B. Famaey, J. Khoury, and R. Penco, Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions, JCAP 1803, issue.03, p.38, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01758569

G. Wmap and . Hinshaw, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl, vol.208, p.19, 2013.

N. Planck and . Aghanim, Planck 2018 results. VI. Cosmological parameters

A. G. Riess, Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant, Astrophys. J, vol.861, issue.2, p.126, 2018.

S. Birrer, H0LiCOW -IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant, Mon. Not. Roy. Astron. Soc, vol.484, p.4726, 2019.

L. Knox and M. Millea, The Hubble Hunter's Guide

J. D. Bowman, A. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature, vol.555, issue.7694, pp.67-70, 2018.

J. S. Bullock and M. Boylan-kolchin, Small-Scale Challenges to the ?CDM Paradigm, Ann. Rev. Astron. Astrophys, vol.55, pp.343-387, 2017.

S. S. Mcgaugh, J. M. Schombert, G. D. Bothun, and W. J. De-blok, The Baryonic Tully-Fisher relation, Astrophys. J, vol.533, pp.99-102, 2000.

E. Papastergis, E. A. Adams, and J. M. Van-der-hulst, An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies, Astron. Astrophys, vol.593, p.39, 2016.

F. Lelli, S. Mcgaugh, and J. Schombert, The Small Scatter of the Baryonic Tully-Fisher Relation, Astron. J. Lett, vol.816, issue.1, p.14, 2016.

F. Lelli, S. S. Mcgaugh, J. M. Schombert, H. Desmond, and H. Katz, The baryonic TullyFisher relation for different velocity definitions and implications for galaxy angular momentum, Mon. Not. Roy. Astron. Soc, vol.484, issue.3, pp.3267-3278, 2019.

A. , D. Cintio, and F. Lelli, The mass discrepancy acceleration relation in a ?CDM context, Mon. Not. Roy. Astron. Soc, vol.456, issue.1, pp.127-131, 2016.

H. Desmond, The scatter, residual correlations and curvature of the SPARC baryonic Tully-Fisher relation, Mon. Not. Roy. Astron. Soc. Letters, vol.472, issue.1, pp.35-39, 2017.

J. F. Navarro, C. S. Frenk, and S. D. White, A Universal density profile from hierarchical clustering, Astrophys. J, vol.490, pp.493-508, 1997.

L. Posti, A. Marasco, F. Fraternali, and B. Famaey, Galaxy disc scaling relations: A tight linear galaxyhalo connection challenges abundance matching, Astron. Astrophys, vol.629, p.59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02306471

P. E. Mancera-pia, Off the Baryonic TullyFisher Relation: A Population of Baryon-dominated Ultra-diffuse Galaxies, Astrophys. J, vol.883, issue.2, p.33, 2019.

P. M. Ogle, T. Jarrett, L. Lanz, M. Cluver, K. Alatalo et al., A Break in Spiral Galaxy Scaling Relations at the Upper Limit of Galaxy Mass, Astrophys. J, vol.884, issue.1, p.11, 2019.

K. A. Oman, The unexpected diversity of dwarf galaxy rotation curves, Mon. Not. Roy. Astron. Soc, vol.452, issue.4, pp.3650-3665, 2015.

A. Ghari, B. Famaey, C. Laporte, and H. Haghi, Dark matterbaryon scaling relations from Einasto halo fits to SPARC galaxy rotation curves, Astron. Astrophys, vol.623, p.123, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02306462

R. A. Swaters, R. Sancisi, T. S. Van-albada, and J. M. Van-der-hulst, The rotation curves shapes of late-type dwarf galaxies, Astron. Astrophys, vol.493, p.871, 2009.

F. Donato, G. Gentile, and P. Salucci, Cores of dark matter haloes correlate with stellar scalelengths, Mon. Not. Roy. Astron. Soc, vol.353, issue.2, pp.17-22, 2004.

F. Lelli, S. S. Mcgaugh, J. M. Schombert, and M. S. Pawlowski, The Relation between Stellar and Dynamical Surface Densities in the Central Regions of Disk Galaxies, Astrophys. J, vol.827, issue.1, p.19, 2016.

W. J. De-blok, The Core-Cusp Problem, Adv. Astron, p.789293, 2010.

R. H. Sanders, Mass discrepancies in galaxies -Dark matter and alternatives, Astron. & Astrophys, vol.2, p.1, 1990.

S. S. Mcgaugh, The Mass discrepancy -acceleration relation: Disk mass and the dark matter distribution, Astrophys. J, vol.609, pp.652-666, 2004.

G. Gentile, B. Famaey, and W. J. De-blok, THINGS about MOND, Astron. Astrophys, vol.527, p.76, 2011.

S. Mcgaugh, F. Lelli, and J. Schombert, Radial Acceleration Relation in Rotationally Supported Galaxies, Phys. Rev. Lett, vol.117, issue.20, 2016.

F. Lelli, S. S. Mcgaugh, J. M. Schombert, and M. S. Pawlowski, One Law to Rule Them All: The Radial Acceleration Relation of Galaxies, Astrophys. J, vol.836, issue.2, p.152, 2017.

B. W. Keller and J. W. Wadsley, ?CDM is Consistent with SPARC Radial Acceleration Relation, Astrophys. J. Lett, vol.835, issue.L17, 2017.

J. F. Navarro, A. Bentez-llambay, A. Fattahi, C. S. Frenk, A. D. Ludlow et al., The origin of the mass discrepancy-acceleration relation in ?CDM, Mon. Not. Roy. Astron. Soc, vol.471, p.1841, 2017.

A. D. Ludlow, Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos, Phys. Rev. Lett, vol.118, issue.16, p.161103, 2017.

J. I. Read, G. Iorio, O. Agertz, and F. Fraternali, Understanding the shape and diversity of dwarf galaxy rotation curves in ?CDM, Mon. Not. Roy. Astron. Soc, vol.462, p.3628, 2016.

D. C. Rodrigues, V. Marra, A. Popolo, and Z. Davari, Absence of a fundamental acceleration scale in galaxies, Nature Astronomy, vol.2, pp.668-672, 2018.

S. S. Mcgaugh, P. Li, F. Lelli, and J. M. Schombert, Presence of a fundamental acceleration scale in galaxies, Nature Astronomy, vol.2, pp.924-924, 2018.

P. Kroupa, I. Banik, H. Haghi, A. H. Zonoozi, J. Dabringhausen et al., A common Milgromian acceleration scale in nature, Nature Astronomy, vol.2, pp.925-926, 2018.

P. Li, F. Lelli, S. Mcgaugh, and J. Schombert, Fitting the radial acceleration relation to individual SPARC galaxies, Astron. Astrophys, vol.615, p.3, 2018.

M. Y. Grudi, M. Boylan-kolchin, C. Faucher-gigure, and P. F. Hopkins, Stellar feedback sets the universal acceleration scale in galaxies

I. M. Santos-santos, A. D. Cintio, C. B. Brook, A. Macci, A. Dutton et al., NIHAO XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in LambdaCDM, Monthly Notices of the Royal Astronomical Society, vol.473, issue.4, p.43924403, 2017.

A. A. Dutton, A. V. Macci, A. Obreja, and T. Buck, NIHAO XVIII. Origin of the MOND phenomenology of galactic rotation curves in a LambdaCDM universe, Mon. Not. Roy. Astron. Soc, vol.485, issue.2, pp.1886-1899, 2019.

P. Bode, J. P. Ostriker, and N. Turok, Halo formation in warm dark matter models, Astrophys. J, vol.556, pp.93-107, 2001.

D. N. Spergel and P. J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett, vol.84, pp.3760-3763, 2000.

J. A. Schewtschenko, R. J. Wilkinson, C. M. Baugh, C. Boehm, and S. Pascoli, Dark matter?radiation interactions: the impact on dark matter haloes, Mon. Not. Roy. Astron. Soc, vol.449, issue.4, pp.3587-3596, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02064646

C. Boehm, A. Olivares-del-campo, S. Palomares-ruiz, and S. Pascoli, Phenomenology of a Neutrino-DM Coupling: The Scalar Case, Proceedings, Prospects in Neutrino Physics, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02064837

A. Kamada, M. Kaplinghat, A. B. Pace, and H. Yu, How the Self-Interacting Dark Matter Model Explains the Diverse Galactic Rotation Curves, Phys. Rev. Lett, vol.119, issue.11, p.111102, 2017.

P. Creasey, O. Sameie, L. V. Sales, H. Yu, M. Vogelsberger et al., Spreading out and staying sharp -creating diverse rotation curves via baryonic and self-interaction effects, Mon. Not. Roy. Astron. Soc, vol.468, issue.2, pp.2283-2295, 2017.

T. Ren, A. Kwa, M. Kaplinghat, and H. Yu, Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter, Phys. Rev, vol.9, issue.3, p.31020, 2019.

J. Bekenstein and M. Milgrom, Does the missing mass problem signal the breakdown of Newtonian gravity?, Astrophys. J, vol.286, pp.7-14, 1984.

J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev, vol.70, p.83509, 2004.

C. Skordis and T. Zlosnik, A general class of gravitational theories as alternatives to dark matter where the speed of gravity always equals the speed of light

R. H. Sanders and S. S. Mcgaugh, Modified Newtonian dynamics as an alternative to dark matter, Ann. Rev. Astron. Astrophys, vol.40, pp.263-317, 2002.

B. Famaey and S. Mcgaugh, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Rel, vol.15, p.10, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02927744

M. Milgrom, A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J, vol.270, pp.365-370, 1983.

M. Milgrom, A Modification of the Newtonian dynamics: Implications for galaxies, Astrophys. J, vol.270, pp.371-383, 1983.

G. W. Angus, H. Shan, H. Zhao, and B. Famaey, On the Law of Gravity, the Mass of Neutrinos and the Proof of Dark Matter, Astrophys. J, vol.654, pp.13-16, 2007.

R. Ibata, A. Sollima, C. Nipoti, M. Bellazzini, S. C. Chapman et al., The globular cluster NGC 2419: a crucible for theories of gravity, Astrophys. J, vol.738, p.186, 2011.

A. Hees, W. M. Folkner, R. A. Jacobson, and R. S. Park, Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft, Phys. Rev, vol.89, p.102002, 2014.

A. Hees, B. Famaey, G. W. Angus, and G. Gentile, Combined Solar System and rotation curve constraints on MOND, Mon. Not. Roy. Astron. Soc, vol.455, issue.1, pp.449-461, 2016.

E. Babichev, C. Deffayet, and G. Esposito-farese, Improving relativistic MOND with Galileon k-mouflage, Phys. Rev, vol.84, p.61502, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00600470

L. Blanchet, Gravitational polarization and the phenomenology of MOND, Classical and Quantum Gravity, vol.24, issue.14, pp.3529-3539, 2007.

L. Blanchet and A. Le-tiec, Model of dark matter and dark energy based on gravitational polarization, Physical Review D, vol.78, issue.2, p.24031, 2008.

J. Khoury, Alternative to particle dark matter, Physical Review D, vol.91, issue.2, p.24022, 2015.

L. Blanchet and L. Heisenberg, Dark matter via massive bigravity, Physical Review D, vol.91, issue.10, p.103518, 2015.

L. Blanchet and L. Heisenberg, Dipolar Dark Matter with Massive Bigravity, JCAP, vol.1512, issue.12, p.26, 2015.

L. Berezhiani and J. Khoury, Dark Matter Superfluidity and Galactic Dynamics, Phys. Lett, vol.753, pp.639-643, 2016.

L. Berezhiani and J. Khoury, Theory of dark matter superfluidity, Physical Review D, vol.92, issue.10, p.103510, 2015.

J. Khoury, Another path for the emergence of modified galactic dynamics from dark matter superfluidity, Physical Review D, vol.93, issue.10, p.103533, 2016.

A. Addazi and A. Marcian, UV self-completion of a theory of Superfluid Dark Matter, Eur. Phys. J, vol.79, issue.4, p.354, 2019.

J. Khoury, Dark Matter Superfluidity, Proceedings of 11th International Workshop Dark Side of the Universe 2015 ? PoS(DSU2015), vol.2015, p.17, 2016.

J. Fan, Ultralight repulsive dark matter and BEC, Physics of the Dark Universe, vol.14, pp.84-94, 2016.

A. Hodson, H. Zhao, J. Khoury, and B. Famaey, Galaxy Clusters in the Context of Superfluid Dark Matter, Astrophys. & Astron, vol.607, p.108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669503

R. Cai, T. Liu, and S. Wang, Gravitational wave as probe of superfluid dark matter, Phys. Rev. D97, issue.2, p.23027, 2018.

L. Berezhiani, B. Famaey, and J. Khoury, Phenomenological consequences of superfluid dark matter with baryon-phonon coupling, JCAP 1809, issue.09, p.21, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02306455

S. Hossenfelder and T. Mistele, Strong lensing with superfluid dark matter, JCAP, vol.1902, p.1, 2019.

A. Sharma, J. Khoury, and T. Lubensky, The Equation of State of Dark Matter Superfluids, JCAP, vol.1905, issue.05, p.54, 2019.

S. Alexander, E. Mcdonough, and D. N. Spergel, Chiral gravitational waves and baryon superfluid dark matter, Journal of Cosmology and Astroparticle Physics, vol.2018, issue.05, pp.003-003, 2018.

E. G. Ferreira, G. Franzmann, J. Khoury, and R. Brandenberger, Unified Superfluid Dark Sector, JCAP, vol.2019, issue.08, p.27, 2019.

L. Berezhiani and J. Khoury, Emergent long-range interactions in Bose-Einstein Condensates, Phys. Rev, vol.99, issue.7, p.76003, 2019.

L. Berezhiani, B. Elder, and J. Khoury, Dynamical Friction in Superfluids

C. M. Ho, D. Minic, and Y. J. Ng, Cold Dark Matter with MOND Scaling, Phys. Lett, vol.693, pp.567-570, 2010.

C. M. Ho, D. Minic, and Y. J. Ng, Quantum Gravity and Dark Matter, Int. J. Mod. Phys, vol.43, p.2887, 2011.

C. M. Ho, D. Minic, and Y. J. Ng, Dark Matter, Infinite Statistics and Quantum Gravity, Phys. Rev, vol.85, p.104033, 2012.

D. Edmonds, D. Farrah, D. Minic, Y. J. Ng, and T. Takeuchi, Modified Dark Matter: Relating Dark Energy, Dark Matter and Baryonic Matter

E. P. Verlinde, Emergent Gravity and the Dark Universe, SciPost Phys, vol.2, issue.3, p.16, 2017.

A. Hees, B. Famaey, and G. Bertone, Emergent gravity in galaxies and in the Solar System, Physical Review D, vol.95, issue.6, p.64019, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01554770

B. Famaey and J. Binney, Modified Newtonian dynamics in the Milky Way, Monthly Notices of the Royal Astronomical Society, vol.363, issue.2, pp.603-608, 2005.

E. D. Kovetz, V. Poulin, V. Gluscevic, K. K. Boddy, R. Barkana et al., Tighter limits on dark matter explanations of the anomalous EDGES 21 cm signal, Physical Review D, vol.98, issue.10, p.103529, 2018.

C. Creque-sarbinowski, L. Ji, E. D. Kovetz, and M. Kamionkowski, Direct millicharged dark matter cannot explain the EDGES signal, Physical Review D, vol.100, issue.2, p.23528, 2019.

M. Milgrom, THE MOND LIMIT FROM SPACETIME SCALE INVARIANCE, The Astrophysical Journal, vol.698, issue.2, pp.1630-1638, 2009.

F. Lelli, C. De breuck, T. Falkendal, F. Fraternali, A. W. Man et al., Neutral versus ionized gas kinematics at z ? 2.6: the AGN-host starburst galaxy PKS 0529-549, Monthly Notices of the Royal Astronomical Society, vol.479, issue.4, pp.5440-5447, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02374146

R. Jimenez, L. Verde, and S. P. Oh, Dark halo properties from rotation curves, Monthly Notices of the Royal Astronomical Society, vol.339, issue.1, pp.243-259, 2003.

S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Physical Review D, vol.7, issue.6, pp.1888-1910, 1973.

F. Donato, G. Gentile, P. Salucci, C. Frigerio-martins, M. I. Wilkinson et al., A constant dark matter halo surface density in galaxies, Monthly Notices of the Royal Astronomical Society, vol.397, issue.3, pp.1169-1176, 2009.

Y. Ali-haïmoud, J. Chluba, and M. Kamionkowski, Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions, Physical Review Letters, vol.115, issue.7, p.71304, 2015.

M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, W. Forman et al., Direct Constraints on the Dark Matter Self?Interaction Cross Section from the Merging Galaxy Cluster 1E 0657?56, The Astrophysical Journal, vol.606, issue.2, pp.819-824, 2004.

S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez, and M. Brada?, Constraints on the Self?Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657?56, The Astrophysical Journal, vol.679, issue.2, pp.1173-1180, 2008.

D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley, The nongravitational interactions of dark matter in colliding galaxy clusters, Science, vol.347, issue.6229, pp.1462-1465, 2015.

D. Wittman, N. Golovich, and W. A. Dawson, The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters, The Astrophysical Journal, vol.869, issue.2, p.104, 2018.

R. Barkana, Possible interaction between baryons and dark-matter particles revealed by the first stars, Nature, vol.555, issue.7694, pp.71-74, 2018.

H. Tashiro, K. Kadota, and J. Silk, Effects of dark matter-baryon scattering on redshifted 21 cm signals, Physical Review D, vol.90, issue.8, p.83522, 2014.

J. B. Muñoz, E. D. Kovetz, and Y. Ali-haïmoud, Heating of baryons due to scattering with dark matter during the dark ages, Physical Review D, vol.92, issue.8, p.83528, 2015.

J. B. Muñoz and A. Loeb, A small amount of mini-charged dark matter could cool the baryons in the early Universe, Nature, vol.557, issue.7707, pp.684-686, 2018.

A. Berlin, D. Hooper, G. Krnjaic, and S. D. Mcdermott, Severely Constraining Dark-Matter Interpretations of the 21-cm Anomaly, Physical Review Letters, vol.121, issue.1, p.11102, 2018.

R. Barkana, N. J. Outmezguine, D. Redigolo, and T. Volansky, Strong constraints on light dark matter interpretation of the EDGES signal, Physical Review D, vol.98, issue.10, p.103005, 2018.