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Abstract 

Motivated by architectural applications, we propose a method to generate circular and conical meshes 
with planar curvature lines in both directions. The method is based on the discretization of the Gauss 
map of surfaces with planar curvatures lines. It allows generation of meshes in real-time via two planar 
guide curves. The resulting meshes can be used as a geometric base to build gridshells with flat panels, 
torsion free-nodes, node offset and planar arches. A particular technological application is for 
gridshells built with curved members: those can be built with planar piecewise-circular beams, and 
identical nodes if beams have circular cross-section.  
 

Keywords: fabrication-aware design, architectural geometry, circular meshes, facade, pre-
rationalization, cyclidic net 

1 Introduction 
 

The fabrication of doubly-curved building envelopes has a been the source of significant engineering 
challenges in the past few decades. These challenges have led to the emergence of a new field of 
research, that is often referred to as construction-aware design, fabrication-aware-design, shape 
rationalization or architectural geometry (Pottmann 2013). For steel-glass envelopes, research has 
focused on methods to generate quad meshes with properties such as planar faces, torsion-free nodes, 
and offset, as these yield strong benefits over triangular meshes: lower node complexity (Liu et al. 
2006), better light transmission (Glymph et al. 2004), reduced waste in panel fabrication, and 
possibility to build multi-layer systems. A special attention was devoted to circular and conical meshes, 
which combine all these properties together. 

Methods to obtain these properties can be split in two main categories: bottom-up and top-down 
approaches. In bottom-up methods, the fabrication constraints are taken into account at the time of 
generation of the shape. The most popular method in this family are scale-trans meshes and rotational 
meshes (Glymph et al. 2004). In these methods, subspaces of planar quad meshes can be intuitively 
explored by controlling two guiding curves. Some more recent research has shown that many other 
types of surfaces and properties can be attained from this generation method (Mesnil et al. 2017; 
Douthe et al. 2017; Mesnil et al. 2018) . (Yang et al. 2011), (Jiang et al. 2014) and (Deng et al. 2015), on 
the other hand, propose optimization algorithms to deform a mesh under geometric constraints. In 
top-down approaches, also referred to as post-rationalization methods, the shape is first designed 
without consideration of construction properties. An optimization process is applied afterwards to 
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improve the constructability. Examples include (Liu et al. 2006) ,  (Zadravec, Schiftner, and Wallner 

2010). 

Bottom-up methods are very convenient design tools to explore meshes for a known geometric 
constraint, but they require a knowledge of the fabrication method at an early stage of the project 
(Austern, Capeluto, and Grobman 2018). On the other hand, top-down methods can be used in a later 
phase of the project, but there is no guarantee that they will yield a mesh that fulfills all the desired 
constraints. For example, optimizing a quad mesh to make its face planar and have offsets will tend to 
align the edges with the principal curvature directions (Liu et al. 2006). This process can alter 
significantly the appearance of the mesh, and might poorly fulfill the desired constraints, especially if 
the mesh topology is not compatible with the one of the curvature lines. As a rule of thumb, the more 
constrains are desired, the less likely post-rationalization is going to succeed. 

In this paper, we investigate the generation of circular and conical quadrangular meshes for which all 
lines are planar. More precisely, we mean that the edge polylines of any quad strip are planar. We will 
describe these meshes as having planar curvature lines, even though this term is usually reserved for 

surfaces. This work is related to the one presented in (Mesnil et al. 2018) that looked at circular meshes 
for which curvature lines are planar in only one direction. The planarity property can be used to simplify 
beam fabrication and for aesthetic aspect. An example is the Schubert Marine Band Shell in Minnesota 
(USA) showed in Figure 1 (Schober 2015). Given these strong geometric constraints, the generation of 

these meshes is badly suited for post-rationalization. We therefore propose a bottom-up method, 
which uses two guiding curves as an input. Using the fact that circular meshes are discrete equivalents 
of surfaces parametrized by curvature lines (Bobenko 2008), the method is based on the discretization 
of surfaces with planar curvature lines. The method enables a real-time exploration of the entire design 
space. 

     

Figure 1 – Schubert Marine Club Band Shell. Left: Overview. Right: connection detail (©Brian Gulick) (pictures courtesy of 
James Carpenter Design Associates) 

The second section of this paper introduces surfaces with planar curvature lines and our proposed 

discretization by circular or conical meshes. In section 3, we present a generation method for these 
meshes with two guiding curves. In section 4, we show examples of meshes generated by our method. 
Section 5 discusses the strengths and limitations of the method. Finally, in section 6, we propose a 
technological application of the method to the design steel-glass gridshells with interesting fabrication 
properties. 

The main contributions of this paper are: 

• A discretization of surfaces with planar curvature lines by circular or conical meshes with 
planar lines. These meshes have planar quadrangular faces and offset properties; 

• A bottom-up generation method for these meshes. This method gives access to the entire 
design space; 

• An exploration of the form potential of surfaces with planar curvature lines; 

• A method to generate C1 surfaces with planar curvature lines using cyclide nets; 
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• A technique to align meshes with boundary planes; 

• An extension of the generation method to surfaces in which curvature lines are not planar, but 
piecewise planar; 

• A method to generate networks of planar piecewise circular curves that intersect at 90°, that 
can be covered with planar quads and that have node offsets. One example is Dupin cylides; 

• An application to the rationalization of steel-glass gridshells. 

2 Discretization of surfaces with planar curvature lines 
 

In this section we present relevant properties of surfaces with planar curvature lines and then propose 
a circular discretization.  

2.1 Smooth surfaces with planar curvature lines 

2.1.1 Early work 

Surfaces with planar curvature lines were studied for the first time by Monge at the beginning of the 
19th century. In (Monge 1805), which is a pioneering work for the use of differentials for the study of 
surfaces, Monge studied the particular case of surfaces for which family of curvature lines lie on 
parallel planes: the so-called molding surfaces. Later on, Bonnet (Bonnet 1853) derived the general 
differential equations ruling the geometry of these surfaces. Other notable contributions to the 
understanding of these surfaces were made by Adam (Adam 1893), who studied the isothermic 
surfaces with planar curvature lines, and by Darboux and Bianchi (Darboux 1896; Bianchi 1894). 
Darboux (Darboux 1896) discovered that surfaces with planar curvature lines are the envelope of the 
radical planes of two families of spheres whose centers lie on focal conics (i.e. conics lying in orthogonal 
planes such that the apex of one is the focal point of the other) and whose radii are arbitrary functions 
(the radical plane of two intersecting spheres is the plane containing the intersection circle, see 
(Coxeter and Greitzer 1967) for the case of non-intersecting spheres). Figure 2 shows a surface 
constructed using this property with spheres of constant radii centered on two parabolas, thus yielding 
an Enneper surface (Berger and Gostiaux 1992).  

 

Figure 2 – A surface with planar curvature lines. Top: generated from the envelope of radical planes of two families of 
spheres centered on parabolas. Bottom: the same surface generated by our method 
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2.1.2 Gauss map geometry 

On any point of a smooth surface, the unit normal vector can be described by a point on the unit 
sphere, S². The spherical surface described by all the normals is called the Gauss map. We shall now 
have a close look at the very particular structure of the Gauss map of surfaces with planar curvature 
lines. 

The theorem of Joachimsthal states that if the intersection curve of two surfaces is a curvature line for 
both surfaces, then the angle between the two surfaces along the curve is constant, which means that 
the angle between the normal vectors of the two surfaces is constant along the curve. Since any planar 
curve is a curvature line of its plane, the angle between the normal of the surface and the plane of the 
curvature curve is constant. The Gauss map of this curve is therefore constrained to a cone: it is an arc 
of circle. Curvature lines always intersect at a right angle, and so do their Gauss maps. As a result, the 
Gauss map of a surface with planar curvature lines is a system of orthogonal arcs of circle on the unit 
sphere. (Eisenhart 1909) showed that a system of orthogonal circles on the sphere has necessarily the 
following geometric properties: 

• Circles can be decomposed in two families. For each family, all the planes of the circles 
intersect on a common axis (thus forming a so-called pencil of planes).  

• The axes of the two families are polar reciprocal. This property is shown in Figure 3 and can be 
explained as follows. Let us assume that the position of one axis L1 is known and is such that it 
intersects the sphere (centered at O) at two points A and B. In the plane (OAB), the lines 
tangent to the sphere at A and B intersect at a point M2. The polar reciprocal line to L1 is the 
line passing through M2 orthogonally to the plane (OAB).   

  

Figure 3 – Geometry of orthogonal circles on a sphere and associated polar reciprocal axes 

Considering a unit sphere centered at O = (0,0,0), the equation of these axes may be written as: 

𝐿1 = { 𝑀1 +  𝜆 𝑒𝑥  , 𝜆 ∈ 𝑅 }  

𝐿2 = { 𝑀2 +  𝜇 𝑒𝑦  , 𝜇 ∈ 𝑅 } 

Where:    𝑀1 = (0,0, 𝑎)   ,   𝑀2 = (0,0,
1

𝑎
) , 𝑎 ∈ 𝑅  

The position of the two axes determines the structure of the Gauss map, and there is only one degree 
of freedom (the constant a) for positioning these axes relatively to each other. Figure 4 shows how the 
structure of the Gauss map varies for values of a ranging from 0 to 1. It can be observed that only two 
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orthogonal circles (in thick lines) do not vary, these circles are great circles of the sphere. The 

parameter a has the following symmetries (Figure 3): 

- If a is replaced by 1/a, the heights of the two axes are exchanged, which is equivalent to 
applying a rotation of 90° around ez. 

- Replacing a by –a is equivalent to applying a symmetry about plane (O, ex, ez).  
- The cases a → + ∞ and a → - ∞ yield the same axes positions: L2 is the axis (O,ex), and L1 is at 

infinity. 

In order to manipulate a variable that highlights these symmetries, we introduce a reparametrization 
of the variable a by the variable θ defined as follows: 

𝑎 = tan (
𝜃

2
) 

The symmetries of the problems are then reflected as follows: 

- Exchanging the heights of the two axis is done by taking the complementary angle 𝜋 − 𝜃 ; 
- Mirroring the axis positions about (O, ex, ez) is done by negating the angle; 
- The identical cases a → + ∞ and a → - ∞ correspond to 𝜃 = +𝜋 and 𝜃 = −𝜋, which are equal 

angles (modulo 2𝜋). 𝜃 does not take infinite values, and is therefore easier to handle in a 
programming environment.  

 

 

Figure 4 – Structure of the Gauss map of a surface with planar curvature lines parametrized by curvature lines, 
for different distances between polar reciprocal axes 

2.1.3 Developable surfaces 

The Gauss map of developable surfaces with planar curvature lines is degenerated into a single curve. 
Therefore the structure shown in Figure 4 is of little help to understand their structure. However, their 
geometry is well known. First, we can observe that the rulings of a developable surface form its first 
family of curvature lines, these are obviously planar. For the 2nd family of curvature lines, we have to 
look separately at the three types of smooth developable surfaces: Cylinders, cones, and envelopes of 
the tangent lines to a 3D curve. The second family of curvature lines is always planar for cylinders and 
for right cones with a circular base. The more complex 3rd type was studied by Bonnet (Bonnet 1853). 
He proved that surfaces generated by the tangent to a general helix (i.e. a curve which tangent has a 
constant angle with a given axis) are the only developable surfaces of this type with planar curvature 
lines. An example is shown in Figure 5.  
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Figure 5 – Tangents to a general helix form a developable surface with planar curvature lines (shown in blue and red). 

2.2 Circular quad mesh with planar lines 

Meshes for which each face is inscribed in a circle are called circular meshes. Quad circular meshes are 
interesting for architectural gridshell design, as they have planar faces, torsion-free nodes and vertex 
offset. The offset allows to easily give a depth to the mesh for materialization and structural purposes. 
Circular meshes can be seen as a discretization of surfaces parametrized by curvature lines (Pottmann 
and Wallner 2006). In this section, we will introduce a discretization of surfaces with planar curvature 

lines by circular meshes with planar lines. 

 

2.2.1 Gauss map discretization 

Our discretization is based on a discretization of the Gauss map. It turns out that the orthogonal circles 
discussed in section 2.1.2 and shown in Figure 4 naturally yield a circular mesh with vertices on the 

unit sphere. We can summarize this result as follows: 

Proposition 1 
The intersection points of two orthogonal families of circles on a sphere define the vertices of a circular 
mesh with planar lines.   

Proof 

We start by the case where the two reciprocal axes are tangent to the sphere (the case ϴ = ± 90). We 
use the stereographic projection of the sphere centered at the point of tangency with the two axes. 
This transformation projects the sphere on a plane, as shown on Figure 6 (left). The circles all pass 
through the center of the projection, and are therefore mapped to straight lines on the plane. The 
stereographic projection conserves intersection angles: Since the circles intersect at 90°, their 
projections also intersect at a right angle. As a result, the projection of two pairs of circles are straight 
lines that intersect at 90°, thus forming a rectangle, which is a circular quad. Since the projection and 
its inverse map circles to circles, we conclude that the four intersection points on the sphere are 
cocyclic. 

In the case where the axes are not tangent to the sphere (Figure 6, right), we consider the 
stereographic projection from an intersection point of a reciprocal axis with the sphere. This projection 
transforms the circle passing through the pole into straight lines (which are concurrent with the 

reciprocal axis). The circles from the other family are mapped to circles, which are orthogonal to the 
straight lines since the projection is conformal. As a result, the projection of four intersection points 
are the intersection of two concentric circles and two of their rays, and are therefore cocyclic.   
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Figure 6 - Stereographic projection of orthogonal circles from a pole P. Left: case where ϴ = ±90°. Right: general case 

 

2.2.2 Property of the discrete Gauss map 

Two orthogonal families of circles on the sphere have the following property (Eisenhart 1909): a cone 
tangent to the sphere along a circle of one family has its apex on the reciprocal axis of that family. An 
example is visible in Figure 7 (cone shown in orange). This property can be interpreted as a property 
of the Gauss map of a smooth surface with planar curvature lines: along the Gauss map of the 

maximum (resp. minimum) curvature line, the tangent vectors in the minimum (resp. maximum) 
curvature direction belong to a cone. Our discrete Gauss map model happens to have a discrete 
equivalent of this property:  

Proposition 2 
If a strip of quads is inscribed in a sphere and if its longitudinal edges are coplanar, then its transversal 
edges belong to an oblique circular cone with apex on the reciprocal axis.  

Such a cone is visible in blue in Figure 7 (in blue). This rather abstract property will be used in section 
4.6 to prove an important property of our discrete model. 

Proof  

Let us consider a strip of quads with the structure discussed in section 2.2.1, as shown in Figure 7. 
Vertices of the strip belong to two circles C1  and C2. We pick two vertices Q1 and Q2 of the mesh. The 
tangents to circles C1 and C2 at Q1 and Q2 belong to a same cone (in orange) with apex on the reciprocal 
axis L2. They are therefore coplanar. As a result, Q1Q2 is a ruling of the developable surface connecting 

C1 and C2. The developable surfaces connecting two cospherical circles are quadratic cones (Glaeser, 
Stachel, and Odehnal 2016). Consequently, the transversal edge Q1Q2 is a ruling of one of these 
quadratic cones (in blue). Since all the rulings passing through vertices of the strip also intersect the 
reciprocal axis L1, the apex of this cone is necessarily on L1.  
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Figure 7 – Edges of a strip of quad on the discrete Gauss map belong to a cone with apex on a reciprocal axis.  

 

2.2.3 Surface discretization  

The previous sections shows a natural discretization of the Gauss map of any surface with planar 
curvature lines. Smooth surfaces are related to their Gauss map by a Combescure transform: at any 
given point of the surface, the tangent vectors in principal curvature directions are parallel to the 

corresponding tangent vectors on the Gauss map. Combescure transforms can be discretized using the 
notion of mesh parallelism. Two meshes are said to be parallel if their corresponding edges are parallel. 
They are then said to be related by a discrete Combescure transform (Pottmann et al. 2007). A discrete 
Combescure transform conserves the planarity of a face and the vertex angles, it therefore conserves 
the circularity of meshes.  

Using these notions, a surface with planar curvature lines can be discretized as follows: 

- Compute its Gauss map parametrized according to principal curvature directions, and 
discretize it into a circular mesh;  

- Discretize the Combescure transform that maps the smooth Gauss map to the surface, and 

apply it to the discrete Gauss mesh.  

In Section 3, we will address how this fact can be used for generation purposes.  

2.3 Conical quad mesh 

Conical meshes is a family of quad meshes introduced in (Liu et al. 2006) with planar faces and torsion-
free nodes. Whereas circular meshes have node-offsets, conical meshes have face-offsets: we can 

build a parallel mesh such that corresponding faces are at a constant distance. (Pottmann and Wallner 
2006) showed the existence a duality between circular and conical meshes: from any circular mesh 
with rectangular combinatorics, one can construct a two-parameter family of conical meshes. The 
method consists in building at each node a plane normal to the node axis. These planes form the faces 
of the dual conical mesh, and the intersection lines of these planes form its edges. It turns that this 
construction conserves the planarity of lines, thus allowing to generate conical meshes with planar 
lines:  

Proposition 3 
The conical dual of a circular mesh with planar curvature lines also has planar lines.   

Proof: 
We will show this property by building the conical dual of a circular Gauss mesh with planar lines 
(following the construction of (Pottmann and Wallner 2006)), and by showing that it also has planar 
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lines. General conical meshes with planar lines can then be obtained by applying Combescure 

transforms to this conical Gauss image.  
Let us consider two families of orthogonal circles on the sphere. The cones that are tangent to the unit 
sphere along the circles of one family have their apex on the axis of the other family. On Figure 8, we 
show the apexes B1 and B2 of the cones tangent to the circles C1 and C2 (the cone tangent to C2 is shown 
in blue). The blue lines are the tangents to the unit sphere along C3 and C4 at the intersection points of 
the circles. We then build the conical dual (shown in green) to the circular quad formed by the four 
circles. The faces of this dual mesh are the tangent planes to the sphere at the circle intersection points. 
These planes also correspond to tangent planes to the cones (tangency occurs along the blue lines). As 
such, their intersection line passes through the cones apex. Therefore, the edges e1 and e2 of the 
conical dual are aligned with the points B1 and B2. e1 and e2 are each in a plane that contains axis (B1B2). 
Since these two edges have a point in common, these two planes are identical. If we were to build the 
next edge e3, it would also belong to that same plane. We conclude that the conical dual has planar 
lines. We finally note that each quad of this conical dual is tangent to the unit sphere, and can therefore 

be interpreted as a conical Gauss image in the sense of (Pottmann and Wallner 2006). 

 

Figure 8 – The conical dual mesh of a circular mesh on the sphere with planar curvature lines also has planar curvature lines 

3 Generation method 
 

We propose here a method to construct a circular mesh with planar curvature lines from two input 
guide curves. Generating a surface from two curves is a method appreciated by designers (Mesnil et 

al. 2017). It provides an intuitive control on the shape. Sweep surfaces and translation surfaces are for 
example two widely used methods to generate surfaces or meshes on CAD programs. In our method, 
the guide curves will correspond to curvature lines of the surface. As such, they need to be planar and 
to intersect at 90°.  

3.1 Control with characteristic guide curves  

In this section, we will explain the generation method in the special case where: 

- The planes of the two guide curves are orthogonal, and 
- The initial tangent vector of one curve is orthogonal to the plane containing the other curve. 

These properties can be easily achieved as follows: Draw one curve in the plane Oxz with initial tangent 
(O, ex), and a second curve in plane Oyz with initial tangent (O,ey). With these properties, the guide 
curves will correspond to curvature lines of the surface for which the normal vector is coplanar with 
the curvature line. Such lines are said to be characteristic of the surface, as they stand out visually (see 
for example Figure 2 and Figure 21), and are the most intuitive to control. We note that the 
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orthogonality conditions on the initial tangent vectors can be easily achieved working with B-spline 

guide curves, for which the initial tangent is aligned with the first two control points.  

Our method can be decomposed into the following steps (see Figure 9): 

i) The guide curves are sampled in points. At each point, the Frenet normal vector is calculated. 
These vectors  correspond to points of the Gauss map on S², they lie in two great circles. 

ii) The user chooses a parameter ϴ, that structures the Gauss map as shown on Figure 4 (the 
Gauss map of the guide curves lie in the invariant great circles highlighted in thick). This 
parameter is used to construct the axes of the pencils of planes, as explained in section 2.1. 
The direction of the axes is given by the initial tangent vectors of the curves.  

iii) For each point of the Gauss map, a plane passing through this point and containing one axis is 
constructed. The intersection of these planes with S² yields a circular mesh, as proven in 
section 2.2.  

iv) A Combescure transform (as defined in section 2.2.3) is applied to this circular mesh to 
generate a mesh that fits the generatrices. Such a transformation conserves the planarity and 

circularity of the faces, and the planarity of the lines. 

 

Figure 9 – Overview of the proposed method. Gauss map shown on the right 

The calculation of node axes from an arbitrary circular mesh can be a tedious step. (Liu and Wang 2008) 

suggest for example to use SVD, and show the non-existence of the node axes for some types of circular 
meshes. In our method, the Gauss map is calculated, so the node axes are already determined. 

3.2 Control with arbitrary guide curves 

We will now show how the method can be adapted to the general case where the planes of the guide 
curves are not necessarily orthogonal.  

As shown in Figure 10, let us consider two planar guide curves G1 and G2 that intersect at 90°. The 

initial tangents of G1 and G2 at the intersection point P determines the tangent plane of the surface we 
are going to build. We name NP the normal vector to this plane. Since the guide curves will be curvature 
lines, the normals to the surface must rotate along the curve like a Darboux frame, also referred to as 
rotation-minimizing frames in CAD environments. We generate these normals at each point of the 
guide curves by propagating NP without torsion along the guide curves. These normals describe two 
arcs of circles C1 and C2 on the unit sphere, as shown on the right of Figure 10.  

The next step is to build the axis L1, the first of the two polar reciprocal axes of the Gauss map (as 
explained in section 2.1.2). This axis passes through the apex A1 of the cone tangent to S² along C1. It 
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also belongs to the plane of C2. There is one degree of freedom left to choose the orientation of this 

axis. We parametrize this degree of freedom by constructing its orientation vector e1 as follows: 

e1 = u +λ v 

Where: 

- λ is a real variable, the degree of freedom; 
- u is the unit vector of the line (A1Q2), Q2 being the center of circle C2; 
- v is a vector normal to u in the plane of circle C2. 

For a choice of λ, the value of parameter a of section 2.1.2 is given by: 

𝑎2 = 𝑂𝐾1
2 = 𝑂𝐴1

2 − 𝐴1𝐾1
2 =  𝑂𝐴1

2 − (
𝑒1 . 𝐴1𝑂⃗⃗⃗⃗⃗⃗⃗⃗ 

‖𝑒1‖
)

2

 

Where K1 is the orthogonal projection of the center O of the sphere on axis L1. 

This equation can be expressed as a polynomial of degree two in λ. So, one can choose a parameter ϴ 
(we recall that a=tan(ϴ/2) ) and find the corresponding value of λ by solving this equation. A sign 

convention was developed to choose the root amongst the two depending on the sign of ϴ; this aspect 
is secondary and will not be detailed here for sake of conciseness. Note that some values of ϴ are 
impossible to reach for any choice of λ: since the axis L1 passes through A1 and belongs to the plane of 
C2, the distance between the sphere center to axis L1 (that is, the parameter a) is bounded by an upper 
and lower value.     

Once axis L1 is determined, its polar reciprocal axis L2 can be constructed as explained in section 2.1.2. 
We can then proceed in the same way as in section 3.1 to build the Gauss map and the mesh. 

 

 

Figure 10 – Generation method with two arbitrary orthogonal planar curves 

3.3 Developable surfaces  

As discussed in section 2.1.3, developable surfaces may also have planar curvature lines. Since they 
correspond to a case where the Gauss map degenerates to a curve, the method we just presented 
cannot be used. However, we are going to show in this section that it is actually quite straight forward 

to generate a discrete circular equivalent of these surfaces for the non-trivial 3rd type of developable 
surfaces.  

As shown in Figure 11, a discrete general helix can be defined as a polyline for which each segment has 
a constant angle α with a reference plane. By extending these segments, we obtain the rulings of a 
discrete developable surface (two adjacent rulings are coplanar since they intersect), which constitute 
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the first family of curvature lines. The second family is obtained by intersecting these rulings with 

planes parallel to the reference plane. The mesh built by these curvature lines is circular. Indeed, let 
us consider a quad ABCD, where (AB) and (CD) intersect at a point O on the generatrix. Since (AB) and 
(CD) have the same slope, OA = OD and OB = OC. Therefore ABCD is an isosceles trapezoid and is 
inscribed in a circle.   

  

Figure 11 – Developable circular meshes with planar curvature lines. 

 

4 Application to morphogenesis of double-curvature facades 
 

4.1 Classic analytical surfaces 

Our method can be used to generate some classical surfaces of differential geometry. 

4.1.1 Surfaces of revolution 

Meshes of revolution correspond to the particular case where ϴ = 0° or ±180° and one generatrix is a 
circle. The Gauss map is then a network of parallels and meridians on the sphere. An example is the 

torus shown on Figure 12. 

4.1.2 Moulding surfaces 

Moulding surfaces are surfaces that can be generated by sliding a planar generatrix along a planar rail 
curve, such that the plane of the generatrix is always perpendicular to the rail. Their potential for 

fabrication-aware design was investigated in (Mesnil et al. 2015). They can be obtained from our 
method by setting the parameter ϴ to 0° or ±180° , with any type of guide curves. If ϴ = 0°, one curve 
is the generatrix, the other is the rail. If ϴ = 180°, the roles of the two curves are exchanged. For both 
cases, the Gauss map has the same structure as for a surface or revolution. Two moulding surfaces are 
shown on Figure 14. 

4.1.3 Dupin cyclides 

Dupin cyclides is a family of surfaces that can be obtained by applying an inversion to a torus. A key 

property of these surfaces is that their curvature lines are circles, and are therefore planar. They are 

often used in CAD design, as they can be parametrized by NURBS and they allow a C1-continuous (i.e. 

without crease) transition between cylinders, cones, tori, spheres and planes (Pratt 1990; Zube and 

Krasauskas 2015).  

Dupin cyclides can be generated with our method using two orthogonal circles as guide curves. Figure 

12 shows three different cyclides generated from the two same circles but with different values of the 

parameter ϴ. The curvature lines are all inscribed in circles, similarly to the smooth Dupin cyclides. This 
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fact is a consequence of a more general property of our meshes which will be more detailed in section 

4.6.  

        

Figure 12 - Generation of discrete Dupin cyclides from two circles. Left: ϴ =0° (torus). Middle: ϴ =30°. Right: ϴ=65°.  

4.2 Free-form surfaces 

A large variety of surfaces can be generated by playing with the geometry of the guide curves and the 
parameter ϴ. An example is shown in Figure 13, where the guide curves are highlighted in red. Another 
example is shown in Figure 2. We can notice that our methods allow to design the same surface as one 
built as an envelope of radical planes of spheres with centers on conics, as explained in section 2.1.1. 

 

Figure 13 – Freeform circular meshes with planar curvature lines 

4.3 Effect of parameter ϴ 

Figure 14 illustrates the family of shapes that can be obtained by the two same curves by varying the 

parameter ϴ from -180 to 180°. As discussed in section 4.1, the cases ϴ =-180° and 0° correspond to 

moulding surfaces. Our method gives access to a full range of surfaces that can be interpreted as the 

result of a morphing between these two moulding surfaces. There is a discontinuity in the aspect of 

the surface between ϴ  = 45° and 150°. When increasing ϴ beyond 45°, a portion of the mesh bulges 

out, the mesh self-intersects, so the mesh is less interesting for architectural purposes. However, when 

ϴ is further increased, fair meshes are obtained again, with a very different geometry. At ϴ = 180° the 

exact same mesh as with ϴ = -180° is obtained. The range of angles for which the mesh is fair and does 

not auto-intersect is specific to the chosen guide curves. The figure also shows the effect of varying 

parameter ϴ with fixed guide curves, but from side views. The rotation of the planes can be clearly 

observed. 
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Figure 14 – Family of meshes that can be generated from two curves with different values of ϴ 
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4.4 Smooth surfaces with planar curvature lines 

Our method can be used to generate a mesh as fine as needed: the discretization steps of the 

generatrices can be arbitrarily small. However, in some applications, it is desirable to work with a 
smooth surface or smooth edges. Smooth surfaces can be obtained from our circular meshes by 
generating a patch of Dupin cyclide on each quad, thus forming a so-called cyclidic net (McLean 1985). 
Cyclidic nets are C1-continuous surfaces (the surface and its tangent planes are continuous), and their 
curvature lines are composed of circular arcs. (Bobenko and Huhnen-Venedey 2012) showed that 
these nets can be generated on any circular mesh with the topology of a disk. These nets are used in 
(Bo et al. 2011) to generate the geometry of gridshells where beams are arcs of circles and nodes are 
identical. There are three degrees of freedom to generate such a net. They correspond to the 
orientation of one reference frame that defines the orientation of the curvature line tangents at one 
vertex.  

The successive arcs of circle that compose a curvature line of a cyclidic net usually lie in different planes 
– the curvature lines are therefore not planar across the net. However, when the underlying circular 
mesh has planar lines, it is possible to construct a cyclidic net with planar curvature lines.  

Let us first see how such a net can be constructed. A circular mesh with planar lines is showed on Figure 
15 (only the resulting cyclidic net is shown for clarity, the vertices of this mesh are the vertices of the 
net). At a vertex A, we compute the normal NA and the corresponding orthogonal circles CAB and CAD 
on the Gauss map. We then take the tangent vectors to these circles, t1 and t2. These two vectors 

define the reference frame that generates a cyclidic net with planar curvature lines.  

We shall now prove that this resulting cyclidic net actually has planar curvature lines. Since t1 is 
coplanar with CAB, the arc AB of the net is coplanar with the plane of A, B and C. Therefore, the bi-arcs 
ABC and DEF of the net are planar. Their Gauss maps are contained in circles CAB and CDE, we name L1 
the intersection line of the planes of these two circles (this is one of the two polar reciprocal axes). We 
then pick a point P on arc AD, and build the arcs PQ and QR.  Since the patch ABED has planar curvature 
lines, the plane of the Gauss map of arc PQ contains L1. The same result holds for the Gauss map of arc 
QR, so the planes of these two Gauss maps are identical:  the Gauss map of bi-arc PQR is planar. At any 
point of the bi-arc PQR, the tangent vector is tangent to the one of the Gauss map. Therefore, 

therefore, the bi-arc PQR is also planar. We conclude that the whole cyclidic net has planar curvature 
lines. 

 

Figure 15 - Smooth surface with planar curvature lines and its Gauss map. 
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4.5 Aligning a mesh with boundary planes 

Our method can be used to generate meshes where the edge lines are contained in a target plane. 

One typical application is to align a mesh with a vertical planar facade. For example, Figure 16 shows 
a mesh whose boundaries are contained in four vertical planes. The only requirement to obtain this 
alignment is that the tangent vectors at the ends of the guiding curves are horizontal.  

 

Figure 16 - Mesh aligned with four vertical planes  

In a more general way, a mesh can be aligned with four planes if two intersection lines have orthogonal 
directions. This property is shown on Figure 17, where the two orthogonal intersection lines are shown 
in yellow. The following method can then be used to align the mesh with four boundary planes: 

i) Pick a value for parameter ϴ such that the planes P’i intersect S² in a pleasing way (reminder: 
axis 1 is the axis of the pencil of planes P1 and P2, same thing for axis 2 with P3 and P4) ; 

ii) The green arc on the Gauss map gives the normals of the generatrices ; 
iii) To construct the generatrix, we can apply a parallel transformation to the green arc. We can 

also just draw any curve such that the normals at the tips correspond to the tips of the green 
arc. 

The mesh shown on Figure 18 is based on a patch that is fitted on two planes that intersect at 36°. This 
allows successive reflections to generate a final mesh with a symmetry of order five. The mesh is 
aligned with the floor and the pentagonal building inside.  

4.6 Piecewise circular curvature lines 

(Darboux 1896) showed that if a curvature line of a surface with planar curvature lines is an arc of 

circle, then all the curvature lines of the same family are also circular. It turns out that our model enjoys 

a discrete version of this property. There are many interesting applications for fabrication purposes, 

as it is much simpler technologically to bend a beam if the radius of curvature is constant. This property 

is used for the shading structure shown in Figure 25, which is built entirely from planar bi-arcs. This 

property can be formalized as follows: 

Proposition 4 
If a polyline of a circular mesh with planar curvature lines is inscribed in an arc of circle (or an n-arc), 

then all the subsequent curvature lines are also inscribed in arcs of circle (or in n-arcs).  

 

Note: In that proposition, we assume that the change of curvature radius of the n-arcs occurs at nodes, 

and not in an edge. 
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Figure 17 - Fitting four boundary planes 

 

 

Figure 18 – Symmetric mesh built from a patch generated by fitting four boundary planes 

 

Proof: 

Referring to Figure 19, let us consider two adjacent polylines H1 and H2 of a circular mesh with planar 

lines. Let us assume that the vertices of H1 are inscribed in a circle. The Gauss map H1’ of H1 is then 

homothetic to H1. We call H2’ the Gauss map of H2. As proven in section 2.2, the vertices of H1’ and H2’ 

lie on a common cone.  

Since H1 is homothetic to H1’, and since all the edges between H1 and H2 are parallel to the ones 

between H1’ and H2’, the edges between H1 and H2 are also located on a cone. This cone is homothetic 

to the one of the Gauss map. Since the plane of H1 (resp. H2) is parallel to the plane of H1’ (resp H2’), 

and since the vertices of H1 are inscribed in a circle, the vertices of H2 are also included in a circle. 

 



18 
 

 

Figure 19 – If a guide curve H1 is an arc of circle, the subsequent curvature lines (e.g. H2)  will also be inscribed in an arc of 
circle 

4.7 Piecewise planar curvature lines 

One important application of the proposed meshes is for the fabrication of gridshells. For such 
structures, beams never span the whole length of the building: several beam segments are spliced 
together. If we allow a change of the orientation of the plane of a beam at each splice, the variety of 
possible surfaces becomes significantly richer. One way to generate surfaces with piecewise planar 
curvature lines is to use cyclidic nets. As discussed in section 4.4, these nets can be built on any circular 
mesh with topology of a disk, and their curvature lines are piecewise circular. However, the resulting 
surfaces are often highly wavy. (Mesnil, Douthe, Baverel, and Léger 2017) suggest to minimize the 
Willmore energy of the surface by optimizing the orientation of the reference frame. However, 
convergence towards a desired surface aspect is not guaranteed when the net is built on an arbitrary 
circular mesh. 

Our method can be used to design meshes in which curvature lines are piecewise planar. One way to 
obtain this is to generate a first patch with a given value of ϴ, and to use one of its boundary as a guide 
curve to generate a second patch with a different value of ϴ. This method is applied in the mesh shown 
in Figure 20. A first patch is generated from the two blue guide curves. The second patch it then 
generated using the two red guide curves, where one is the boundary of the previous patch. The C1 
continuity of the beams is guaranteed by the C1 continuity of the bottom guide curves. The rest of the 
mesh is obtained by symmetry. Note that, in order to apply the symmetry, the second patch must end 
in the plane of symmetry. This fact constrains the value of ϴ for the second patch. In the resulting 
surface, the radial curvature lines are planar, while each longitudinal curvature line lies in four different 
planes.  
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Figure 20 – Mesh with piecewise planar curvature lines: Each longitudinal line lies in four different planes 

Figure 21 shows a case study in which we approximated the geometry of the Hippo Haus of the zoo of 
Berlin, designed by the firm Schlaich Bergermann und Partners, by a circular mesh with piecewise 
planar lines. The original geometry was derived from two translation surfaces, joined by a transition 
area. We reconstructed the actual guide curves (G1, G2, G3) used on the project, their geometry being 
given in (Schlaich and Schober 1998). We then used our method to generate a circular mesh.  Similarly 
to the actual design, we implemented a transition area between the two domes. As a result, there is a 
twist in the plane of the beams happening at the junctions between the domes and this transition area. 
The surface has three degrees of freedom, one parameter ϴ for each patch: ϴ1, ϴ2 and ϴ3. We 
generated the mesh using G1 and G2 as guide curves. For arbitrary values of the parameters ϴ, the end 
boundary does not match G3. In order to match, we choose a value for parameter ϴ1, and then optimize 
the parameters ϴ2 and ϴ3 in order to minimize the distance between G3 and the end boundary. G2 and 
G3 are similar to each other, as they are both parabolas, so a nearly perfect fit can be obtained. The 
optimization is performed with the BOBYQA algorithm (Powell 2007). In order to improve the aesthetic 

of the mesh, different values of ϴ are also used for the portions of domes outside guide curves G2 and 
G3 (ϴ0 and ϴ4). 

          

 

Figure 21 – A circular mesh with piecewise planar lines with a geometry close to the one of the HippoHaus in Berlin 
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4.8 Minimizing variation of panel size 

The discretization of the guide curves allows to control the size of the mesh faces. Although this 

discretization can be easily controlled manually, it can also be obtained by an optimization process 
aiming at minimizing the variations of the size of panels. The low computation time (later discussed in 
section 5.1) of our method allows to perform this post-processing quickly. Figure 22 compares two 
meshes obtained from the same two B-spline guide curves, but discretized differently. In the first one, 
the guide curves are discretized with constant curve parameter increment. Because of the high 
variation of curvature, some faces are very elongated. In the second one, the discretization is chosen 
such that variance of the panel areas is minimized, using the BOBYQA algorithm. We observe that the 
face sizes are much more uniform. 

 

Figure 22 – Effect of guide curve discretization. Left: Constant increment of B-Spine parameter. Right: Minimizing variation 
of panel area 

5 Discussion 
 

5.1 Algorithmic performance 

The method was implemented in the CAD software RhinocerosTM via the plugin GrasshopperTM, which 
offers a programming interface. In this section, we shall discuss the performance of the algorithm. 

The first main step of the algorithm is to compute the Gauss map. The planes passing through the 
points of the Gauss map are first computed. Then, the intersection lines of these planes are 
constructed. Finally, the intersection of the sphere with these lines is calculated. The second main step 
is the computation of the Combescure transform. This is done by propagation starting from the two 
guide curves. Each vertex is built by calculating the intersection points between two lines. All these 
steps can be analytically computed and are thus highly efficient. The computing time increases linearly 
with the number of faces. 

The performance was evaluated on a case study with 100 x 100 faces: computing time is below 75ms 
on a desktop with 3.5GHz processor and 16GB RAM. This low computation time allows for a real-time 
design exploration. 

5.2 Limitations 

The following limitations apply to the shapes that can be obtained with our method. First of all, 
surfaces with planar curvature lines cannot have umbilics, so there cannot be singularities in the mesh. 
Secondly, self-intersection of the mesh can occur for some combinations of guiding curves. As shown 
on Figure 23, once a guiding curve (e.g. the red one) and the parameter ϴ are defined, the planes in 
one direction are entirely defined (as shown on the right-hand figure). These planes, when not parallel, 
necessarily intersect. The second curve (e.g. the blue one) then needs to lie within some boundaries in 
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order to prevent the mesh to reach these plane intersections. On Figure 23, the blue curve is chosen 

close to that boundaries: a pinching of the mesh can be observed. 

   

Figure 23 – Mesh pinching. Pushing up the blue guide curve would cause self-intersection  

 

5.3 C∞ surfaces with planar curvature lines 

For some applications, it might be desirable to have a C∞
 surface. One could wonder if surfaces with 

planar curvature lines can be described by B-splines or NURBS surfaces, as these are ubiquitous in 
computational design. (Darboux 1896) showed that if one curvature line of a surface with planar 

curvature lines is polynomial, then all the subsequent curvature lines are also polynomial with the 
same degree. Hearing this, one might wonder if these surfaces can be modelled by B-splines, with iso-
lines being curvature lines, thus forming a new family of principal patches. The answer is unfortunately 
negative, as shown in the following counter-example in Figure 24. A surface with parabolic curvature 

lines is constructed. It then approximated by a Bezier patch of degree two (for which all iso-lines are 
parabolas), such that boundary curves match the surface boundary exactly. We observe that the iso-
lines are not aligned with the curvature lines. Nonetheless, the possibility to model surfaces with 
planar curvature lines by NURBS is an open question. Such a model was for example proposed for 
Dupin cyclides in (Zube and Krasauskas 2015).  

 

Figure 24 – Difference of parametrization between a surface with parabolic curvature lines and a 2nd order Bezier patch 
approximating it 

6 Application to gridshell fabrication 
 

The benefits of using circular meshes for architectural envelopes was discussed in the introduction: 
they offer a reference geometry that can be built with a network of beams with torsion-free nodes of 
constant height, that can be covered with flat panels. Our method has the additional property of having 
planar curvature lines. In this section, we highlight one significant application of this property to metal-
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glass gridshells built with curved structural pipes covered with flat quadrangular glass panels. Such 

structures have the benefit of appearing curved from an indoor perspective, as the beams are then 
more noticeable than the panels, without having to resort to costly curved glass. In such structures, 
pipes are produced straight, and are then bent in factory, most often by a roller bender. The bending 
process is much more precise if the target curve is planar and piecewise circular, which is precisely the 
property of the curvature lines of cyclidic nets built on circular meshes with planar lines. 

Figure 25 shows an application of our method to the design of a shading structure. This structure is 
generated from a mesh with three offsets. The top offset is used to lay a quad mesh with planar faces, 
which defines the geometry of glass panels. The other three layers are used to lay beams: one layer in 
the ortho-radial direction, and two layers in the radial direction in order to provide a high bending 
stiffness. All the radial beams are bi-arcs, all the ortho-radial beams are circular. This fact simplifies 
significantly the beam forming process, and offers the possibility to build the beams by splicing two 
circular arcs. Due to the vertex offset, all nodes have the same height. Furthermore, beams always 
cross at a right angle. Thanks to these properties, a single connector detail can be used for all 

connections. Interestingly, the combination of vertex-offset and piecewise circular beams yields an 
edge offset: the top and bottom beams are at a constant distance to each other. They are also parallel: 
a plane that is perpendicular to the bottom chord will be also perpendicular to the top chord. These 
properties can be used to design standard shear connectors between the top and bottom layers.  

Such a structure can for example be fabricated with similar details as the Schubert Club Band Shell, 
shown in Figure 1. We note that this structure has all the fabrication properties described above, since 
its shape is constrained to a portion of torus, a particular surface with planar curvature lines. Our 
method allows to obtain a much wider design space. 

 

 

Figure 25 – Shading structure built from flat bi-arcs, covered with flat panels, and with torsion-free nodes. Top: overall view.  
Bottom: Summary of geometrical properties (bulky sections used on purpose to highlight properties) 
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Planar lines are also interesting for timber structures. Curved wooden beam are often fabricated in 

glued laminated timber (glulam), a process in which thin, flexible strips of wood are glued together. If 
a beam is not planar, each strip of wood has a geodesic curvature, and therefore needs to be split 
longitudinally into “sticks”: this complexifies significantly milling and gluing. Such a process had to be 
used for example for the fabrication of the Centre Pompidou in Metz (France) in 2010. The geometries 
generated with our method have planar lines, therefore they can be fabricated out of regular glulam 
(in which the strips need not be split into sticks).       

7 Conclusion 
 

In this paper, we presented a method to generate circular meshes, conical meshes and C1 surfaces with 
planar curvature lines. The method allows to align a mesh with boundary planes and to build a network 
of piecewise circular beams that can be covered with flat quads. These properties are all guaranteed 
exactly by geometrical proofs. The proposed method enables an intuitive, robust and real-time 
exploration of the full design space. We also introduce a method to design a surface in which curvature 
lines are piecewise planar in order to get access to a wider range of surfaces. Resulting meshes are of 
particular interest for the fabrication of gridshells, and they have planar quad faces, node-offset, and 
planar lines. An application  to steel-glass gridshells is detailed. For these structures, the proposed 
geometry rationalizes the fabrication of beams and panels, and allow a standardization of the nodes 
and connectors. 
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