
HAL Id: hal-02984706
https://hal.science/hal-02984706

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A guiding famework for vetting the Internet of things
Fatma Masmoudi, Zakaria Maamar, Mohamed Sellami, Ali Ismail Awad,

Vanilson Burégio

To cite this version:
Fatma Masmoudi, Zakaria Maamar, Mohamed Sellami, Ali Ismail Awad, Vanilson Burégio. A guiding
famework for vetting the Internet of things. Journal of information security and applications, 2020,
55, pp.102644:1-102644:11. �10.1016/j.jisa.2020.102644�. �hal-02984706�

https://hal.science/hal-02984706
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

A Guiding Framework for Vetting the Internet of Things

Fatma Masmoudia, Zakaria Maamarb, Mohamed Sellamic, Ali Ismail Awadd,e,f, Vanilson Burégiog

aCollege of Computer Engineering and Science, Information Systems Department
Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia

bCollege of Technological Innovation, Zayed University, Dubai, UAE
cSamovar, Télécom SudParis, Institut Polytechnique de Paris, Paris, France

dDepartment of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden
eElectrical Engineering Department, Faculty of Engineering, Al-Azhar University at Qena, Qena 83513, Egypt

fCentre for Security, Communications and Network Research, University of Plymouth, Plymouth PL4 8AA, U.K.
gDepartment of Computing, Federal Rural University of Pernambuco, Recife, Brazil

Abstract

Like any emerging and disruptive technology, multiple obstacles are slowing down the Internet of

Things (IoT) expansion for instance, multiplicity of things’ standards, users’ reluctance and sometimes

rejection due to privacy invasion, and limited IoT platform interoperability. IoT expansion is also ac-

companied by the widespread use of mobile apps supporting anywhere, anytime service provisioning

to users. By analogy to vetting mobile apps, this paper addresses the lack of principles and techniques

for vetting IoT devices (things) in preparation for their integration into mission-critical systems. Things

have got vulnerabilities that should be discovered and assessed through proper device vetting. Unfor-

tunately, this is not happening. Rather than sensing a nuclear turbine’s steam level, a thing could collect

some sensitive data about the turbine without the knowledge of users and leak these data to third par-

ties. This paper presents a guiding framework that defines the concepts of, principles of, and techniques

for thing vetting as a pro-active response to potential things’ vulnerabilities.

Keywords: Internet of Things, Security vulnerabilities, Vetting, and Atomic/composite duties.

1. Introduction1

In the 21st century, security triad formed by confidentiality, integrity, and availability (CIA) in ad-2

dition to user privacy, are among many pressing concerns that the Information and Communication3

Technology (ICT) community is actively examining [1]. The number of misuse and fraudulent cases4

related to the ICT are on the rise, suggesting the need for an immediate revision of existing practices,5

techniques, and tools. According to the Australian Institute of Criminology, the estimated value of in-6

ternal fraud against the Commonwealth has steadily increased from $1.9 million to $3 million between7

Email address: mohamed.sellami@telecom-sudparis.eu (Mohamed Sellami)

Preprint submitted to Journal of Information Security and Applications August 27, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2214212620308048
Manuscript_4363dbcbc8c3b274843a6e3425078949

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2214212620308048

2008 and 2011. To mitigate some of these cases, an option is to vet ICT applications prior to their in-8

tegration into day-to-day (sometimes critical) business operations. By vetting, we mean ensuring their9

safety and compliance with relevant regulations. Mobile apps exemplify ICT applications, whose rapid10

and uncontrolled widespread use has become a major concern to policy makers. As of September 2019,11

there were 2.7 million apps posted on Google Play Store and 2.46 million apps posted on Apple’s App Store,12

which are the 2 leading app stores in the world [2], with the number of connected devices set to top 2013

billion by 2023 [3].14

In conjunction with the mobile apps “fever”, we observe some early signs of another “fever” that the15

Internet of Things (IoT) could end-up catching. According to Gartner, 6.4 billion connected things were16

in use in 2016, and this number is projected to reach 20.8 billion by 2020 [4], [5]. Accordingly, the total17

economic impact of IoT will reach between $3.9 trillion and $11.1 trillion per year by 2025 [6]. This rapid18

increase in the number of things needs to be closely monitored to avoid a “boom” in privacy breaches,19

identity thefts, confidentiality deceptions, etc.20

Things in an IoT ecosystem have some unique features that make them different from other compo-21

nents such as reduced size, restricted connectivity, continuous mobility, limited energy, and constrained22

storage [7]. On top of these features, things’ plethora of uses lead to the generation of rich and large23

volume of (unstructured) data that need to be processed in compliance with requirements such as safety,24

security and privacy. The complexity of these features mixed with these different uses raises a number25

of challenges related to how safe things are or should be. In this context, Vetting IoT (V IoT) is appro-26

priate for ensuring things’ “good conducts” before allowing them to collect, process, and distribute data27

without raising any concerns. However, there is a limited number of R&D initiatives on V IoT, which is28

accentuated by the heavy dependence of ICT practitioners on the security claims of things’ vendors [8].29

By analogy to mobile apps vetting, we aim to develop a guiding framework for V IoT. The objective30

is to verify things’ “good conducts” and identify the vulnerabilities that could lead to misconducts.31

Examples of vulnerabilities could be the excessive use of resources, data sharing with unauthorized32

parties, and changes in initial configurations. In this paper and in line with our ongoing agenda on33

IoT [9, 10], we refer to things’ actions as duties and categorize them into atomic and composite 1. This34

categorization permits the fine-tuning of the vetting according to each duty’s characteristics and whether35

the duties originate from the same or different things. Our contribution is manifold, including (i) the36

1Atomic/Composite duty is similar to Component/Composite service adopted by the service computing community [11]

2

definition of vetting in the context of IoT, (ii) the identification of vulnerabilities for atomic duties and37

composite duties, (iii) the analysis of the consequences of vulnerabilities on the completion of duties,38

and (iv) the demonstration of the vetting through a proof of concept.39

The rest of this paper is organized as follows. Section 2 discusses initiatives for vetting mobile apps.40

Section 3 identifies existing gaps in vetting things. Section 4 details the process of preparing things for41

vetting. This consists of identifying their duties along with analyzing the impact of vulnerabilities on42

these duties that things are expected to achieve. Prior to concluding in Section 6, conceptual details43

about the framework along with the results of the experiments are presented in Section 5.44

2. Vetting mobile apps45

According to the US National Institute of Standards and Technology (NIST) [12], there is a need to46

secure mobile apps from vulnerabilities and defects; apps are used by all people and all organizations.47

To satisfy this need, a strict vetting process would ensure that mobile apps comply with an organiza-48

tion’s security requirements and are to a certain extent free of (serious) vulnerabilities. These require-49

ments could be related to origin, data sensitivity, and target environment and could be decomposed50

into (i) general with respect to some existing standards and best practices, such as those specified by51

NIAP, OWASP, MITRE, and NIST, and (ii) specific with respect to some internal policies, regulations,52

and guidelines. Factors that could be the cause of app vulnerabilities include design flaws and pro-53

gramming errors, which could have been inserted intentionally or inadvertently [12]. Depending on the54

risk tolerance of an organization, some vulnerabilities might be more serious than others, suggesting the55

need for a contextualized vetting process. Vetting could occur throughout an app’s lifecycle, which con-56

sists of development, acquisition, and deployment stages and would cover correctness testing, source57

and binary code testing, and static and dynamic testing.58

In [8], Quirolgico et al. mention that millions of apps for mobile devices are available through com-59

mercial stores and open repositories. Because of their low cost and widespread, the threats of the vulner-60

abilities of these apps could be far greater than those of traditional computers. Because some vulnerabil-61

ities of mobile apps are unique, the study insists on the urgency of developing a quick and cost efficient62

vetting process.63

In [13], He et al. analyze malware attacks on smartphones and suggest a two-level defense strategy64

that aims at preventing malware from entering smartphones and determining whether appropriate tools65

should detect and remove them. However, this may not always be successful due to the rapid changes in66

3

malware behavior and therefore, more sophisticated tools need to be quickly developed while consider-67

ing smartphones’ limitations. He et al. recommend collaboration between apps’ administrators, phone68

users, and application developers to detect and prevent malware threats. They highlight the need for a69

strict app vetting on the server-side for removing any malicious apps from the market using cloud-based70

scanning engines. Finally, He et al. conclude by suggesting new research directions related to the issues71

of (1) how to systematically collect data of emerging malware; (2) how to develop techniques and tools to72

associate new attacks with those already recorded; (3) how to uncover unknown malware; and (4) how73

to make a paradigm shift that will involve advertisers as defenders, too. The lack of datasets about new74

vulnerable applications is also discussed by Nagappan and Shihab in [14]. They address the need for75

more sophisticated lightweight tools that would prevent malicious code from getting into smartphones76

through mobile app stores.77

In [15], Chen et al. propose mass vetting (MassVet), a lightweight mechanism that is capable of78

quickly discovering unknown malice at a large scale (e.g., Google Play Store). The authors use an app’s79

view structure and navigation relations among views to produce a view graph whose nodes correspond80

to view items (active widgets) and arcs between nodes show navigation paths. These graphs are further81

compared with those that original apps on the market have.82

The fields of mobile computing (exemplified with mobile apps) and IoT (exemplified with hundreds83

types or models of device) present many similarities in terms of affordability, wide use, and limited84

control; thus, they should benefit from each other. Guidelines for vetting mobile apps already exist and85

would constitute a good source for developing the same for IoT. The next section identifies the gaps in86

current research related to vetting IoT.87

3. Gaps in vetting IoT88

Compared to vetting mobile apps (Section 2), there is a major gap in (V IoT). In addition to Section 1’s89

obstacles that undermine IoT, this gap is also due to the nature of IoT. IoT mixes physical processes90

with cyber connectivity, making it different from other software-related disciplines [16]. The first set91

of references that we reviewed are more concerned with the security and privacy of IoT applications92

than with developing a comprehensive guide for vetting things that would reveal their vulnerabilities.93

Meanwhile, the second set of references run tests to identify vulnerabilities of IoT devices that are al-94

ready in operation [16]. There is a consensus that IoT vastly impacts the way we view, use, and interact95

with smart devices [17]. However, security remains a concern that could turn IoT misuse into a serious96

4

problem; such devices collect and use users’ personal data without their permissions. McKinsey argues97

that security may represent the greatest obstacle to IoT growth [18]. In [19], Creager discusses methods98

for detecting IoT devices’ suspicious activities. Devices are monitored for proper behavior, and those99

that show signs of having been interfered can have their behaviors mitigated and their security issues100

eliminated.101

In [20], Celik et al. examine the security and privacy of IoT applications using a program-analysis102

technique. They use the examples of unlocked doors when nobody is at home and turned-off heaters in103

cold weather. Both examples illustrate risks for the safety of people and their assets, calling for appro-104

priate and prompt measures. Despite those risks, Celik et al. do not target IoT but, IoT platforms that105

are used to develop them and the IoT applications that manage them. The considered IoT platforms are106

Samsung’s SmartThings, Apple’s HomeKit, OpenHAB, Amazon AWS IoT, and Android Things.107

In line with the work of Celik et al., Fernandes et al. [21] look into data protection in the context of108

IoT, in general, and mobile apps associated with IoT, in particular. They argue that permission-based109

access control over sensitive data is not enough once an app gains control over data. Apps should make110

their data-use patterns explicit so that these patterns are enforced (deviations are not allowed) at runtime111

when sensitive data is used. Fernandes et al.’s system, known as FlowFence, enables robust and efficient112

flow control between sources and sinks in IoT applications by creating a data-handling mechanism for113

privacy protection purposes. FlowFence focuses partially on data leakage prevention where the overall114

IoT device behavior is not considered.115

In a 2018 report by KEYFACTOR [22], the authors discuss cases of IoT devices that have been subject116

to attacks although these devices were critical to humans’ lives. Vetting IoT devices would have helped117

prevent or at least reduce such cases by revealing their vulnerabilities ahead of time. In the healthcare118

domain, in 2017, the US Food and Drug Administration (FDA) recalled 465K pacemakers after discov-119

ering security flaws that could allow hackers to drain device batteries or send malicious instructions to120

modify a patient’s heartbeat. Vetting pacemakers could have prevented such cases too. Similar news121

were reported in the automotive industry when a Jeep Cherokee was hijacked turning off the transmis-122

sion while the vehicle was on the freeway.123

Among the different works that we reviewed, the works of Palavicini Jr. et al. [23] and Siboni et al. [24]124

overlap with our objectives. On the one hand, Palavicini Jr. et al. apply symbolic analysis to vet, in a125

semi-automated way, Industrial IoT (IIoT) firmware using angr, a UC Santa Barbara binary analysis126

framework [25], and Mecanical Phish, a component from the same university’s cyber reasoning system, to127

5

Table 1: Summary of the common reviewed state-of-the-art research that highlights the scopes, contexts, and main contribu-
tions. means fully covered, H#means partially covered, and � means uncovered.

Scope Context

Literature Security Privacy Vetting Software (Apps) Hardware IoT Contributions

He et al. [13] H# � H# � � Future directions
Nagappan and Shihab [14] H# � H# � � Reviews and recommendations
Chen et al. [15] � H# � � MassVet technique
Celik et al. [20] H# � Challenges and opportunities
Fernandes et al. [21] H# H# � � H# FlowFence system
Palavicini Jr. et al. [23] H# � H# H# Semi-automatic firmware vetting
Siboni et al. [24] H# H# Security testbed framwork

perform the semi-automated analysis of IIoT. The authors mention that embedded systems and IIoT de-128

vices are rapidly increasing in number and complexity. As a result, cyber-physical attacks have become129

omnipresent, causing economic and physical damages. They also mention that the firmware for these130

systems has become difficult to analyze when searching for malicious functionalities. Their approach131

consists of 3 steps: preparation of the firmware image for loading into the angr framework, emulation132

for verification of discovered vulnerabilities, and analysis of the firmware sample “angr style”.133

On the other hand, Siboni et al. [24] discuss a security testbed for IoT devices that iTrust Lab has134

developed. First, they report on the experience of using an IoT search engine, SHODAN [26], to dis-135

cover vulnerabilities of IoT devices. It is worth noting that this experience targeted devices that were136

already in operation, while we insist that vetting aims at detecting vulnerabilities prior to putting de-137

vices into operation. The proposed testbed emulates different types of testing environments that sim-138

ulate the activity of multiple sensors and perform predefined and customized security tests along with139

advanced security testing analysis. Siboni et al. consider 4 security aspects of IoT devices: architecture,140

which investigates attacks on hardware and software; network connectivity, which investigates attacks on141

data distribution; data collection, which that investigates data collection with regard to privacy invasion142

and information theft; and, finally, countermeasures and mitigation, which that investigate how to reduce143

the security and privacy risks that IoT devices could cause. According to Siboni et al., the proposed144

framework requires further improvements to support the full operational capability so that the entire145

IoT environment is considered. In addition, the framework uses different open source tools to simulate146

real operational environments and to run security tests. These tools may need a vetting process for it-147

self, continuous updates, and special configuration from device-to-device, which makes the proposed148

framework complex.149

Table 1 summarizes the scopes, contexts, and contributions of the reviewed state-of-the-art research.150

The table clearly demonstrates that very few papers focus on the IoT vetting process by introducing151

6

security testing frameworks. The rest of the research either focuses on mobile apps or introduces a partial152

vetting process or partially covers security and privacy aspects. In common, the reviewed literature153

considers testing IoT devices that are already in operation, although this research aims for a vetting154

framework that detects security vulnerabilities before taking the device into operation.155

4. Preparing things for vetting156

According to Crews and Mangal [27], the massive arrival of smartphones and mobile apps has trig-157

gered a “mini-revolution” in the software engineering discipline. Some concepts, principles, and prac-158

tices, such as those related to testing, have been adjusted. Touchscreen gestures, location awareness, and159

orientation need to be tested differently. The same is valid when testing and vetting IoT smart devices.160

We expect that IoT features in terms of reduced size, restricted connectivity, continuous mobility, limited161

energy, constrained storage, and additional features that Kamrani et al. [28] discuss will trigger a similar162

“revolution”. “The things in the Internet of Things (IoT) can get personal. They can be in your home, your car,163

and your body. They can make your living and working space smart, and they can be dangerous to your health,164

safety, and liberty. · · · Is our future a brave new world or a dystopian nightmare? Who decides?” [29].165

4.1. Overview166

By analogy to the NIST definition of the app vetting process [12], the IoT vetting process would be a167

sequence of activities that an organization would carry out to declare if a thing is “clean” with respect168

to some IoT safety and security requirements. Our sequence of activities represented in Figure 1 would169

consist of (i) defining things’ duties that would be subject to vetting, (ii) identifying the vulnerabilities170

that would affect these duties, (iii) analyzing the impact of these vulnerabilities on these duties, and171

(iv) developing guidelines and/or recommending techniques to address these vulnerabilities. The first172

two steps in Figure 1 are already discussed in [9, 10]. Therefore, this article focuses on the impact of173

vulnerabilities on duties to initiate the development of guidelines against these vulnerabilities.174

Definition of thing's
duties

Identification of
duties' vulnerabilities

Development of
guidelines against
vulnerabilities

Analysis of
vulnerabilities'impact

on duties

Figure 1: General representation of the V IoT process

7

sensing

(0,1)

actuating

(0,1)

communicating

(0,1)

is meant for

exchange
 exchange

exchange

Thing's duties

in
p

u
t

V
IoT

process

Organization's security

and privacy requirements

in
p
u

t

output
 accept

Integrate thing

into mission

critical system

reject

Figure 2: Atomic duties of a thing

4.2. Duties of things175

In a previous work [10, 30], we identified 3 atomic duties that would capture a thing’s capabilities in176

terms of sensing (collecting and temporarily storing data), actuating (processing/acting upon data), and177

communicating (sharing/distributing data). A duty is either enabled or disabled ((0,1) in Figure 2) accord-178

ing to the requirements and needs of the under-development IoT applications. Our duty categorization179

overlaps to a certain extent with first, Celik et al.’s sensor-computation-actuator cycle that structures the180

design of IoT systems’ apps [20] and second, the IoT device capabilities of [31].181

Simply put, a thing senses the cyber-physical surrounding so that it generates and (temporarily) stores182

(raw) data; a thing actuates data including those that are sensed; and a thing communicates with the183

cyber-physical surrounding the sensed and/or actuated data. Accepting data and/or commands from184

external parties (e.g., other things) is also taken care of by the communicating duty, but this process is185

not further discussed in this report. It is worth noting that a thing’s sensing, actuating, and communi-186

cating duties can be composed together as per the following 4 representative cases (other cases, such as187

Communicating, Actuating and Communicating, Actuating, Sensing are not discussed):188

1. Sensing, Actuating, Communicating: sensed data are passed on to actuating; and the data that189

result from actuation are passed on to communicating for distribution.190

2. Sensing, Actuating: sensed data are passed on to actuating; and the data that result from actuation191

are finals.192

3. Sensing, Communicating: sensed data are passed on to communicating for distribution.193

8

4. Actuating, Communicating: data that result from actuating are passed on to communicating for194

distribution.195

Figure 3 is the duty model representation referring to one super-class, Duty, which would describe196

the common characteristics of all the duties, such as identity (id duty), name (name duty), type (type),197

and resources to consume when performing the duty (res). Duty is specialized into Sensing, Actuat-198

ing, and Communicating. Sensing class describes elements such as frequency (freq sensing) and sensed199

data (data). Actuating class describes elements such as necessary time (latency) and actions (actions)200

required to take over data (data). Communicating class describes elements such as time (timestamp), per-201

formed action (action), which could be either “receive” or “send”, and the involved things (things) in202

this duty. Data class of a thing (thing) describes elements such as the attribute (attribute, e.g., response203

time), value (value data), and validity (validity). Resource class describes elements such as identity (id res),204

name (name res), and value (value res). Finally, the Thing class defines the characteristics of the thing that205

performs duties such as identity (id thing) and description (des thing).206

Duty

id_duty: Long

name_duty: String

type= <"Atomic","Composed">

Actuating

latency: Time

data,actions: List <Data,String>

Resource

id_res: Long

name_res: String

value_res: String

Data

thing: Thing

attribute: String

value_data: String

validity: Time

Sensing

freq_sensing: String

data: List <Data>

Communicating

timestamp: Time

action: <"receive","send">

things: List <Thing>

Thing

id_thing: Long

des_thing: String

0..1 0..1
0..1

0..*

0..*

0..*

1..*

1..*

1..*

res: List <Resource>

0..*

1..*

10..*

0..*1..*

Figure 3: Duty model

4.3. Analysis of vulnerabilities of duties207

As per Figure 1, our vIoT process proceeds with defining the duties of things and then, identifying208

potential vulnerabilities that could negatively impact these duties. Although some vulnerabilities that209

9

could be sources of attacks havealready been identified in the context of the OWASP IoT project [32] (Ta-210

ble 2), we find these vulnerabilities generic and not related to the duties of things. To address this limited211

focus, we have developed different questions2 that would expose vulnerabilities, as per Table 3, where212

Vx
i is the ith vulnerability related to either an atomic or a composite duty x, and x ⊂ {s, a, c, sac, sa, sc,213

ac} (s: sensing, a: actuating, and c: communicating). Only the questions for atomic duties are presented.214

Table 2: Common security vulnerabilities in the IoT paradigm in the context of the OWASP IoT project

Vulnerability Attack surfaces Summaries
Username enumeration Administrative interface Ability to collect a set of valid usernames by interacting

with the authentication mechanism
Device Web interface
Cloud interface
Mobile applications

Weak passwords Administrative interface Ability to set account passwords to ’1234’ or ’123456’, for
example

Device Web interface Usage of pre-programmed default passwords
Cloud interface
Mobile applications

Account lockout Administrative interface Ability to continue sending authentication attempts after
3 - 5 failed login attempts

Device Web interface
Cloud interface
Mobile applications

Unencrypted services Device network services Network services are not properly encrypted to prevent
eavesdropping or tampering by attackers

...
...

...

Questions (Q) that can be raised during the vetting of sensing include but are not limited to Q1: does215

sensing target living (e.g., persons) and/or non-living things (e.g., rooms)? What is the sensing about216

(e.g., ambient temperature, wind speed, and heartbeat)? Q2: does sensing target indoor, outdoor, or217

both? Q3: what is the frequency of sensing (e.g., continuously, at regular intervals, or trigger-based)?218

Q4: who configures sensing (e.g., frequencies, service periods, or authorized recipients)? Does config-219

uration need to occur from a specific location and/or using a specific device? Q5: what is the resource220

consumption level of sensing? Also, is there any threshold that would indicate overconsumption and221

hence, trigger alarms? And, Q6: are there traces of tracking sensing using logs, for example? If yes, how222

are the traces safeguarded?223

Questions (Q) that can be raised during the vetting of actuating include but are not limited to Q1: can a224

thing cancel and/or compensate the outcomes of actuating? If yes, does it need any approval? Q2: what225

is the frequency of actuating (e.g., continuously, at regular intervals, or trigger-based)? Q3: who config-226

ures actuating in terms of frequencies, service periods, etc.? Does configuration have to happen from a227

specific location and/or using a specific device? Q4: what inputs does actuating require? What outputs228

2The questions are part of a tip-sheet similar to the one available at https://tinyurl.com/thpzmc3.

10

does actuating produce? Q5: are there traces of tracking actuating using logs, for example? If yes, how229

are these traces safeguarded? And, Q6: what is the resource consumption level of actuating? And, is230

there any threshold that would indicate overconsumption and hence, trigger alarms?231

Questions (Q) that can be raised during the vetting of communicating include but are not limited232

to Q1: what interaction protocol does communicating use? Also, is this protocol secured? Q2: what233

interaction mode does communicating use (e.g., synchronous versus asynchronous and point-to-point234

versus multi-point?) Q3: what is the frequency of communicating (e.g., continuously, at regular intervals,235

or trigger-based)? Q4: who configures communicating in terms of frequencies, mode, service, etc.? Does236

configuration have to happen from a specific location and/or using a specific device? Q5: to whom does237

thing send data (e.g., persons, systems, or both)? Are there guarantees that data recipients do not share238

it further without approval? Q6: is data communicated immediately with authorized parties or cached239

for later sharing? Also, if data is classified, what measures are used for achieving this? Q7: what is the240

resource consumption level of communicating? Also, is there any threshold that would indicate over-241

consumption and hence, trigger alarms? And, Q8: are there traces of tracking communicating using logs,242

for example? If yes, how are these traces safeguarded?243

4.4. Impact of vulnerabilities on duties244

In this part of the paper, we examine the impact of vulnerabilities on atomic and composite duties.245

To this end, we capture the successful completion of a duty using a state diagram and then, enrich this246

diagram with special notations to illustrate how a duty could deviate from this completion because of247

vulnerabilities. We see deviations as vulnerability’s side effects.248

4.4.1. Atomic duties249

Sensing. Figure 4 is a state diagram that tracks the progress of the sensing duty towards successful com-250

pletion. Using this diagram’s states and transitions, we develop what we refer to as normal-progress251

cycle of a duty (plain lines in Figure 4). We also enrich this diagram with necessary states and/or252

transitions to represent deviations from this cycle that correspond to side effects of vulnerabilities253

(dashed lines in Figure 4).254

On the one hand, in a normal-progress cycle, the states are not-activated (the sensing duty is not255

available), activated (the sensing duty is being configured), operated (a composed state where the256

11

Table 3: Sample of vulnerabilities of things per duty

Type ID Description

Atomic

Vs
1 Changing sensing frequency(ies) without approval

Vs
2 Tampering sensing’s approved resource consumption-level so, this over consumption gets unnoticed

Vs
3 Infinite suspension of sensing duty

Va
4 Changing actuating frequency without approval

Va
5 Altering inputs purposely

Va
6 Infinite suspension of actuating duty

Vc
7 Communicating differently from the claimed frequency

Vc
8 Using a different protocol from what is claimed

Vc
9 Unauthorized party proceeds with communicating using a non-acceptable device

Vc
10 Interrupting communicating without resumption

Composite

VSA
11

Changing sensing frequency(ies) without approval or (un)synchronized sensing and actuating
though it is not mandatory

VSA
12 Interrupting sensing or actuating without resumption

VSA
13 Altering sensed input, which would impact the sensed input to actuate

VSC
14

Changing sensing frequency without approval, which would impact the frequency of the sensed con-
tent to communicate

VSC
15 Interrupting sensing or communicating without resumption

VSC
16

Unauthorized party proceeds with sensing and communicating configuration using a non-acceptable
device

VAC
18

Changing actuating frequency(ies) without approval or (un)synchronized actuating and communi-
cating though it is not mandatory

VAC
19 Interrupting actuating or communicating without resumption

VAC
20 Altering received input

VAC
21 Unauthorized party proceeds with communicating using a non-acceptable device

VSCC
22 Change in sensing or communicating frequency or resource consumption of the sensing duty

VSCC
23

Infinite suspension of sensing duty or the communicating duty in the sensing duty or the communi-
cating duty in one of the two things

VSCC
24 Altering received input

operated

sending
not-activated activated

activation
done

interrupted

resu
m

ption

in
te

rr
u

pt
io

n

completion

misconfiguration

Legend
Normal-progress cycle

Vulnerability's side effects

interruptedinterruptedinterruptedinterruptedinterruptedinterruptedinterruptedinterruptedinterruptedinterruptedinterrupted

read buffered
start

Figure 4: Enriched state diagram of the sensing duty

12

sensing is taking place in terms of reading and buffering3), done (the sensing is complete), and257

interrupted (the sensing is put on-hold and then resumed). On the other hand, the transitions con-258

necting these states together are activation, start, sending, interruption, resumption, and completion.259

Vulnerability’s side effects correspond to 2 states, namely, activated (the sensing duty is miscon-260

figured) and interrupted (the sensing is put on-hold indefinitely), and 1 transition, namely, miscon-261

figuration. We associate misconfiguring sensing with 2 vulnerabilities, namely, change in sensing262

frequency (Vs
1) and tampering resource-consumption level (Vs

2), and we associate indefinite on-263

hold with 1 vulnerability, namely, infinite suspension of sensing (Vs
3).264

Actuating. Similar to sensing, we develop the normal-progress cycle of the actuating duty (plain lines in265

Figure 5) and identify the side effects of vulnerabilities that this duty could be subject to (dashed266

lines in Figure 5).267

operated

not-activated activated
activation

done

interrupted

resu
m

p
tio

n

in
te

rr
u

pt
io

n

completion

misconfiguration

Legend
Normal-progress cycle

Vulnerability's side effects

received
sending

processedprocessed

condition-unmet

start

interrupted

Figure 5: Enriched state diagram of the actuating duty

In a normal-progress cycle, on the one hand, the states are not-activated (the actuating duty is not268

available), activated (the actuating duty is being configured), operated (a composed state where the269

actuating is taking place in terms of receiving and processing data), done (the actuating is com-270

plete), and interrupted (the actuating is put on-hold and then resumed). On the other hand, the271

transitions connecting these states together are activation, sending, start, interruption, resumption,272

and completion.273

Vulnerability’s side effects correspond to 3 states, namely, activated (the actuating duty is being274

misconfigured), processed (the actuating operates differently), and interrupted (the actuating is put275

3We adjust the sensing behavior reported in [33].

13

on-hold indefinitely), and 2 transitions, namely, misconfiguration and condition-unmet. We asso-276

ciate misconfiguring actuating with 1 vulnerability, i.e., change in actuating frequency (Va
4); we277

associate operating differently of the actuating duty with 1 vulnerability, i.e., altering received in-278

put (Va
5); and we associate indefinite on-hold with 1 vulnerability, i.e., the infinite suspension of279

actuating (Va
6).280

Communicating. Like sensing and actuating, Figure 6 shows the normal-progress cycle of the communi-281

cating duty (plain lines in Figure 6) and the side effects of vulnerabilities that this duty could be282

subject to (dashed lines in Figure 6).283

operated

not-activated activated
activation

done

interrupted

resu
m

p
tio

n

in
te

rr
u

p
ti

o
n

completion

misconfiguration

Legend
Normal-progress cycle

Vulnerability's side effects

received sent
start

unacceptable party

relay

Figure 6: Enriched state diagram of the communicating duty

In a normal-progress cycle, on the one hand, the states are not-activated (the communicating duty is284

not available), activated (the communicating duty is being configured), operated (a composed state285

where the communicating is taking place in terms of receiving and sending data), done (the com-286

municating is complete), and interrupted (the communicating is put on-hold and then, resumed).287

On the other hand, the transitions connecting these states together are activation, start, relay, inter-288

ruption, resumption, and completion.289

Vulnerability’s side effects correspond to 3 states, namely, activated (the communicating duty is290

being misconfigured), sent (the community duty shares data with unauthorized party), and inter-291

rupted (the communicating is put on-hold indefinitely), and 2 transitions, namely, misconfiguration292

and unacceptable-party. We associate misconfiguring communicating with a change in communi-293

cating frequency (Vc
7) and a change in communicating protocol (Vc

8); we associate the misuse oper-294

ation of the thing’s duty with a connected unauthorized party (Vc
9); and we associate the indefinite295

on-hold with the infinite suspension of communicating (Vc
10).296

14

4.4.2. Composite duties297

(Sensing,Actuating). Figure 7 shows the normal-progress cycle of the sensing,actuating composite duty298

(plain lines in Figure 7) and the side effects of vulnerabilities that this composite duty could be299

subject to (dashed lines in Figure 7).300

S: not-activated S: activated
activation

S: read A: processed A:donestart sending completion

S: misconfiguration A: condition unmet

S/A: interrupted

resu
m

ption

in
te

rr
u

pt
io

n

interrupted

resu
m

ption

in
te

rr
u

pt
io

n

Legend
Normal-progress cycle

Vulnerability's side effects

Figure 7: Enriched state diagram of the sensing,actuating composite duty

In a normal-progress cycle, on the one hand, the states are S:not-activated (the sensing duty is not301

available), S:activated (the sensing duty is being configured), S:read (the sensing duty is taking302

place in terms of reading), A:processed (the actuating duty takes over from the sensing duty after303

receiving the sensed data for processing), A:done (the actuating duty is complete), and interrupted304

(either the sensing duty or the actuating duty is put on-hold and then resumed). On the other hand,305

the transitions connecting these states together are activation, start, sending, interruption, resumption,306

and completion.307

Vulnerability’s side effects correspond to 3 states, namely, S:activated (the sensing duty is miscon-308

figured), S/A: interrupted (either the sensing duty or the actuating duty is put on-hold indefinitely),309

and A:processed (the actuating operates differently), and 2 transitions, namely, S:misconfiguration310

and A:condition unmet. We associate misconfiguring sensing with a change in sensing frequency (VSA
11);311

we associate indefinite on-hold with 1 vulnerability, namely, the infinite suspension of sensing or312

actuating (VSA
12); and we associate operating differently of the actuating duty with 1 vulnerability,313

namely, altering sensed input (VSA
13).314

(Sensing,Communicating). Figure 8 shows the normal-progress cycle of the sensing,communicating com-315

posite duty (plain lines in Figure 8) and the side effects of vulnerabilities that this composite duty316

could be subject to (dashed lines in Figure 8).317

In a normal-progress cycle, on the one hand, the states are S:not-activated (the sensing duty is not318

15

S: not-activated S: activated
activation

S: read C: received
start sending

S: misconfiguration

S/C: interrupted

resu
m

ption

in
te

rr
u

pt
io

n

interrupted

resu
m

ption

in
te

rr
u

pt
io

n

C: done
completion

C: unacceptable party

Legend
Normal-progress cycle

Vulnerability's side effects

Figure 8: Enriched state diagram of the sensing,communicating composite duty

available), S:activated (the sensing duty is being configured), S:read (the sensing duty is taking place319

in terms of reading), C:received (the communicating duty is taking place in terms of receiving data),320

and S/C: interrupted (either the sensing duty or the communicating duty is put on-hold and then,321

resumed), and C:done (the communicating duty is complete). On the other hand, the transitions322

connecting these states together are activation, start, sending, interruption, resumption, and completion.323

Vulnerability’s side effects correspond to 3 states, namely, S:activated (the sensing duty is miscon-324

figured), C:received (the communicating duty shares data with unauthorized party) and S/C:interrupted325

(either the sensing duty or the communicating duty is put on-hold indefinitely), and 2 transitions,326

namely, S:misconfiguration and C:unacceptable party. We associate misconfiguring sensing with the327

change in sensing frequency by an unauthorized person (VSC
14); we associate indefinite on-hold328

with 1 vulnerability, i.e., infinite suspension of sensing or communicating (VSC
15); and we associate329

the misuse operation of the communicating duty with a connected unauthorized party (VSC
16).330

(Sensing,Communicating,Communicating). Figure 9 shows the normal-progress cycle of the sensing,331

communicating, communicating composite duty (plain lines in Figure 9) and the side effects of332

vulnerabilities that this composite duty could be subject to (dashed lines in Figure 9).333

In a normal-progress cycle, on the one hand, the states are S:not-activated (the sensing duty is not334

available), S:activated (the sensing duty is being configured), S:read (the sensing duty is taking335

place in terms of reading data), C1:received (the actuating duty is taking place in the first thing in336

terms of receiving data), C1/C2:synchronized (the communicating duty is synchronized between the337

first and the second things), C2:received (the actuating duty is taking place in the second thing in338

terms of receiving data), C2:done (the communicating duty is complete) and S/C1/C2:interrupted339

16

S: not-activated S: activatedactivation S: read C1: receivedstart sending

S: misconfiguration

S/C1/C2: interrupted

resu
m

p
tio

n

in
te

rr
u

p
ti

o
n

interrupted

resu
m

p
tio

n

in
te

rr
u

p
ti

o
n

C2: done

co
m

p
le

ti
o

n

C1: unacceptable party

Legend
Normal-progress cycle

Vulnerability's side effects

C2: receivedC1/C2: synchronyzed
synchronizing sending

C2: unacceptable party

interruption

resumption

Figure 9: Enriched state diagram of the sensing,communicating,communicating composite duty

(either the sensing duty or the communicating duty in one of the two things is put on-hold and340

then resumed). On the other hand, the transitions connecting these states together are activation,341

sending, start, interruption, resumption, relay,and synchronizing.342

Vulnerability’s side effects correspond to 4 states, namely, S:activated (the sensing duty is miscon-343

figured), C1: received (the communicating duty in the first thing shares data with unauthorized344

party), C2: received (the communicating duty in the second thing shares data with unauthorized345

party) and S/C1/C2: interrupted (either the sensing duty or the communicating duty in one of the346

two things is put on-hold indefinitely), and 3 transitions, namely, S:misconfiguration, C1: unaccept-347

able party and C2: unacceptable party. We associate misconfiguring sensing with the change in348

sensing or communicating frequency, or resource consumption (VSCC
22); we associate an indefinite349

on-hold with 1 vulnerability, i.e., the infinite suspension of sensing duty or the communicating350

duty within the sensing duty or the communicating duty in one of the two things (VSCC
23), and351

operating differently of the communicating duty in one of the two things with altering received352

input (VSCC
24).353

5. Guiding framework for vetting things354

This section presents our proposed V IoT framework (Section. 5.1) and, then, the system that was355

implemented accordingly (Section. 5.2).356

5.1. Architecture357

Figure 10 identifies the modules that constitute our framework for vetting things. Vetting ensures358

that a thing’s behavior is in line with its expected behavior (Section 4.4) when tested against vulnerabili-359

17

ties that its duties can be subject to (Section 4.3). The progress of completing the vetting in the framework360

goes over 5 stopovers.361

IoT	vetting	framework

Thing
ecosystem

Tester

Vet
engineers Testbed

Log of
active
state

List	of	vulnerabilities	and
associated	tests

Repository	of
things

describe

Deployer
initiate

pull

deploy

1

2

3

run	&
	

interact

track

Inspector
pull

4

State1

StateN

Expected
thing	behavior

pull

store

pull

Interactions

outputsubmit	

Figure 10: Modules of the V IoT framework

safe362

In stopover 1 , the vet engineer enriches the description of the thing to vet with details about its363

atomic/composite duties and then, publishes this description on the repository of things. In stopover 2 ,364

the vet engineer deploys the thing on the testbed allowing to run different tests and to support inter-365

actions with peers and the Tester module. The deployment is taken care by the deployer module that366

also extracts the thing’s descriptions of duties from the repository of things and submits them to the367

tester module, thereby initiating the third stopover 3 . The tester module (i) retrieves the list of known368

vulnerabilities for the thing based on its duties, (ii) selects the necessary tests4 associated with these vul-369

nerabilities and finally, (iii) runs the selected tests. During the tests, the testbed is constantly monitored370

thanks to the tester module that tracks and stores both the states of the thing and the events in a dedi-371

cated log. Upon completing the tests that correspond to stopover 4 , the following occurs; the inspector372

module pulls the behavior of the under-vetting thing from the log and its expected behavior as defined in373

Section 4.4. Then, it compares the behavior built upon the tests to the expected one: if no vulnerabilities’374

side-effects are detected then the thing is declared safe; otherwise, it is declared unsafe.375

4Tests could be automatic, semi-automatic, or manual.

18

5.2. Implementation and experiments376

A system demonstrating the V IoT framework was developed using Python 3, Java 14, JavaScript,377

MQTTLens [34] and Node-RED [35]. MQTTLens is an add-on for the Chrome browser allowing to pub-378

lish messages to an MQTT broker, to subscribe to MQTT topics and to receive messages. This latter379

is a flow-based programming paradigm in which a variety of processes called “nodes” are connected380

together to form applications called “flows”, instead of writing code. Node-RED runs on local worksta-381

tions, the cloud, and edge devices. It has become an ideal tool for the Raspberry Pi and other low-cost382

hardware. Node-RED runtime is built on top of Node.js and takes its full advantage in terms of event-383

driven, non-blocking I/O model. It can be used to build and deploy applications due to its browser-384

based editor by wiring hardware devices, APIs and online services. Node-RED implements the testbed385

and includes an MQTT server so that IoT devices could be easily connected via port 1883 using Transport386

Layer Security (TLS). We considered sensors as things to vet. The vet engineer interacts with the sensors387

running on the testbed using JSON requests via the deployer module (i.e., MQTTLensTool). The way a388

sensor was implemented consists of 3 connected objects: living.lights, bed.alarm, and kitchen.aircondition.389

They were created and deployed by the Node-RED server. On top of Node-RED, other parts (i.e., the390

tester and the inspector) were implemented using Python language (Spyder Tool V3.7 [36]).391

Figure 11: Things deployed in the Node-RED testbed of the V IoT framework

According to Figure 11 (the testbed), we used six node types (i) mqtt input node allows users to con-392

figure an MQTT service and the topic to publish about. As a result, a node could receive messages with393

the exact same JSON string that was sent via MQTTLens (as shown in Figure 12). (ii) JSON node which394

19

parses messages that MQTT input node generates when it receives an MQTT message and converts it to395

a JavaScript object. (iii) f unction node receives a message object as input and can return 0 or many mes-396

sage objects as output. A message object must have at least a payload property (msg.payload). (iv) debug397

node displays the received messages within the flow in the panel. (v) text node shows messages within398

the flow on a slider and as a text string. Finally, (vi) change node changes a message payload or adds399

new properties. All calls to the testbed’s flow are tracked and stored by the Tester in the log of the active400

states database consisting on a CSV file. Next, the Inspector module compares the stored active states to401

the expected ones to check the possible existence of any vulnerability.402

Figure 12: JSON request submission via MQTTLens

To illustrate a vulnerability, we considered sensing duty and set its frequency to every time inter-403

val. A vulnerability would consist of communicating differently from the claimed frequency (Vs
1) by404

using the “change” node. Thus, during the experiment, the Python program related to sensing duty405

was launched in order to check whether the stored states were as expected. If not, it displayed a notifi-406

cation of a vulnerability. In the following, we considered 2 series of vulnerability-related experiments:407

vetting duration and vetting efficiency. These experiments run on Windows 10 Asus TUF Gaming i7-408

8750H @ 2.206Hz, 12Go. Before all, the V IoT engineer sends a JSON request to a living.lights’s sensor via409

MQTTLens Tool as per Figure 12.410

1. Vetting duration: to assess the framework’s time performance for detecting vulnerabilities. We411

computed the time of sending a request and the time of detecting a vulnerability. We considered412

10 requests with an 2-second time interval between each one, where each request was tampered413

by changing frequency vulnerability. Then, we recorded the time that the inspector took to process414

the vetting so, that vulnerabilities were detected. As per Figure 13, we noticed that launching vio-415

20

lations does not affect much the vetting latency since the active states are checked by the Inspector416

module.417

Figure 13: Latency-based V IoT framework performance

2. Vetting efficiency: to assess the framework’s capacity to detect vulnerabilities based on precision418

and recall. The precision expresses the ability of the Inspector module to detect correct (i.e., that419

actually happened) vulnerabilities only. It is defined by calculating the ratio of the number of true420

vulnerabilities among the launched vulnerabilities as per Equation (1), where TV is the number of421

true vulnerabilities, and FV is the number of detected false vulnerabilities.422

Precision =
TV

TV + FV
(1)

The recall is defined as the ratio of true vulnerabilities over the total number of detected vulnera-423

bilities by the Inspector, as per Equation (2), where FN is the number of missing true vulnerabilities424

that are not detected. It represents the probability of detecting all true vulnerabilities among the425

detected vulnerabilities.426

Recall =
TV

TV + FN
(2)

In these experiments, we relied on the vulnerabilities used in the first series (Figure 13). Then, we427

observed the behavior of the Inspector module in terms of number of detected true/false vulnera-428

bilities, and the number of non-detected ones to determine the precision and recall values (Table 4).429

As per Table 4, we noted that the V IoT framework is efficient by achieving a precision close to 1 in430

21

Table 4: Precision/recall results
Vulnerabilities 1 2 3 4 5 6 7 8 9 10 Total
TV 1 1 0 1 1 1 1 1 1 1 9
FV 0 1 0 1 2 0 0 0 0 0 4
FN 0 0 1 0 0 0 0 0 0 0 1
Precision 1 0.5 0 0.5 0.33 1 1 1 1 1 0.9
Recall 1 1 0 1 1 1 1 1 1 1 0.9

most of vulnerabilities (same for recall values). We also noticed that there is only one missing vulnerabil-431

ity among 10 (the third vulnerability). The efficiency of the VIoT framework in terms of precision/recall432

is explained by the presence of the inspector that browses instantly the active states of the connected433

things, where each is checked separately wether it is as expected or not.434

6. Conclusion435

This paper discussed the importance of vetting things prior to their integration into systems, some436

of which are critical. The objective is to verify claims of providers about the safety of things as some437

could be subject to vulnerabilities that could be taken advantage of for non-beneficial practices. The438

IoT paradigm imposes a new way of how determining security, confidentiality, identity, and privacy439

should be approached. By analogy to mobile apps vetting, we identified the vulnerabilities that could440

impede things’ duties from successful completion and then illustrated how these vulnerabilities could441

be detected. The duties are referred to as sensing, actuating, and communicating; they have been exam-442

ined separately in the context of atomic duties and then combined, in the context of composite duties.443

The outcome of vetting either ensures thing’s trustworthiness when their behaviors meet the expected444

execution cycles or declares them as unsafe. Future work will target completing the testbed by vetting445

more things and more duties, whether atomic and composite, and examining the concept of provable446

vetting so that things would be accountable for the duties they perform.447

References448

[1] Gunduz, M.Z., Das, R.: Cyber-security on smart grid: Threats and potential solutions. Computer Networks449

169, 107094 (2020), https://doi.org/10.1016/j.comnet.2019.107094450

[2] Statista: Mobile app usage—Statistics & Facts (2019), https://www.statista.com/topics/1002/451

mobile-app-usage/, [Online; accessed 20-March-2020]452

[3] Ashford, W.: Less than half of firms able to detect IoT breaches (2019), https://www.computerweekly.453

com/news/252455834/Less-than-half-of-firms-able-to-detect-IoT-breaches-study-shows, [Online;454

accessed 16-June-2020]455

22

[4] Middleton, P., Tully, J., Kjeldsen, P.: Forecast: The internet of things, worldwide, 2013 (2013), http://www.456

gartner.com/doc/2625419/, Report of Gartner. [Online; accessed 19-August-2020]457

[5] Ko, E., Kim, T., Kim, H.: Management platform of threats information in iot environment. Journal of Ambient458

Intelligence and Humanized Computing 9(4), 1167–1176 (2018)459

[6] DZone: The Internet of Things, Application, Protocols, and Best Practices. Tech. rep.460

(https://dzonecom/guides/iot-applications-protocols-and-best-practices, 2017 (visited in May 2017))461

[7] Elrawy, M.F., Awad, A.I., Hamed, H.F.A.: Intrusion detection systems for IoT-based smart environments: a462

survey. Journal of Cloud Computing 7(1), 21 (2018), https://doi.org/10.1186/s13677-018-0123-6463

[8] Quirolgico, S., Voas, J., Kuhn, R.: Vetting Mobile Apps. IT Professional 13(4) (2011)464

[9] Maamar, Z., Kajan, E., Asim, M., Baker Shamsa, T.: Open challenges in vetting the internet-of-things. Internet465

Technology Letters 2(5), e129 (2019), https://doi.org/10.1002/itl2.129466

[10] Qamar, A., Asim, M., Maamar, Z., Saeed, S., Baker, T.: A quality-of-things model for assessing the internet-467

of-things’ nonfunctional properties. Transactions on Emerging Telecommunications Technologies p. e3668,468

https://doi.org/10.1002/ett.3668469

[11] Papazoglou, M., Pohl, K., Parkin, M., Metzger, A. (eds.): Service Research Challenges and Solutions for the470

Future Internet - S-Cube - Towards Engineering, Managing and Adapting Service-Based Systems, Lecture471

Notes in Computer Science, Vol. 6500. Springer (2010)472

[12] Ogata, M., Franklin, J., Voas, J., Sritapan, V., Quirolgico, S.: Vetting the Security of Mobile Applications (April473

2019), https://doi.org/10.6028/NIST.SP.800-163r1, DRAFT NIST Special Publication 800-163 (Revision474

1). [Online accessed 20-March-2020]475

[13] He, D., Chan, S., Guizani, M.: Mobile Application Security: Malware Threats and Defenses. IEEE Wireless476

Communications 22(1) (February 2015)477

[14] Nagappan, M., Shihab, E.: Future Trends in Software Engineering Research for Mobile Apps. In: Pro-478

ceedings of the 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineer-479

ing (SANER’2016). Vol. 5. Suita, Osaka, Japan (March 2016)480

[15] Chen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu, P.: Finding Unknown Malice in481

10 Seconds: Mass Vetting for New Threats at the Google-play Scale. In: Proceedings of the 24th USENIX482

Conference on Security Symposium (SEC’2015). Washington, D.C., USA (2015)483

[16] Ali, B., Awad, A.I.: Cyber and physical security vulnerability assessment for IoT-Based smart homes. Sensors484

18(3), 817 (2018), https://doi.org/10.3390/s18030817485

[17] Hassan, A.M., Awad, A.I.: Urban transition in the era of the Internet of Things: Social implications and486

privacy challenges. IEEE Access 6, 36428–36440 (2018), https://doi.org/10.1109/ACCESS.2018.2838339487

[18] Bauer, H., Burkacky, O., Knochenhauer, C.: Security in the Internet of Things (2020), http://www.mckinsey.488

com/, [Online; accessed 08-March-2020]489

[19] Creager, L.: How can Anomalous IoT Device Activity be Detected? tinyurl.com/y9v5lgfq (Downloaded in490

23

November 2018)491

[20] Celik, Z.B., Fernandes, E., Pauley, E., Tan, G., McDaniel, P.: Program analysis of commodity iot applications492

for security and privacy: Challenges and opportunities. ACM Comput. Surv. 52(4) (Aug 2019), https://doi.493

org/10.1145/3333501494

[21] Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.: FlowFence: Practical Data495

Protection for Emerging IoT Application Frameworks. In: Proceedings of the 25th USENIX Security Sympo-496

sium (USENIX Security’2016). Austin, TX, USA (2016)497

[22] KEYFACTOR: The Impact of Unsecured Digital Identities (2020), https://www.keyfactor.com/, [Online;498

accessed 08-March-2020]499

[23] Palavicini Jr., G., Bryan, J., Sheets, E., Kline, M., San Miguel, J.: Towards Firmware Analysis of Industrial500

Internet of Things (IIoT) - Applying Symbolic Analysis to IIoT Firmware Vetting. In: Proceedings of the 2nd501

International Conference on Internet of Things, Big Data and Security (IoTBDS’2017). pp. 470–477. Porto,502

Portugal (2017), https://doi.org/10.5220/0006393704700477503

[24] Siboni, S., Sachidananda, V., Meidan, Y., Bohadana, M., Mathov, Y., Bhairav, S., Shabtai, A., Elovici, Y.:504

Security testbed for internet-of-things devices. IEEE Transactions on Reliability 68(1), 23–44 (March 2019),505

https://doi.org/10.1109/TR.2018.2864536506

[25] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen, J., Feng, S., Hauser, C.,507

Kruegel, C., Vigna, G.: SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In: Pro-508

ceedinmgs of the Symposium on Security and Privacy (SP’2016). pp. 138–157. San Jose, CA, USA (2016),509

https://doi.org/10.1109/SP.2016.17510

[26] The search engine for the Internet-connected devices: https://www.shodan.io, [Online; accessed 19-August-511

2020]512

[27] Crews, B., Mangal, S.: IoT and it’s Impact on Testing, https://www.getzephyr.com/resources/513

whitepapers/iot-and-its-impact-testing, [Online; accessed 19-July-2020]514

[28] Kamrani, F., Wedling, M., Rodhe, I.: Internet of Things: Security and Privacy Issues. Tech. rep., FOI Swedish515

Defence Research Agency, Defence and Security, Systems and Technology (2019)516

[29] Orman, H.: You Let That In? IEEE Internet Computing 21(3) (2017)517

[30] Maamar, Z., Baker, T., Sellami, M., Asim, M., Ugljanin, E., Faci, N.: Cloud vs edge: Who serves the Internet-518

of-Things better? Internet Technology Letters 1(5), e66 (2018), https://doi.org/10.1002/itl2.66519

[31] NIST, NSA: CISCO IoT Industrial Ethernet and Connected Grid Switches running IOS (Downloaded in520

November 2018), report Number: CCEVS-VR-10692-2015, March 11 2016521

[32] OWASP: OWASP Internet of Things (2020), https://owasp.org/www-project-internet-of-things/, [On-522

line; accessed 08-March-2020]523

[33] Costa, B., Pires, P., Delicato, F., Li, W., Zomaya, A.: Design and Analysis of IoT Applications: A Model-Driven524

Approach. In: Proceedings of the 2016 IEEE 14th International Conference on Dependable, Autonomic and525

24

Secure Computing, the 14th International Conference on Pervasive Intelligence and Computing, and the526

2nd International Conference on Big Data Intelligence and Computing and Cyber-Science and Technology527

Congress (DASC/PiCom/DataCom/CyberSciTech’2016). Auckland, New Zealand (2016)528

[34] MQTTLens: MQTTLens (2020), https://chrome.google.com/webstore/detail/mqttlens/529

hemojaaeigabkbcookmlgmdigohjobjm, [Online; accessed 19-July-2020]530

[35] Red, N.: Node Red (2020), https://nodered.org/, [Online; accessed 19-July-2020]531

[36] Spyder: Spyder Website (2020), https://www.spyder-ide.org/, [Online; accessed 22-July-2020]532

25

