pathways in the striatal microcircuitry, Current Opinion in Neurobiology, vol.33, pp.182-187, 2015.

Y. Smith, M. D. Bevan, E. Shink, and J. P. Bolam, Discussion, Neuroscience, vol.86, issue.2, pp.353-387, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00188086

U. S. Sohur, H. K. Padmanabhan, I. S. Kotchetkov, J. R. Menezes, and J. D. Macklis, Anatomic and Molecular Development of Corticostriatal Projection Neurons in Mice, Cerebral Cortex, vol.24, issue.2, pp.293-303, 2012.

A. C. Solomon, J. C. Stout, S. A. Johnson, D. R. Langbehn, E. H. Aylward et al., Verbal episodic memory declines prior to diagnosis in Huntington's disease, Neuropsychologia, vol.45, issue.8, pp.1767-1776, 2007.

D. D. Song and R. E. Harlan, Genesis and migration patterns of neurons forming the patch and matrix compartments of the rat striatum, Developmental Brain Research, vol.83, issue.2, pp.233-245, 1994.

V. H. Sousa and G. Fishell, Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain, Current Opinion in Genetics & Development, vol.20, issue.4, pp.391-399, 2010.

L. A. Specht, V. M. Pickel, T. H. Joh, and D. J. Reis, Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny, The Journal of Comparative Neurology, vol.199, issue.2, pp.233-253, 1981.

N. C. Spitzer, Electrical activity in early neuronal development, Nature, vol.444, issue.7120, pp.707-712, 2006.

J. M. Tepper and F. Trent, Chapter 3 In vivo studies of the postnatal development of rat neostriatal neurons, Progress in Brain Research, vol.99, pp.35-50, 1993.

J. M. Tepper, N. A. Sharpe, T. Z. Koós, and F. Trent, Postnatal Development of the Rat Neostriatum: Electrophysiological, Light- and Electron-Microscopic Studies, Developmental Neuroscience, vol.20, issue.2-3, pp.125-145, 1998.

J. M. Tepper, T. Koós, O. Ibanez-sandoval, F. Tecuapetla, T. W. Faust et al., Heterogeneity and Diversity of Striatal GABAergic Interneurons: Update 2018, Frontiers in Neuroanatomy, vol.12, p.91, 2018.

A. V. Tereshchenko, J. L. Schultz, J. E. Bruss, V. A. Magnotta, E. A. Epping et al., Abnormal development of cerebellar-striatal circuitry in Huntington disease, Neurology, vol.94, issue.18, pp.e1908-e1915, 2020.

H. D. The and . Consortium, Developmental alterations in Huntington's disease neural cells and pharmacological rescue in cells and mice, Nature Neuroscience, vol.20, issue.5, pp.648-660, 2017.

M. Macdonald, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes, Cell, vol.72, issue.6, pp.971-983, 1993.

A. Tinterri, F. Menardy, M. A. Diana, L. Lokmane, M. Keita et al., Active intermixing of indirect and direct neurons builds the striatal mosaic, Nature Communications, vol.9, issue.1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01927169

M. Turrero-garcía, C. C. Harwell, D. Van-der-kooy, and G. Fishell, Neuronal birthdate underlies the development of striatal compartments, FEBS Lett, vol.591, pp.91176-91176, 1987.

E. Van-der-plas, D. R. Langbehn, A. L. Conrad, T. R. Koscik, A. Tereshchenko et al., Abnormal brain development in child and adolescent carriers of mutant huntingtin, Neurology, vol.93, issue.10, pp.e1021-e1030, 2019.

P. Voorn, A. Kalsbeek, B. Jorritsma-byham, and H. J. Groenewegen, The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat, Neuroscience, vol.25, issue.3, pp.857-887, 1988.

P. Voorn, C. R. Gerfen, and H. J. Groenewegen, Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein, The Journal of Comparative Neurology, vol.289, issue.2, pp.189-201, 1989.

M. Watabe-uchida, L. Zhu, S. K. Ogawa, A. Vamanrao, and N. Uchida, Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons, Neuron, vol.74, issue.5, pp.858-873, 2012.

K. Wiatr, W. J. Szlachcic, M. Trzeciak, M. Figlerowicz, and M. Figiel, Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells, Molecular Neurobiology, vol.55, issue.4, pp.3351-3371, 2017.

M. Wiegand, A. A. M?ller, C. J. Lauer, S. Stolz, W. Schreiber et al., Nocturnal sleep in huntington's disease, Journal of Neurology, vol.238, issue.4, pp.203-208, 1991.

C. J. Wilson and P. M. Groves, Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase, The Journal of Comparative Neurology, vol.194, issue.3, pp.599-615, 1980.

Z. Xu, Q. Liang, X. Song, Z. Zhang, S. Lindtner et al., SP8 and SP9 coordinately promote D2-type medium spiny neuron production by activatingSix3expression, Development, vol.145, issue.14, p.dev165456, 2018.

K. Yun, S. Fischman, J. Johnson, M. Hrabe-de-angelis, G. Weinmaster et al., Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon, Dev. Camb. Engl, vol.129, pp.5029-5040, 2002.

D. S. Zahm and J. S. Brog, On the significance of subterritories in the ?accumbens? part of the rat ventral striatum, Neuroscience, vol.50, issue.4, pp.751-767, 1992.

S. Zeitlin, J. Liu, D. L. Chapman, V. E. Papaioannou, and A. Efstratiadis, Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue, Nature Genetics, vol.11, issue.2, pp.155-163, 1995.

Q. Zhang, Y. Zhang, C. Wang, Z. Xu, Q. Liang et al., The Zinc Finger Transcription Factor Sp9 Is Required for the Development of Striatopallidal Projection Neurons, Cell Reports, vol.16, issue.5, pp.1431-1444, 2016.

Y. Zhang, B. R. Leavitt, J. M. Van-raamsdonk, I. Dragatsis, D. Goldowitz et al., Huntingtin inhibits caspase-3 activation, The EMBO Journal, vol.25, issue.24, pp.5896-5906, 2006.

C. Zuccato, A. Ciammola, D. Rigamonti, B. R. Leavitt, D. Goffredo et al., Loss of Huntingtin-Mediated BDNF Gene Transcription in Huntington's Disease, Science, vol.293, issue.5529, pp.493-498, 2001.

M. Lebouc, Q. Richard, M. Garret, and J. Baufreton, Striatal circuit development and its alterations in Huntington's disease, Neurobiology of Disease, vol.145, p.105076, 2020.