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DNN-Based Mask Estimation for Distributed
Speech Enhancement in Spatially Unconstrained

Microphone Arrays
Nicolas Furnon, Romain Serizel, Slim Essid, Irina Illina

Abstract—Deep neural network (DNN)-based speech enhance-
ment algorithms in microphone arrays have now proven to be
efficient solutions to speech understanding and speech recog-
nition in noisy environments. However, in the context of ad-
hoc microphone arrays, many challenges remain and raise the
need for distributed processing. In this paper, we propose to
extend a previously introduced distributed DNN-based time-
frequency mask estimation scheme that can efficiently use spatial
information in form of so-called compressed signals which are
pre-filtered target estimations. We study the performance of this
algorithm named Tango under realistic acoustic conditions and
investigate practical aspects of its optimal application. We show
that the nodes in the microphone array cooperate by taking profit
of their spatial coverage in the room. We also propose to use the
compressed signals not only to convey the target estimation but
also the noise estimation in order to exploit the acoustic diversity
recorded throughout the microphone array.

I. INTRODUCTION

SPEECH enhancement aims to recover the clean speech
from a noisy signal. It can be used in applications as

diverse as automatic speech recognition, hearing aids, and
(hand-free) mobile communication. Single-channel speech en-
hancement, relying on a single microphone signal, can sub-
stantially increase the speech quality but the noise reduction
is often accompanied by an increase in the speech distor-
tion. Multichannel speech enhancement can overcome this
limitation by exploiting the spatial information provided by
several microphones. One can distinguish the data-independent
multichannel filters [1] from the data-dependent multichannel
filters [2]–[5], which depend on the estimation of the statistics
of the noisy signal, the noise signal or the target signal.
The multichannel Wiener filter (MWF) is a data-dependent
multichannel filter, which is optimal in the mean squared
error (MSE) sense. It can be extended to the speech dis-
tortion weighted multichannel Wiener filter (SDW-MWF) [6]
which enables a trade-off between the noise reduction and
the speech distortion. Most of these multichannel filters have
been developed in constrained microphone arrays, where the
number and positions of microphones are fixed and where
all the microphones share a common clock. They are called
centralized solutions, because a so-called fusion center gathers
all the signals of the microphone array.
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With the multiplication of embedded microphones in wire-
less portable devices that surround us, ad-hoc microphone
arrays have gained interest [7]. They can be considered
as heterogeneous, unconstrained microphone arrays, which
are much more flexible and can cover a wider area than
traditional microphone arrays. However, the dependency of
the centralized approaches on a fusion center makes these
solutions too constrained and unrealistic. Many solutions have
been proposed to distribute the processing over the whole
microphone array in order to get rid of the fusion center,
based on a reduction of the transmission costs [8]–[10] or
on distributed processing [11]–[14]. Bertrand and Moonen in-
troduced a distributed adaptive node-specific signal estimation
(DANSE) algorithm, where each node, instead of sending all
its signals to a fusion center, sends only one signal, called
compressed signal, to the other nodes, thus reducing the
bandwidth cost in addition to cancelling the need of a fusion
center [15].

All of these methods rely on the knowledge either of
the (relative) acoustic transfer functions, or of the target
signals covariance matrices, or both. Recently, deep neural
network (DNN)-based solutions have enabled great progress
to accurately estimate these parameters, most of the time by
predicting time-frequency (TF) masks from a single-channel
input [16]–[18]. However, it is also possible to exploit the
multichannel information to better estimate these parameters.
The spatial information can be explicitly given to a DNN
through handcrafted features [19], [20], or implicitly by feed-
ing the DNN either with the multichannel short-time Fourier
transform (STFT) signals [21]–[23] or with the multichannel
raw waveforms [24], [25].

Although these DNN-based methods lead to promising
results and manage to exploit multichannel information, most
of them are centralized solutions. Very little work has been
published on DNN-based speech enhancement in ad-hoc mi-
crophone arrays. Ceolini and Liu [26] introduced a DNN-based
method that can process real-time speech enhancement in an
ad-hoc microphone array but their solution relies on a central-
ized minimum variance distortionless response (MVDR) and
the DNN is not able to exploit multichannel information. In a
previously published paper, we introduced a distributed DNN-
based mask estimation that could exploit the multichannel data
to better predict the masks [27]. Tested in a simple scenario
with two nodes, it outperformed a MWF applied to the nodes
separately.

This paper proposes an extended study of our previously
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introduced speech enhancement scheme [27]. By analysing
its performance under various configurations, including real
world ones, we confirm that it matches DANSE performance
in terms of source to interferences ratio (SIR) and source to
artifacts ratio (SAR) even when DANSE is implemented using
an oracle voice activity detector (VADOR). We also evaluate
in detail the performance under varying SIRs and reverberant
conditions and highlight the cooperation of the nodes in the
microphone array. This study shows that, depending on the
characteristics of the signals captured by the sending and the
receiving nodes, sending the so-called compressed signal could
be optimized by deciding to send the estimation of either the
target or the noise.

Besides, we analyse the performance of the DNNs used
in this context. In particular, we investigate the influence of
the noise and the spatial diversity between the training and
test conditions, looking for a trade-off between performance
and robustness to varying scenarios. We also investigate the
influence of the quality (in terms of SIR) of the signals used
to train the DNNs.

This paper is organized as follows. In Section II, we describe
the problem and the multichannel speech enhancement solu-
tions that this paper relies on. In Section III we present our
proposal and the challenges that it raises. The experimental
setup used to evaluate our proposed solution is described
in Section IV. In Sections V and VI, we investigate the
performance of the DNNs which have single-channel and
multi-channel input. We show in Section VII that sending
the noise estimation can lead to improved performance. We
conclude the paper in Section VIII.

II. PROBLEM FORMULATION

A. Notations

We consider a fully-connected microphone array with K
nodes each having Mk microphones. M =

∑K
k=1Mk is the

total number of microphones. The signal recorded by the m-th
microphone of the k-th node is denoted as yk,m. Under the
assumption of an additive noise model, in the STFT domain,
we have:

yk,m(f, t) = sk,m(f, t) + nk,m(f, t) ,

where sk,m and nk,m denote the speech and noise signals
respectively and where f and t denote the frequency and time
frame indexes respectively. For the sake of conciseness, we
will thereafter omit the frame and frequency indexes unless
necessary. The signals from the different channels at node k
are stacked into the vector:

yk = [yk,1, ..., yk,Mk
]T .

All the signals of all nodes are stacked into the vector
y = [yT

1 , ...,y
T
K ]T . Similarly, the speech and noise signals

are stacked into s and n. In the following, regular lowercase
letters denote scalars; bold lowercase letters indicate vectors
and bold uppercase letters indicate matrices.

B. Multichannel Wiener filter

The centralized MWF aims at estimating the speech compo-
nent si of the i-th sensor of the microphone array. The MWF
is the optimal filter in the MSE sense, i.e. it minimises the
MSE between the desired signal si and the estimated signal:

wMWF = arg min
w

E{|si −wHy|2}. (1)

E{·} is the expectation operator and ·H denotes the Hermi-
tian transpose. Solving Eq. (1) yields:

wMWF = R−1yy Rysei , (2)

where Ryy is the correlation matrix of the input signal, Rys

is the cross-correlation matrix between the input signal and its
speech component and ei ∈ RM is a vector of zeros with a
1 at the i-th position. Without loss of generality, we will take
the channel i = 1 as the reference channel in the sequel. The
correlation matrices can be obtained as follows:

Ryy = E{yyH} (3)
Rys = E{ysH} . (4)

Under the assumption that speech and noise are uncorrelated
and that the noise is locally stationary, we have:

Rys = Rss = E{ssH} = Ryy −Rnn (5)

where Rnn is the noise correlation matrix:

Rnn = E{nnH} . (6)

Computing these matrices requires the knowledge of noise-
only periods and speech-plus-noise periods. This is typically
obtained with a voice activity detector (VAD) [6], [15] or a
TF mask [16], [26], [28].

A variant of the MWF, called SDW-MWF, was introduced
by Doclo et al. in order to balance the noise reduction with the
speech distortion [6]. Introducing µ, the trade-off parameter
between the noise reduction and the speech distortion, the
SDW-MWF can be computed as

wSDW−MWF =
(
Rss + µRnn

)−1
Rsse1 . (7)

Under the assumption that a single speech source is present,
Serizel et al. proposed a rank-1 approximation of the co-
variance matrix Rss based on the generalized eigenvalue
decomposition (GEVD) of the matrix pencil {Ryy,Rnn} [29].
Combining it with the SDW-MWF extension of the MWF,
they designed a filter which proved to be more robust in low
signal to noise ratio (SNR) scenarios with a stronger noise
reduction [29].

C. Distributed adaptive node-specific signal estimation
(DANSE)

The DANSE algorithm is a distributed MWF which aims at
estimating the speech component sk,1 of the reference micro-
phone of every node k [15], [30], [31]. We still assume that
a single speech source is present. In the DANSE algorithm,
no fusion center gathers all the signals of all nodes. Instead,
every node k sends only one so-called compressed signal zk
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to the other nodes and receives K − 1 signals from the other
nodes. A SDW-MWF is applied to the vector

ỹk =
[
yT
k , zT−k

]T
(8)

where z−k = [z1, ..., zk−1, zk+1, ..., zK ]T

and outputs the estimated speech signal ŝk as follows:

ŝk = wH
k ỹk (9)

= wH
kkyk + gH

−kz−k , (10)

where wk =
[
wT

kk, gT
−k
]T

is the so-called global filter.
wkk and g−k are filters applied to the noisy signal yk and
the stacked compressed signals z−k respectively. Similarly to
Equation 7, the global filter can be computed as

wk =
(
Rs̃s̃,k + µRññ,k

)−1
Rs̃s̃,ke1 , (11)

where Rs̃s̃,k and Rññ,k are estimated from ỹk. From Eq. (10),
it can be seen that the sub-filter wkk is applied on the local
signals yk only, which yields the compressed signal zk to be
sent to the other nodes:

zk = wH
kkyk . (12)

D. Mask-based multichannel speech enhancement

Originally, the DNN-predicted TF masks were directly
applied to the STFT of the noisy signal in order to extract
the target speech [32], [33]. This idea continues to be used
with a good performance both in the single-channel [34] and
the multichannel context [35], but it requires much better TF
masks and complex DNN architectures. It also suffers from
distortion that can be alleviated by using multichannel filters.
In microphone arrays, a common practice is to estimate a
TF mask that is not directly applied to the noisy signal, but
used to replace the VAD necessary to compute the speech and
noise statistics [3]–[5] required by the multichannel filters like
MVDR [16], [26] or MWF [28]. Using these TF masks, the
speech covariance matrix can be estimated as:

Rs̃s̃,k = E{s̃ks̃Hk } (13)

with
s̃k = m̃s,k � ỹk (14)

where � is the Hadamard product and m̃s,k are the stacked
TF masks corresponding to the speech components of ỹk.
To compute the noise covariance matrix, the TF masks m̃s,k

should be replaced by their complement m̃n,k = 1− m̃s,k.
To estimate these TF masks, a common practice is to use

a DNN which estimates them from a single-channel noisy
signal [16], [26], [28]. In a previous work, we showed that
we can improve the TF mask prediction, as represented in
Figure 1 [27]. In a two-node scenario, we introduced a
batch-version of DANSE where at each node, a convolutional
recurrent neural network (CRNN) predicted a TF mask out of
the reference channel of the node and the compressed signal
sent by the other node. To avoid issues related to convergence,
we split the iterative process of DANSE into two distinct steps.
In a first step (left box of Figure 1), each node processes only

Fig. 1. Illustration of Tango, a two-step speech enhancement algorithm,
here applied on two nodes. “SN DNN” and “MN DNN” respectively refer
to single-node and multi-node deep neural networks. Bold arrows represent
multichannel signals, simple arrows represent single-channel signals.

local signals to estimate the compressed signal as zk = wH
kkyk

and sends it. In a second step, detailed in Figure 2, each
node uses both local and compressed signals to estimate the
desired signal. Similarly to the original version of DANSE,
the compressed signal is used to compute the speech and noise
covariance matrices, but we additionally use it to better predict
the TF mask with the multi-node DNN. The pseudo-code of
our algorithm is reported in Algorithm 1. We name “Tango”
this two-step algorithm based on DANSE. Unless mentioned
otherwise, all the filters are SDW-MWF computed with a rank-
1 GEVD of the covariance matrices [29] and a trade-off factor
µ = 1.

Algorithm 1 Tango algorithm
procedure STEP 1

for k = 1 · · ·K do
Get the TF mask ms,k with a DNN from yk,1
Compute Rss,k, Rnn,k from yk over all samples
Compute wkk =

(
Rss,k + µRnn,k

)−1
Rss,ke1

Compute zk (Eq. (12))
end for

end procedure

procedure STEP 2
for k = 1 · · ·K do

Receive z−k from the distant nodes
Get the TF mask m̃s,k with a DNN from [yk,1, z

T
−k].

Compute Rs̃s̃,k, Rññ,k from ỹk over all samples
(Eq. (13))

Compute wk (Eq. (11))
Compute ŝk (Eq. (9))

end for
end procedure

In the rest of the paper, we will refer as single-node DNNs
to the DNNs which predict a TF mask based on the signal of
only one node (e.g. the DNN of the first step in Figure 1), and
as multi-node DNNs to the DNNs which predict a TF mask
based on signals coming from several nodes (e.g. the DNN of
the second step in Figure 1).
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Fig. 2. Detail of the second filtering step. Bold arrows represent multichannel
signals, simple ones represent single-channel signals.

III. ANALYSIS OF THE TANGO ALGORITHM

The solution introduced in our previous work proved that us-
ing the compressed signals could help to better estimate the TF
masks, thus to increase the speech enhancement performance.
We represent in Figure 3 different spectrograms throughout
the processing to highlight how useful the compressed signals
are in the estimation of the TF masks. As can be seen in
Figure 3(f), the TF mask predicted at the second step is less
noisy and more accurate than the TF mask estimated at the
first step in Figure 3(e), especially at lower frequencies where
the different harmonics can be clearly identified. This leads to
the filtered signal represented in Figure 3(c), where a higher
noise reduction can be observed. In this paper, we propose to
extend this solution to more various scenarios, and to evaluate
it in challenging scenarios, e.g. under high reverberation or in
real acoustic conditions. We also address the cases where the
signals sent are either the estimation of the target signal or that
of the noise, depending on the needs at the receiving node. We
propose a detailed analysis of the aspects that have an impact
on the final speech enhancement performance and show the
benefit of sending the compressed signals among nodes.

A. Single-node networks

In their original version of DANSE, Bertrand and Moonen
assumed that all the nodes of the network share the same
VAD. That is to say that, when estimating the global filter,
at a given time frame, the same binary value was used to
estimate the signal statistics for both the reference signal and
the compressed signals. This relies on the hypothesis that the
speech activity typical variation lasts less than a frame. In our
context, as can be seen in Figure 2, TF masks are used and
the spectral variation of the speech activity should also be
considered (see Equations (13), (14)). Since the signals yk of
a same device are very similar, the same TF mask is used for
all the channels of yk, but the TF masks of the potentially
distant nodes j 6= k should be sent together with z−k in order
to compute Rs̃s̃,k and Rññ,k accurately. This is represented
in Figure 4. It translates into a bandwidth overload and we
experiment whether we can spare some bandwidth costs by
using the TF mask corresponding to yk instead of the TF
mask corresponding to each zj, j 6=k.

In addition, we study the influence of the noise diversity in
the training data, in a similar manner as Kolbæk et al. [36],
but where the effects of speech shaped noise (SSN) and

real-life noises are analysed separately, so as to distinguish
their respective contribution to the training efficiency. SSN
is easy to create and overlaps with speech in the STFT
domain, representing a cheap but challenging interference,
although it is stationary and not representative of real-life
noises. On the other hand, real recordings of everyday-life
noises are more realistic but require much more time to gather.
Our experiment aims at exploring whether the diversity and
representativeness brought by the real-life noises can help
improving the performance or if training on SSN alone would
be sufficient. Likewise, as our proposed solution is evaluated
on various spatial configurations, we explore the influence of
the spatial configuration it is trained on. We study whether a
network should be trained on a specific spatial configuration
to achieve high performance on it, or if a trade-off can
be found between specificity and generalizability across the
spatial configurations at test time.

B. Multi-node networks
The results of our previous paper were obtained on a rather

simple dataset, where the spatial configurations were not so
diverse and the nodes close to each other. The second part
of our work starts by verifying that our previous conclusions
generalize well on various scenarios. That is why we evaluate
the Tango algorithm on three different spatial configurations.
We also analyse its performance when diffuse noise is added
on top of the point sources and when real room impulse
responses (RIRs) are used to convolve the signals. Besides, we
investigate the impact of the reverberation on the performance
of the Tango algorithm, as well as the influence of the input
SIR. In addition, as the spatial information brought by the
compressed signals might be of different interest depending
on the receiving node, we propose to repeat in the multi-node
context the study relative to the generalizability across spatial
configurations. The Tango algorithm is also compared to a
state-of-the-art end-to-end multi-channel solution and we show
that the SDW-MWF used in Tango brings flexibility that lack
in end-to-end solutions.

C. Signals sent among nodes
In a third part, we analyse the importance of adequately

selecting the compressed signals sent to the other nodes.
Indeed, each node can estimate both the speech and noise
components of a noisy signal. In a speech enhancement
context, the target signal is the speech signal, but the noise
signal may contain very useful information as well, since the
MWF also requires the estimation of the noise statistics. Both
the speech and noise signals are useful to estimate the speech
and noise covariance matrices, and it has also been shown
that even a coarse estimation of the noise can help to increase
the output performance of a DNN for speech enhancement
in the context of automatic speech recognition [20], [21]. An
example of this phenomenon is represented in Figure 5 where
two nodes see a very different view of the same acoustic scene
because of their locations in the room. We check which signal
(i.e. the estimation of the noise or the estimation of the target
speech) a given node should send to the other nodes depending
on its location in the room.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. TF representations of the signals at the first node of a microphone array. (a) Noisy input. (b) Compressed signal sent from node 2. (c) Output enhanced
signal. (d) Ideal ratio TF mask corresponding to the input. (e) Mask predicted by the single-node DNN. (f) Mask predicted by the multi-node DNN.
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Fig. 4. Representation of how using the local TF mask can spare some
bandwidth cost.

IV. SETUP

A. Datasets with simulated room impulse responses

We create three spatial scenarios with the Python toolbox
Pyroomacoustics [37]. An example of each scenario can be
seen in Figure 6. Two of these datasets, called living room
and meeting room, aim at simulating the real-life scenarios
that correspond to two typical use cases of a living room and
a meeting room. To see whether training the DNNs on one
generic dataset could generalize well on the test sets of the
living room and meeting room, we create the random room
configuration, which is less constrained and covers the specific
cases of the living room and meeting room.

𝑧𝑠,1

𝑧𝑛,1

Noise

Node 1

𝑧𝑠,2

𝑧𝑛,2

Target

Node 2

Input 𝑦1,1

Input 𝑦2,1

Fig. 5. Example of a situation highlighting the importance of the information
provided by the compressed signals. The first node, close to the noise source,
can accurately estimate the noise component and send it to the second node.
The second node, close to the target source, can accurately estimate the target
component and send it to the first node.

In each scenario, shoebox-like rooms are created with a
reverberation time (RT) randomly selected between 0.15 s
and 0.4 s, the length between 3 m and 8 m, the width
between 3 m and 5 m and the height between 2.5 m and
3 m. K = 4 recording devices (called nodes in the rest of the
paper) are simulated, each embedded with four microphones
(Mk = 4 ∀k ∈ J1;KK). The microphones are on a square
at a distance of 5 cm to the node center. Two sources,
one target source and one noise source, are added. In each
scenario, the speech content is taken from the LibriSpeech
clean subsets [38]. The noise source can be either SSN or
a real recording of everyday-life noises, downloaded from
Freesound [39]. In the latter case, the noise files are down-
loaded by searching for all the files corresponding to a set of
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(a) Random room configuration (b) Living room configuration (c) Meeting room configuration

Fig. 6. 2D representations of the three spatial configurations. The acoustic effect of the table (dashed-line circle in (c)) is not simulated; it is only represented
for a better visualization.

keywords1 and post-processed by hand to discard irrelevant
outputs, resample the relevant outputs and remove the silent
parts2. The noise source signals are amplified by a random
gain between -6 dB and 0 dB. After convolution, most of the
SNRs lie in the range [-10; +10] dB depending on the node
position in the room.

The first scenario, called random room (see Figure 6(a)), has
very few additional constraints. The two sources and the nodes
are randomly placed in the room with the only constraints that
they all should be distant of at least 50 cm from each other
and from the walls. The nodes are at a random height between
0.7 m and 2 m, as if they were recording devices laid on a piece
of furniture, or hearings aids worn by an impaired person. The
sources are between 1.20 m and 2 m high, to fit the standard
height of most noise sources.

The second scenario, called living room (see Figure 6(b))
recreates a situation that could typically happen in a living
room with one target speech source and one interference noise
source. Three nodes are placed within 50 cm from the walls
as if they were on shelves and the fourth device is placed
randomly in the room, at 50 cm at least of the walls and the
other nodes. All the nodes are at a random height between
0.7 m and 0.95 m. The two sources are also randomly placed
in the room at 50 cm at least from the nodes and the walls
and at a random height between 1.20 m and 2 m.

The third scenario, called meeting room (see Figure 6(c))
simulates a meeting configuration where two people are sitting
around a table. One speaker is the target speaker while the
second one is considered as an interferent source. The table is
circular, with its radius randomly chosen between 0.5 m and
1 m, its height randomly chosen between 0.7 m and 0.8 m
and its center randomly placed in the room. The nodes are
placed every 90◦ on the table, at a random distance between
5 cm and 20 cm from the table edge. The two sources are
randomly placed around the table within 50 cm from the table
edge, at a random height between 1.15 m and 1.3 m, and at
15 cm at least from the walls. The reflection of the table is

1The keywords were baby, blender, dishwasher, electric
shaver, toothbrush, fan, frying, printer, vacuum cleaner,
washing machine, water.

2The noise dataset is available at https://zenodo.org/record/4019030.

not simulated3.
Each dataset is split into a training set containing 10000

samples of 10 s each, a validation set containing 1000 samples
of 10 s and a test set containing 1000 samples whose duration
range from 6 s to 10 s. The test dataset does not overlap
with the training and validation sets in terms of LibriSpeech
speakers and Freesound users. To keep a balanced number
of samples in all classes of the training set, the noises
corresponding to the classes having not enough samples were
used for the test set only4.

B. Dataset with real room impulse responses

In order to evaluate our solution on real measurements,
we used the dataset of Corey et al. to reproduce real-world
conditions [40]. The dataset contains signals recorded in a
large conference room, played by 10 sources and recorded
by 160 microphones distributed in 4 wearable arrays of 16
microphones and 12 tabletop arrays of 8 microphones. Since
the mixtures in the dataset are very challenging cocktail-
party scenarios which we do not address in our research,
we decided to use the sweep signals that are available in the
dataset to compute real RIRs. We reproduced 1000 scenarios
by randomly picking two sources among the 10 available
and 4 tabletop arrays among the 12 available. Every second
microphone in the array was used to compute the RIR, so
that a configuration of 4 nodes of 4 microphones each was
reproduced, in a similar geometry as in the simulated setup
(see Section IV-A). The unconvolved signals reverberated with
the real RIRs are the same as the signals used in the simulated
experiments (see Section IV-A).

C. Neural network settings

All the signals are sampled at 16000 Hz. The STFT is
computed using a Hanning window of 32 ms with an over-
lap of 16 ms. The same CRNN architecture is used in all
experiments, for both single-node and multi-node DNNs. The
convolutional part is made of three convolutional layers with

3A Python implementation of the code that enabled us to create these
datasets is available at https://github.com/nfurnon/disco/tree/master/dataset_
generation.

4These noises correspond to the classes baby, blender, electric
shaver, toothbrush and frying.
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32, 64 and 64 filters respectively, with kernel size 3 × 3
and stride 1 × 1. Each convolutional layer is followed by a
batch normalisation and a maximum-pooling layer of kernel
size 4 × 1 (no pooling over the time axis). The recurrent
layer is a 256-unit GRU, followed by a fully-connected layer
with a sigmoid activation function in order to map the output
of the network between 0 and 1. The networks are trained
with the RMSprop optimizer [41]. The input of the models
are STFT windows of 21 frames. The compressed signals
necessary to train the multi-node CRNN are obtained by
applying a SDW-MWF on the mixtures using oracle TF masks.
The ground truth targetted by both single-node and multi-
node DNNs are the frames of the ideal ratio mask (IRM)
corresponding to the 21 frames of the input mixture. The
IRM is computed following Equation (15) where sk,1 and nk,1
are respectively the reverberated target and noise components
of the mixture recorded at the first microphone of the k-th
node [42].

mk(t, f) =
|sk,1(t, f)|

|sk,1(t, f)|+ |nk,1(t, f)|
(15)

The cost function is the MSE between the target IRM and the
predicted TF mask, weighted by the spectrogram of the input
mixture, in order to take into account the spectral shape of the
speech. The cost function can be expressed as :

L(mk, m̂k) = E{|(mk − m̂k) · yk,1|2},

where mk and m̂k are respectively the target and predicted
TF masks at node k and yk,1 is the mixture recorded by the
reference microphone of node k.

D. Performance evaluation

1) Metrics: In the following, all the performance evalua-
tions are quantified based on the SIR and SAR [43], and on the
short term objective intelligibility (STOI) [44]. These metrics
require a reference signal and it was shown that the SIR and
SAR are very sensitive to the chosen reference [45], [46]. Both
the source (non-reverberated) and image (reverberated) signals
are valid references and quantify differently the performance.
Considering the source signal as the reference enables one to
keep a constant reference for all sensors despite the diversity of
what they capture. However, it does not allow us to distinguish
the distortion due to the reverberation from the distortion
due to the filter. On the other hand, considering the image
signals as references enables one to quantify the effects of the
proposed filters only, but the implicit reference of the GEVD
filter at a specific node might not be the explicit reference
channel of the metric (see Section V in [29]). To cope with
this, we quantify the speech enhancement performance with
four metrics. The first metric is the difference between the
output SIR and the input SIR5 when the clean (target and
noise) image signals are taken as references6. We arbitrarily
take the first microphone of each node as the reference of

5Since we do not simulate any microphone noise, the input SIR is equal
to the input SNR.

6We noticed that the SIR was quite consistent across the reference signals,
whether they were the source signals or the image signals.

this node. It is denoted by ∆SIRcnv where the subscript cnv
means that the reference signals are the convolved signals.
The second metric is the SAR where the convolved signals
are considered as the references. This metric is denoted as
SARcnv. The third metric is the SAR where the source signals
are the references. It is denoted as SARdry where the subscript
dry means that the reference signals are the source signals. The
difference between SARdry and SARcnv could be interpreted as
the distortion due to the reverberation of the source signals.
By keeping both of these metrics, we can quantify both the
problems of denoising and of dereverberation. Lastly, the STOI
computed with the convolved references is also considered to
better quantify the intelligibility of the denoised signals. It is
denoted STOIcnv.

2) Signals considered for the evaluation: Depending on
the context, we might be interested in having one well-
estimated target signal for the whole microphone array, or one
well-estimated target signal for each node of the microphone
array. In most cases, one signal would be enough for the
whole array, but it might require to send this signal to all
the other nodes, resulting in a possibly undesired bandwidth
overload. The question of a node-specific speech enhancement
algorithm issue has also been discussed by Markovich-Golan
et al. [47]. In our case, we will mainly focus on estimating
the best possible signal for the whole array, this is why, unless
mentioned otherwise, the results presented in the remainder
of the paper represent the average over the whole test set
of the performance at the best output node, i.e. at the node
with the highest output SIR. However, we will also analyse
more in detail the behaviour of the proposed solution at the
node with the highest and lowest input SIR in Sections VI-G
and VII, in order to highlight the cooperation among nodes in
the microphone array and the needs of the nodes concerning
the compressed signals that they receive. This will then be
mentioned explicitly.

V. ANALYSIS OF THE PERFORMANCE WITH SINGLE-NODE
NETWORKS

This section focuses on several factors that impact the
performance of the proposed Tango algorithm using masks
estimated with single-node DNNs. As described in Section
II-D, speech enhancement process is split in two steps and the
compressed signals are sent between nodes to compute the
filter of the second step, but the same single-node network is
used for both steps.

A. Importance of node-specific TF masks

In this section, we investigate in oracle conditions which
TF mask should be applied on the compressed signal. To do
so, we compare two cases. In the first case, the TF mask of
the node sending the signal (called distant node) is applied
to the compressed signal in order to compute the speech and
noise statistics at the second filtering step. In the second step,
the TF mask of the receiving node (called local node) is used.
The results are reported in Table I where the two cases are
respectively referred to as distant and local.
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TABLE I
SPEECH ENHANCEMENT PERFORMANCE IN ORACLE CONDITIONS IN THE

RANDOM ROOM CONFIGURATION WHEN APPLYING THE DISTANT OR
LOCAL ORACLE TF MASK ON THE COMPRESSED SIGNAL. THE BEST

SIGNIFICANT RESULTS ARE IN BOLD.

∆SIRcnv (dB) SARcnv (dB) SARdry (dB) STOIcnv
local 26.8 ± 0.4 10.9 ± 0.2 9.6 ± 0.2 0.89 ± 0.004
distant 26.1 ± 0.4 8.3 ± 0.2 9.0 ± 0.2 0.85 ± 0.004

As can be seen in Table I, using the TF mask of the local
node instead of the distant node not only limits the bandwidth
requirements, but also increases the speech enhancement per-
formance in terms of SAR and STOI without decreasing the
SIR. This might come from the fact that the beamformer is
robust to small TF mask estimation errors. The drop of SARcnv
and STOIcnv when the distant TF mask is used could be due
to the fact that the filtered signal is closer to the reference
of the distant nodes than to the reference of the local node.
This could decrease the metrics without actually decreasing
the performance. The almost equal SARdry between the two
methods seems to confirm this hypothesis. As a conclusion, in
the remainder of the paper, the local TF mask will be the one
applied on all the compressed signals coming from the other
nodes to estimate the signal statistics required by the MWF.

B. Robustness to unseen noise

We trained a model in the random room configuration under
three noise conditions. In the first condition, the noise signals
are all samples of SSN. In the second condition, the noises
are real recordings of everyday-life noises downloaded from
Freesound as described in Section IV. In the third condition,
the model is trained with half of the signals mixed with SSN
noise and the other half mixed with Freesound noises. The
three resulting models are tested on noisy signals where the
noise is either SSN or a real recording. The corresponding
results are represented in Figure 7, where real refers to
recordings downloaded from Freesound.

The first observation is that the networks trained on a single
type of noise are specialized on this noise, i.e. they perform
better in matched test conditions than in unseen conditions.
This is especially true in terms of ∆SIRcnv. On the other hand,
the network trained on both types of noises performs at least
as well as the specialized network. This conclusion is similar
to the conclusion of Kolbæk et al. [36]. However, because we
separately analysed the influence of the SSN and of the real
noise, our experiment is additionally able to show that remov-
ing the SSN from the training set decreases the generalization
capacities of the DNN, in particular on stationary noises. This
is confirmed when considering the STOI, which we do not
represent here for the sake of conciseness.

As a conclusion to this section, a wider variety of training
material leads to a robust network that performs as good as a
specialized network in matched conditions, and can maintain
performance in unmatched conditions. In the following, since
the test set might contain unseen noises during the training, all
the networks will be trained on both types of noises described
above in order to increase their robustness, but they will be
tested on the real noises.

(a) Results on test set with SSN (b) Results on test set with real noise

Fig. 7. Speech enhancement performance of the single-node DNNs in the
random room configuration for different training and test noise conditions.
The ∆SIRcnv difference in Figure 7b between the two last networks is not
statistically significant.

C. Robustness to an unseen spatial configurations

We now consider the impact of the spatial scenario while
training the DNN. We compare three DNNs, trained on the
signals generated in the three spatial configurations introduced
in Section IV-A, and tested on each of these scenarios.

As can be seen in Figure 8, only mildly significant dif-
ferences can be observed between the three models. One
exception can be highlighted, when the DNN trained on the
meeting room configuration yields the best results, probably
because, due to the closeness of some nodes to the noise
source, this DNN has seen more challenging scenarios during
the training, making it more robust. Apart from this specific
single-node scenario, it would not have a big impact to train
on one spatial configuration and test on another.

In particular, it is interesting to notice that the SARdry
values are higher in the meeting room configuration than in
the two other ones. This is because the microphones are close
to the target source, which is hence less distorted by the
reverberation. This confirms the relevance of the third metric.

VI. ANALYSIS OF THE PERFORMANCE WITH THE
MULTI-NODE NETWORKS

We now extend our study to the case where, at the second
filtering step, the DNN also receives the signals from the other
nodes and uses them as additional input to predict the TF
masks. In a similar manner to our previous work, the signals
sent are all estimations of the target signal [27].

A. Benefit of using multi-node DNNs

We first study in this section the advantage of using multi-
node DNNs over single-node DNNs at the second filtering
step. We train a multi-node DNN on each of the spatial
configurations introduced in Section IV-A. The compressed
signals used to train the DNN are obtained with IRMs, but at
test time, the IRMs are replaced by the TF masks estimated
by the single-node DNNs. The results are given in Figure 9
and compared to the oracle case of DANSE, where the signal
statistics are computed with an oracle voice activity detector
(VADOR). The VADOR is computed from the energy of the
convolved target speech signal.

The multi-node DNN brings an ∆SIRcnv improvement of
around 3 dB compared to the single-node DNN (see Figure 8),
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(a) Random room (b) Living room (c) Meeting room

Fig. 8. Speech enhancement performance of three single-node networks trained each on a different spatial configuration.

(a) Random room (b) Living room (c) Meeting room

Fig. 9. Speech enhancement performance on the three spatial configurations using an oracle VAD, a single-node DNN and a multi-node DNN at the second
filtering step.

and up to 1.5 dB improvement in terms of SAR. Besides,
it increases the performance up to what can be achieved
with an oracle VAD in terms of SAR and ∆SIRcnv, except
on the meeting room configuration where the scenario is
more challenging. Only the STOIcnv indicates that the oracle
knowledge of the VADOR increases the speech intelligibility
of the enhanced signal in all configurations, but to a limited
extent. Overall, the conclusion of our previous paper that the
compressed signals are useful to better predict the TF masks,
is confirmed on three real-life scenarios.

B. Influence of the spatial configuration

Given that the compressed signals convey a lot of spatial
information, the conclusions of Section V-C might not hold
in the multi-node DNN. We repeated the experiments in the
multi-node case, where the compressed signals are given at
the input of the DNNs. Similarly to the conclusions to Section
V-C, there was very little difference across the three DNNs.
That is why we will consider only one multi-node neural
network in the sequel, the one trained and tested on the random
room.

C. Comparison with the state-of-the-art

To further challenge the performance of our solution, we
compare it with a multi-channel end-to-end solution called
FaSNet [48] which we implemented with the Asteroid toolbox
[49]. The original FaSNet architecture is a two-stage filtering
where temporal convolutional network (TCN) blocks predict

beamforming filters applied on the input channels, based
on pair-wise normalized cross-correlations between the input
channels. As it reported better results, we replaced the TCN
blocks with dual-path RNN (DPRNN) [50]. The modified
FaSNet is trained in the random room configuration in the
same conditions as the CRNN, with the same amount of data,
the same signals and the same input SIRs. In each sample, one
node (of four microphones) is randomly selected to provide the
input mixtures and the output targets. At inference, the trained
neural network is applied on all nodes, and the best output
is retained to compare the performance of FaSNet with the
performance of our proposed Tango algorithm. We compare
FaSNet to three versions of the Tango algorithm. The first
version uses the oracle TF masks to compute the speech and
noise covariance matrices needed at both filtering steps of
Tango. The SDW-MWF at both filtering steps is computed
based on a rank-1 GEVD of these covariance matrices [29].
The trade-off factor µ (see Equation (7)) is set to 1. The second
version follows the same process, but with masks predicted by
CRNNs. The third version uses the same CRNNs to predict
the masks, but the filter is a SDW-MWF computed from full-
rank covariance matrices and with a trade-off factor µ = 5.
The results are reported in Table II.

Using masks predicted by the CRNNs rather than oracle
masks lowers the performance, but it is interesting to notice
how much flexibility using a mask-based approach brings.
By choosing the rank of the decomposition of the covariance
matrices, and by selecting the value of the trade-off parameter
µ, one can tune the speech enhancement and insist either
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TABLE II
COMPARISON OF DIFFERENT VARIANTS OF THE PROPOSED TANGO WITH
FASNET [48]. ∆SIRCNV , SARCNV AND SARDRY ARE EXPRESSED IN DB.

∆SIRcnv SARcnv SARdry STOIcnv

Tango (oracle)
27.1 ±0.4 11.2 ±0.2 9.8 ±0.2 0.90 ±0.003r1-GEVD-SDW-MWF

µ = 1

Tango (CRNN)
22.9 ±0.5 6.9 ±0.1 8.5 ±0.2 0.78 ±0.004r1-GEVD-SDW-MWF

µ = 1

Tango (CRNN)
16.8 ±0.5 13.2 ±0.3 8.8 ±0.3 0.83 ±0.006SDW-MWF, µ = 5

FaSNet [48] 17.5 ±0.2 13.8 ±0.2 6.7 ±0.2 0.84 ±0.005

on noise reduction or on speech distortion. FaSNet being
trained on a scale-invariant source to distortion ratio (SDR)
loss function, it optimizes a compromise between SIR and
SAR, that is why both values obtained with FaSNet are rather
good and balanced. But the Tango algorithm, based on a
SDW-MWF, leaves the freedom to have more noise reduction
or speech distortion, which can be decided at run time whereas
the output of FaSNet is fixed once the DNN is trained. A
good trade-off for example has been found with the full-
rank SDW-MWF using µ = 5 (third line in Table II) which
performs comparably to FaSNet. Lastly, Tango relies on a
much simpler DNN with 0.518 million parameters, whereas
FaSNet counts 1.871 million parameters, which makes the
DNN in Tango easier to train and quicker at inference time.

D. Performance under diffuse noise

In this section, we study the impact of diffuse noise on the
performance of the Tango algorithm. The diffuse noise is sim-
ulated by convolving ambient noise with the average of the tail
of five RIRs corresponding to five sources randomly placed in
the simulated room. The ambient noise files were downloaded
from three indoor noise types (Home, Office, Library) of
the TUT dataset7. The diffuse noise is added in the random
room configuration at an SNR randomly picked between 0 dB
and 20 dB. We represent the speech enhancement results of
the Tango algorithm in Figure 10, where the DNNs in Tango
were trained in presence of a single point noise source. “PS”
refers to the same case as in Section VI-A, where only one
point noise source is present. “PS + DN” refers to the case
where diffuse noise is present on top of a point noise source.
The metrics computed on the input mixture are represented in
hatched bars.
Adding diffuse noise lowers the input metrics (SIRcnv and
STOIcnv) as well as the output metrics, but to a restricted
extent. Lower results are expected because the MWF can be
seen as a beamformer [51], which cannot perfectly reduce a
noise coming from all directions. However it is worth noticing
that, when diffuse noise is added, even if the output STOIcnv
decreases, the difference between output and input STOIcnv
increases, so the relative performance increases. Overall, this
experiment leads to the conclusion that our solution is quite
resilient to a diffuse noise field of a moderate intensity.

7https://zenodo.org/record/400515

Fig. 10. Speech enhancement performance of the Tango algorithm in the
random room configuration when diffuse noise is added to the point noise
source. “PS” and “DN” respectively refer to a point source and diffuse noise.

TABLE III
SPEECH ENHANCEMENT PERFORMANCE OF TANGO WITH DNNS TRAINED
ON SIMULATED DATA AND EVALUATED WITH SIGNALS CONVOLVED WITH

SIMULATED (“SIM” IN THE TABLE) AND REAL (“REAL”) RIRS. THE
MASKS NEEDED IN TANGO ARE EITHER ORACLE (“IRM”) OR PREDICTED

BY DNNS (“CRNN”).

∆SIRcnv (dB) SARcnv (dB) SARdry (dB) STOIcnv
IRM sim 26.8 ± 0.4 10.9 ± 0.2 9.6 ± 0.2 0.89 ± 0.004
IRM real 22.7 ± 0.3 7.9 ± 0.2 3.7 ± 0.3 0.79 ± 0.005
CRNN sim 23.3 ± 0.5 6.6 ± 0.2 8.4 ± 0.2 0.77 ± 0.006
CRNN real 19.0 ± 0.4 3.2 ± 0.1 2.9 ± 0.2 0.61 ± 0.008

E. Performance with real RIRs

To further analyse the generalization capacity of the DNNs
in Tango, we evaluate our solution on the data obtained with
real RIRs described in Section IV-B. The DNNs are trained in
the simulated random room configuration and evaluated with
the signals convolved with real RIRs. The results are given
in Table III. They are compared with the performance of the
same Tango algorithm in a simulated environment (the same
results as in Section VI-A) and with the performance obtained
when IRMs are used in the Tango process.
Even with oracle masks, the performance drops when real
data is used. This is probably due to the fact that the real
evaluation set is more challenging than the simulated one,
and the difference between the two oracle systems shows
the performance drop that the CRNN-based system cannot
avoid. Using a CRNN to predict the masks brings a higher
performance loss, especially in terms of SAR. A more detailed
analysis showed that the neural network fails to predict accu-
rate masks at higher frequencies, which is detrimental to the
speech quality. This could be compensated by incorporating
real data in the training set or by using a more complex neural
network architecture with a more powerful modelling capacity.
The influence of the reverberation alone can be analysed more
precisely with simulated data in Section VI-F.

F. Influence of the reverberation

To analyse the influence of the reverberation, we evaluate
our solution under higher RTs than those which were used in
the training set. Figure 11 shows the performance of Tango in
terms of STOIcnv (Figure 11(a)) and ∆STOIcnv (Figure 11(b))
in the random room configuration, under several reverberation
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(a) Output STOIcnv (b) ∆STOIcnv

Fig. 11. Influence of the reverberation time on the performance of Tango in
terms of STOIcnv and ∆STOIcnv.

(a) Output SIRcnv (b) ∆SIRcnv

Fig. 12. Influence of the input SIR on the performance of Tango in terms of
SIRcnv and ∆SIRcnv.

conditions. In blue, mild reverberation is simulated in the
evaluation set, similarly to the training conditions. In orange,
stronger reverberation is simulated, which has not been seen
during the training. The output STOIcnv slightly decreases
when the reverberation gets stronger, but the relative perfor-
mance in terms of ∆STOIcnv remains stable. This shows that
our solution is resilient over varying reverberation conditions.
This conclusion holds when considering the other metrics
(SIR, SAR) which we do not represent here for a more concise
presentation.

G. Influence of the input SIR

In this section, we analyse the influence of the input SIR
on the output performance of the multi-node solution. We
show the advantage of using distributed microphone arrays and
we highlight the cooperation among nodes of the microphone
array with Tango.
First, we study the global behaviour of Tango over the input
SIR. The performance is reported in Figure 12. Figure 12(a)
shows the absolute performance in terms of SIRcnv whereas
Figure 12(b) shows the relative performance in terms of
∆SIRcnv. As had already been observed in previous research,
the absolute performance increases when the input SIR in-
creases, but the relative performance decreases [52], [53].
These conclusions hold when considering the other metrics
(SAR, STOI), which we do not represent here for a more
concise presentation. As Kolbæk et al. showed, narrowing
down the range of the SIR in the training set to have it
match the range of the SIR in the test set could improve the
performance on the evaluation set [36]. This however requires
a priori knowledge on the testing conditions.

TABLE IV
SPEECH ENHANCEMENT PERFORMANCE OF THE SINGLE-NODE AND

MULTI-NODE NETWORKS AT THE BEST AND WORST INPUT NODES OF THE
random room CONFIGURATION. (∆)SIRCNV , SARCNV AND SARDRY ARE

EXPRESSED IN DB.

SIRcnv ∆SIRcnv SARcnv SARdry STOIcnv

SNbi 18.7 ± 0.6 16.1 ± 0.5 5.8 ± 0.2 5.8 ± 0.3 0.77 ± 0.005
SNwi 14.2 ± 0.7 16.6 ± 0.6 3.4 ± 0.2 3.6 ± 0.3 0.70 ±0.006
MNbi 20.5 ± 0.7 17.9 ± 0.6 6.4 ± 0.2 7.4 ± 0.3 0.78 ±0.005
MNwi 18.1 ± 0.7 20.5 ± 0.6 4.2 ± 0.2 5.8 ± 0.3 0.74 ±0.006

Fig. 13. Histogram of the input SIRcnv at the best input nodes and at the
worst input nodes.

Second, we report the performance of our solution at the
best input node and at the worst input node of the microphone
array in the random room configuration. The best (resp. worst)
input node is the node with the highest (resp. lowest) input
SIRcnv. We report these results in Table IV for the single-node
solution (indicated by "SN") and for the multi-node solution
(indicated by "MN"). To recall, in the single-node solution, the
DNN does not have the compressed signals to predict the TF
mask at any of both filtering steps. In the multi-node solution,
the DNN of the second filtering step has the compressed
signals and the local noisy signal to predict the TF mask. The
best (resp. worst) input node is indicated with the subscript
bi (resp. wi) in the table. The distribution of the input SIRcnv
corresponding to the best and worst input nodes is represented
in Figure 13.

As can be seen in Table IV, even in the single-node case,
the performance is relatively good at the best input node. The
∆SIRcnv is similar to the one at the worst input node, but the
output SIRcnv is higher. Using multi-node DNNs at this best
input node does improve the final performance, but in a lesser
extent than at the worst input node. This is especially true
when considering the ∆SIRcnv which increases of almost 4 dB
at the worst input node but only 1.8 dB at the best input node.
This reduces considerably the discrepancy of output SIRcnv
across the whole microphone array. The same observation
hold when considering the STOIcnv. It shows that the nodes
cooperate and that the DNN on the worst input node is able to
exploit the information coming from the other nodes. At the
worst input node, the benefit of our method is twofold: the
compressed signals come from nodes with a higher SIR and
additionally, they are already filtered with a well-predicted TF
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mask.
As a counterpart, this also probably means that the com-

pressed signals sent by the worst input nodes are not so useful.
However, these nodes are the closest to the noise source, so the
network could predict quite well the TF mask corresponding
to the noise source. Sending the noise estimation as the
compressed signals could improve the overall performance.
This is what we propose to analyse in Section VII.

VII. EXCHANGING SIGNALS BETWEEN NODES

In this section, we focus on the compressed signal that is
sent from one node to the others. In previous versions of
DANSE, only the target estimation was sent [10], [27], [31],
[54]. However, as depicted in Figure 5, the noise estimation
can also provide useful information, so we propose to compare
in which conditions which signal estimation should be sent.
To do so, we train three multi-node DNNs. The first one is
the DNN that had been used for the previous experiments, and
which had as input the target estimations, denoted zs, coming
from the distant nodes, together with the noisy signal at the
reference channel. The second DNN has the noise estimations
zn sent from the distant nodes together with the noisy signal at
the reference channel. The third DNN has both target speech
and noise estimations together with the noisy signal at the
reference channel as input. Each of these networks is tested in
conditions matching its training conditions, and the results are
represented in Figure 14 for the random room configuration.
We represent the results obtained at the best output nodes (i.e.
the result is the average over all the filtered signals obtained
at the nodes with the highest output SIRcnv), at the best input
node (average over the filtered signals obtained at the nodes
with the highest input SIRcnv, and at the worst input node
(average over the filtered signals obtained at the nodes with
the lowest input SIRcnv)).

At the best output node (Figure 14a), sending the one or the
other compressed signal does not make any difference. At the
best input node (Figure 14b), although the differences are not
significant, the ∆SIRcnv indicates that this node could benefit
from receiving the compressed noise estimation rather than the
compressed target estimation. Likewise, using the compressed
noise estimation at the worst input node (Figure 14c) leads
to worse results, since the worst input node already has good
insights on the noise signal and needs an estimation of the
target signal, which it can poorly estimate in its own.

Sending both the target and the noise estimations seems
to be very similar to sending only the target estimation. It
looks like it does not benefit from the noise estimation at
the best input node. However, the significance of the results
allows us only to conclude that sending both estimations is not
worse than sending either of both. Given the relatively simple
architecture of the network, it could also be that sending both
signals from all nodes represents an overload of data for the
DNN. Carefully selecting either zs or zn at the input of the
DNN might offer a solution to have the best of both worlds,
while alleviating the bandwidth requirements.

Hence, depending on the application, if the aim of the
speech enhancement challenge is to have the one best signal

TABLE V
DIFFERENCE OF PERFORMANCE BETWEEN THE FIRST AND SECOND

FILTERING STEPS AT THE BEST INPUT NODE AND BEST OUTPUT NODE IN
THE random room CONFIGURATION. (∆)SIRCNV , SARCNV AND SARDRY

ARE EXPRESSED IN DB.

SIRcnv ∆SIRcnv SARcnv SARdry STOIcnv

S1bi 17.8 ± 0.4 15.2 ± 0.4 7.4 ± 0.2 7.6 ± 0.2 0.80 ±0.004
S1bo 19.4 ± 0.4 17.6 ± 0.3 7.6 ± 0.1 8.0 ± 0.2 0.80 ±0.004
S2bi 20.5 ± 0.7 17.9 ± 0.5 6.3 ± 0.2 7.4 ± 0.3 0.78 ±0.005
S2bo 24.2 ± 0.5 23.3 ± 0.5 6.6 ± 0.2 8.4 ± 0.2 0.77 ±0.006

for the whole microphone array, then sending only zs is
enough. If each node should have its own estimated signal, as
discussed in [47], then depending on the node and its input
SIR, a decision has to be taken whether the target or the
noise estimation is of greater relevance. Sending both could
is an interesting option but it means sending twice more data.

Lastly, it is worth noting that the nodes with the best output
signal are not always the nodes with the best input signal. The
performance of the two filtering steps described in Figure 1
at the best input nodes and at the best output nodes is given
in Table V. The first (resp. second) filtering step is mentioned
as S1 (resp. S2) and the best input node (resp. best output
node) is indicated with the subscript bi (resp. bo). Even at the
first filtering step, where the spatial information is not yet
shared, the best input nodes are not always the best output
nodes, but the difference of performance between the two
types of nodes is quite low. The best output nodes benefit
more from the second filtering step than the best input nodes.
This is because the performance at the second filtering step
(where the multi-node DNNs are used) depends a lot on the
compressed signals, which are in general very well estimated
by the best input nodes. These compressed signals are received
by the other nodes which can benefit from their accuracy and
estimate the best output signal. Interestingly, the input SIRcnv
of the best output nodes of the second filtering step (equal
to 0.9 dB) is lower than the input SIRcnv of the best output
nodes of the first filtering step (equal to 1.8 dB). It means that
some nodes with a lower input SIRcnv become the nodes with
the best overall performance thanks to the information shared
across the microphone array. This phenomenon highlights the
cooperation among nodes in the proposed algorithm.

VIII. CONCLUSION

We introduced and extended Tango, a DNN-based dis-
tributed multichannel speech enhancement methodology which
operates in spatially unconstrained microphone arrays. It was
evaluated on a large variety of real-life scenarios which proved
the efficiency of this solution that performs comparably well
to state-of-the-art end-to-end solutions. An evaluation on real
data suggested the need of an improved DNN or of adapted
training strategies for greater generalization capacities. It was
shown that this method is robust to mismatches between the
training and test conditions of the DNN. We showed that the
nodes with the lowest input SIR benefit the most from the
cooperation across the microphone array and we gave insights
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(a) Best output node (b) Best input node (c) Worst input node

Fig. 14. Speech enhancement performance of multi-node DNNs trained and tested with different compressed signals in the random room configuration.

on the potential benefit of sending the noise estimation rather
than the target estimation. An interesting direction of research
would be to better select the signals that are needed, either
before or after sending them as compressed signals, e.g. with
attention mechanisms.
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