Theoretical characterization of the shikimate 5-dehydrogenase reaction fromMycobacterium tuberculosisby hybrid QC/MM simulations and quantum chemical descriptors - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Molecular Modeling Année : 2020

Theoretical characterization of the shikimate 5-dehydrogenase reaction fromMycobacterium tuberculosisby hybrid QC/MM simulations and quantum chemical descriptors

Résumé

In this study, we have investigated the enzyme shikimate 5-dehydrogenase from the causative agent of tuberculosis,Mycobacterium tuberculosis. We have employed a mixture of computational techniques, including molecular dynamics, hybrid quantum chemical/molecular mechanical potentials, relaxed surface scans, quantum chemical descriptors and free-energy simulations, to elucidate the enzyme's reaction pathway. Overall, we find a two-step mechanism, with a single transition state, that proceeds by an energetically uphill hydride transfer, followed by an energetically downhill proton transfer. Our mechanism and calculated free energy barrier for the reaction, 64.9 kJ mol(- 1), are in good agreement with those predicted from experiment. An analysis of quantum chemical descriptors along the reaction pathway indicated a possibly important, yet currently unreported, role of the active site threonine residue, Thr65.
Fichier principal
Vignette du fichier
s00894-020-04536-9.pdf (3.49 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02987221 , version 1 (24-10-2022)

Identifiants

Citer

Igor Barden Grillo, José Fernando Ruggiero Bachega, Luís Fernando S. M. Timmers, Rafael A. Caceres, Osmar Norberto de Souza, et al.. Theoretical characterization of the shikimate 5-dehydrogenase reaction fromMycobacterium tuberculosisby hybrid QC/MM simulations and quantum chemical descriptors. Journal of Molecular Modeling, 2020, 26 (11), pp.297. ⟨10.1007/s00894-020-04536-9⟩. ⟨hal-02987221⟩
62 Consultations
22 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More