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ABSTRACT
During the past years, deep learning brought a big step in
performance of music source separation algorithms. A lot
has been done on the architecture optimisation, but training
data remains an important bias for model comparison. In
this work, we choose to work with the frugal and well-known
original TasNet neural network and to focus on simple meth-
ods to exploit a relatively important dataset. Our results on the
MUSDB test set outperform all previous state of the art ap-
proaches with extra data on the following source categories:
vocals, accompaniment, drums, bass and in average. We be-
lieve that our results on how to shape a training set can apply
to any type of architecture.

Index Terms— Audio separation, audio deep learning,
audio database, music source separation, benchmark

1. INTRODUCTION

Deep learning for audio source separation is a quite recent
trend. In music, neural networks techniques brought signifi-
cant improvements through the two last SiSEC challenge [1,
2] and many approaches have been proposed in the past few
years [3–12]. From the first neural network architectures [3]
until recently, almost all proposed neural networks were us-
ing the results of the Fourier transform as input representa-
tion (and expected output). A significant gap has been made
with the release of TasNet [6, 10] which was firstly designed
for speech separation. Conversely to frequency based ap-
proaches, TasNet is an end-to-end architecture, also called
temporal or time-domain approach. It takes as input the raw
audio frames and its input representation is learned by the
first layers (encoder) instead of being deterministic like the
Fourier transform. This TasNet or encoder-separator-decoder
paradigm has gather a lot of attention recently [11–14]. How-
ever in [14], the authors shows that we should not be categor-
ical on using a learned encoder for speech separation.

For music separation, the reference benchmark stays
today the MUS task of the SiSEC challenge based on the
MUSDB18 dataset [15]. Unfortunately, this dataset contains
only 150 songs (with only 100 songs in the training part)
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for a total of approximately 10 hours of data. This size is
quite limiting for deep learning approaches whose strength is
to make the most of large training sets, and more and more
approaches are using extra data (in addition to the MUSDB18
corpus) for the training. As a consequence, there is in fact
two different tasks to address: building (music) source sep-
aration model with scarce training set and building the best
model possible. This is well highlighted by the paperswith-
code website1, although it does not list paper without code
like MMDenseLSTM [5].

MMDenseLSTM [5], Spleeter [8], Demucs [9] and Conv-
TasNet [10] (benchmarked in [9]) yield the best results so far,
respectively using in the order of 8, 200, 2 and 2 times more
songs2 than the MUSDB18 training set. One can remember
two points : except Spleeter, all these approaches are highly
demanding in term of hardware learning resources ; over all
approaches, the performance difference for a given architec-
ture between with and without extra data is relatively small
(between 0.3 and 0.7 db SDR improvement in average).

In this work, we explore how to make the most of a large
collection of extra data but with a not so demanding model in
terms of hardware. We start by presenting the experimental
setup along with the state of the art TasNet-LSTM architec-
tures, i.e., original TasNet, we then show the different corpus
configurations used as training set. After discussing on the
obtained results, we conclude with a series of recommenda-
tion on how to exploit large datasets.

2. EXPERIMENTAL SETUP

In this section, we present the chosen architecture for this pa-
per, and the common configuration for training.

2.1. Original TasNet

The Encoder-Separator-Decoder architectures approach has
been popularised by TasNet [6]. The authors first intention
was to explore if the STFT representation was necessary in
source separation problems, and if one can reach better re-
sults with a learned representation. It has shown significant

1https://paperswithcode.com/sota/music-source-separation-on-musdb18
2we did not take into account data augmentation on purpose



results for either speech separation, dereverberation and de-
noising. Even if it has yet not been used for music source
separation, its simple architecture allows a large use with low
GPU RAM usage, and can be used as a simple baseline.

In the original TasNet [6], the STFT is replaced by 1D
convolutional layers. The results is then provided to the sep-
arator which is powered by the well known LSTM temporal
network in the case of the original TasNet, here used in bidi-
rectional mode. More information can be found in Section 2.4
or in [6, 16].

2.2. Discarded architectures

Even if we have selected a specific type of architecture for
our paper, many recent architecture could have been included
in our work. However, they would have come with some
downside. Approaches using DenseNets [5], even if they
bring greater performances were discarded due to computa-
tion costs. Conv-TasNet [10] were also ignored due to the
high numbers of residual connection in the TCN. Demucs [9]
doesn’t have those defaults, but too much computation is
required to ”encode” the data with the 6 convolutional lay-
ers. The computational costs are not a problem for either
U-Net [17] architectures nor Spleeter [8], but we choose for a
more up-to-date and modular approach such as TasNet.

The best option would have be to use the Dual Path RNN
(DPRNN) [12], a more recent improvement of the RNN layer,
i.e. the separator, of TasNet. Unfortunately, our experiments
were already running and were taking months due to poor
GPU.

2.3. Data

2.3.1. MUSDB18

MUSDB18 [15] is a database composed of 150 songs (to-
talling around 10 hours of mixture). It is provided under
the stems format which makes available the ground truth for
vocals, bass, drums and other. The accompaniment
source is the counterpart of the vocals source. It was re-
leased for the SiSEC18 challenge MUS task and is an im-
provement of an earlier dataset.

2.3.2. Extra-data

We collected online individual instrument recordings which
we semi-automatically assigned to each source (firstly vo-
cals and accompaniment and secondly vocals, drums, bass
and other) in order to obtain a total of approximately 300
hours of supervised data. If we consider that a song is in
average 4 minutes long, we estimate that our full dataset is
20 times bigger than the data used to train Demucs (150+84
songs [9]), 5 times bigger than Sony dataset (800 songs [5])
but 5 times smaller than the Bean dataset from Deezer used to
train Spleeter (24097 songs [8]).

2.3.3. No data augmentation

Usually, with relatively low database sizes, various aug-
mentation techniques are used, in particular overlapping
excerpts [9] but many other possibilities exist [18]. Although,
some are relevant, we believe that many of them are only
efficient when there is a lack of data. For instance, switching
channels doesn’t represent efficiently real music, it is for the
network a harder problem to solve to not be able to use cor-
relations between channels. Also, overlapping excerpts can
cause overfitting, and would imply too much training time as
the used algorithm and framework is already reaching con-
vergence after more than a month. We decide then to restrict
data to non overlapping music excerpts, and to not test any
data augmentation in this paper.

2.4. Setup

The used computer has a single NVIDIA Titan X GTX GPU
(12 GB VRAM). The code was implemented in Pytorch [19].
Adam algorithm [20] is used to optimize the loss function pre-
sented in the next section. During training, the learning rate is
halved if the validation loss does not improve after three con-
secutive epochs. An early stopping mechanism is also used
if no improvement is observed for more than ten consecutive
epochs. The hyperparameter values are fixed for all experi-
ments and are as follow : Learning Rate : 0.001 ; Gradient
Clipping : 5 ; LSTM layers : 4 ; LSTM cells per layer : 500
; Number of filters in the encoder : 500 ; Frame size : 220
samples ; Sampling rate : 44100 Hz.

2.5. Loss function and metrics

The training metric is the now widely used SI-SNR [6,10–12,
21]. Given the estimated time-domain source ŝ and the clean
source s, it is computed as follow:

starget =
〈s, ŝ〉
||s||2

s

enoise = ŝ− starget

SI − SNR(s, ŝ) = log10

(
||starget||2

||enoise||2

)
It has shown good performance either for speech separation
or music separation. It is also used for evaluation on our test
set (a small subset of data described in Section 2.3.2).

For evaluation on the MUSDB18 test set (see Sec-
tion 2.3.1), we use the Signal-to-Distortion-Ratio (SDR) from
the BSS-Eval toolbox [22] The SDR is the reference metric
for evaluating the impact of the overall distortion caused by
source separation algorithm. It can be separated in 2 met-
rics: SIR and SAR, that mesure the presence of 2 types of
distortion: Interferences and Artifacts.



3. EXPERIMENT

In this section, we show our results along with different vari-
ations of our training sets. Section 3.1 to 3.4 first focus on
vocals versus accompaniment separation while 3.5 presents
results on the MUSDB test set for four types of sources. Two
experiments, denoted * and † will be present several time in
the result tables.

3.1. Preliminary experiments

In order to adjust the learning hyper-parameters, a small sub-
set of data (10% of the total size) and relatively small au-
dio excerpts (15 seconds per song) are used. This choice al-
lows us to reach learning convergence in less than a day on
our GPU, hence enabling us to iterate until finding the values
given in Section 2.4.

The same preliminary series of experiments leads us to
observe that adding to the training set a second audio ex-
cerpt from the same song is not leading to improvement in
the learning. The loss after the same number of epoch is bet-
ter but each epoch last twice longer and in fact the losses after
the same amount of learning time are worse when adding a
second audio excerpt from the same song. Conversely, adding
audio excerpts from other songs leads to small improvement
in the learning for the same amount of learning time.

3.2. Effect of additional data (i.e., the data variety)

Based on this first observation, we carry a series of training
with variable database size. The audio excerpt length are 20
seconds long for these experiments. The SI-SNR on the test
set after 125 epochs are displayed in Table 1. Without sur-
prise, the more data fed to the network the better the separa-
tion performance are.

Database (%) Vocals Accomp. Mean
2 -3.19 -7.93 -5.51

10 -4.61 -10.52 -7.57
50 -6.90 -12.65 -9.77

100 * -10.33 -13.40 -10.78

Table 1. SI-SNR measured on the test set for different size of
the training set.

However, one can notice that while the learning speed is
rather similar at the beginning of the learning (as first ob-
served in Section 3.1), experiments with smaller training set
reach stopping criteria earlier than with the full training set.
Hence, when training is done until stopping criteria for all
these experiments, this leads to differences in separation per-
formances even bigger than those displayed in Table 1.

3.3. Effect of the audio excerpt length (i.e., the context)

We run a second set of experiments on the full training set
with varying audio excerpt length. With in mind to reduce
the bias of having a variable total amount of data seen during
the learning, excerpt from the same songs are taken. Finally,
With the constrain of a relatively small GPU-VRAM size, we
limited the maximum of 30 seconds for the audio excerpt as
longer excerpts would lead to reduce the batch size and com-
promise the learning stability. The results presented in Table 2
are obtain after 50 epochs on the full training set. As one can
expect, the longer the excerpt lengths are the better the sepa-
ration performances are.

Excerpt length (sec) Vocals Accomp. Mean
5 -3.29 -13.54 -8.42
10 -4.95 -12.72 -8.83

20 * -6.18 -12.36 -9.27
30 † -8.11 -12.44 -10.27

Table 2. SI-SNR measured on the test set for different length
of audio excerpt in the training set.

3.4. Data variety versus context

In a more formal experiments than observations from Sec-
tion 3.1, different training sets are shaped as followed. Only
one excerpt is taken from each song. Each training sets use
different number of songs. The audio excerpt lengths pre-
sented to the network are adapted so that the different training
sets have equivalent total amounts of audio. The sizes of the
batches are also adapted so that the amount of audio per batch
is the same from one training set to another. Tested audio ex-
cerpt lengths for this experiment are 5, 10, 15, 20, 30 and 40
seconds.

Regarding accompaniment, all experiments lead to sim-
ilar performance separations. Regarding the vocals, per-
formance separation for higher than 15 seconds excerpts
are equivalent while for inferior excerpt lengths we observe
clearly worst separation results. This source specific behavior
is also observed in experiments described in Section 3.3.

While we can not conclude on whether the variety is more
important than the context, we can keep in mind that excerpt
length should be at least 20 seconds for efficient learning. As
the vocals could be absent from the mixture for longer than
the accompaniment, we can formulate the hypothesis that this
might cause instability during the training for batches where
vocals are greatly absent.

3.5. A new state of the art on the MUSDB18 test set with
extra data

While previous experiments were only targeting the separa-
tion of vocals versus the accompaniment, we here train



Approaches Extra data (ra-
tio to MUSDB)

Vocals Accomp. Drums Bass Other Mean

Conv-TasNet [9, 10] 2 6.74 7.11 7.00 4.44 6.32
Spleeter [8] 200 6.86 12.54 6.7 5.51 4.02 5.77
Demucs [9] 2 7.05 7.08 6.70 4.47 6.32

DenseNet (TAK2) [5] 8 7.16 13.73 6.81 5.40 4.80 6.05
D3Net [23] 1 (no extra data) 7.24 13.52 7.01 5.25 4.53 6.01

TasNet * [6] {1} 30 7.34 13.76 7.68 7.04 4.04 6.52
TasNet * [6] {4} 30 7.39 6.90 7.33 4.04 6.42
TasNet † [6] {1} 30 7.43 13.66

Table 3. SDR measured on MUSDB18 test set (SiSEC challenge data). The results presented in this paper are noted * and †.

two additional networks to complete the * experiment, one
to separate the drums source from the rest and one to sepa-
rate the bass source from the rest. While vocals models (*
and †) are trained until performances reach a plateau (around
300 epochs, nearly two months), bass and drums models were
only trained for 30 epochs due to a lack of time and computa-
tional power.

As a final comparison, we evaluate all those models on the
MUSDB18 test set. The accompaniment source is obtain
as output of the same model that predict the vocals. Con-
versely, the other source is obtain by subtracting the tem-
poral estimates of the vocals, bass and drums sources
to the mixture, which is not ideal but enables us to quickly
compute a mean SDR and compare with the state of the
art. The four sources were evaluated in two different ways,
firstly sources by sources denoted {1} and secondly all four
sources together denoted {4}. The results for MMDenseL-
STM [5], Demucs [9] and D3Net [23] are directly taken from
the corresponding papers. For Spleeter [8], we used the pre-
trained model publicly available and run the evaluation on the
MUSDB18 test set. All results are gathered in the Table 3.
Scores higher than the state of the art are displayed in bold.
Except for the other source, the TasNet models learned
on our dataset outperform all previous state of the art on all
following categories : vocals, accompaniment, bass,
drums and average SDR.

3.6. Subjective assessment

We did not proceed to any formal subjective evaluation of
the results, but at least three audio experts listened to the au-
dio results of the different experiments (experiments of Sec-
tion 3.2, 3.3) and 3.5 without noticing any behavior drifting
from the objective scores. As the same model is used along
the all experiments, this is not surprising. Audio results and
MUSDB json files are available upon request.

However, one can noticed that Spleeter results are slightly
different from all other approaches regarding the balance be-
tween artefact and interference: it introduces more artefacts
as usual but less interferences. This was easy to hear and also
well depicted by the SAR and SIR scores.

4. DISCUSSION

Even if our results reaches state of the art, reader must remind
that Table 3 stays a comparison of full training pipelines - in-
cluding extra data - rather than a deep learning architectures
comparison. Our work confirms that finding a tradeoff be-
tween performances with a scarce training set, scalability on
a massive training set and frugal model (in order to scan the
all training set) is of importance. While there is still an unbal-
anced research effort between model and data, we think that
the training data bias reduction initiated in [7,15,23] is part of
the right path. Prelimary experiments on the same corpus with
other architectures [16,24] also lead us to comparable perfor-
mance, i.e., over all previous state of the art approaches. This
strengthen our assumption that for now the training dataset is
at least as important as the model complexity.

Regarding instruments separation (drum and bass), most
approaches are usually struggling. Architectures such as De-
mucs [9] propose a new encoder with a larger receptive field
targeting these sources but without significant improvement.
While it seems that training on our database greatly improve
the performances, we also believe that architectures like Tas-
Net do not favorize extraction of such sounds, essentially due
to the small size of the encoder (hence the receptive field of
the network). One interesting path could be changing the
learned encoder for a fixed one (as in [14] (fixed filterbank) or
in [25] (STFT)) adapted to music instruments. Using a FiLM
layer [26] is also an interesting idea.

5. CONCLUSION

In this paper on music separation, we first depict the impor-
tance of audio excerpt length as well as the use of extra data
during the training. We also show that a really simple model
like the original TasNet outperforms all previous proposed
models like MMDenseLSTM, Spleeter or Demucs (trained
with extra data). On the MUSDB18 test set (SiSEC challenge
data), reported SDR show improvement for most source types
and in average. This indicates that for the music source sepa-
ration problem data is for now at least as important as well de-
signed neural network architectures. This also indicates that
future model comparison should definitely avoid the bias of
extra and/or different training data.
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